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Abstract

A b-coloring of a graph G with k colors is.a proper coloring of
G using k colors in which each color class contains a color domi-
nating vertex, that is, a vertex which has a neighbor in each of the
other color classes. The largest positive integer k for which G has
a b-coloring using k colors is the b-chromatic number b(G) of G.
The b-spectrum S,(G) of a graph G is the set of positive integers
k, x(G) < k < b(G), for which G has a b-coloring using k colors. A
graph G is b-continuous if $5(G)= {x(G), ..., b(G)}. It is known that
for any two graphs G and H, b(GOH) > max{b(G),b(H)}, where O
stands for the Cartesian product. In this paper, we determine some
families of graphs G and H for which b(GOH) > b(G) + b(H) — 1.
Further we show that if O,, ¢ = 1,2,...,n are odd graphs with
ki > 4 for each i, then Ox,00k,0...00, is b-continuous and
b(Ok, 004, 0...00%,) = 1 + f;lk

=
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1 Introduction

All graphs considered in this paper are finite, simple and undirected. A

b-coloring of a graph G is a proper coloring of G in which each color class
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has a color dominating vertex (c.d.v.), that is, a vertex that has a neighbor
in each of the other color classes. The b-chromatic number 5(G) of G is
the largest k such that G has a b-coloring using k colors. For a given b-
coloring of a graph, a set of c.d.v.’s, one from each class is known as a color
dominating system (c.d.s.) of that b-coloring. Recently, there has been
an increasing interest in the study of b-coloring. See, for instance, (3], [6],
[10-15). The concept of b-coloring was introduced by Irving and Manlove
[8] in analogy to the achromatic number of a graph G (which gives the
maximum number of color classes in a complete coloring of G [7]). They
have shown that the determination of b(G) is N P-hard for general graphs,
but polynomial for trees. From the very definition of b(G), the chromatic
number x(G) of G is the least k for which G admits a b-coloring using k
colors. Thus x(G) < b(G) < 1+ A(G), where A(G) is the maximum degree
of G.

While considering the hypercube Qg, it is easy to note that Q3 has
a b-coloring using 2 colors and 4 colors but none with 3 colors. Thus a
statement similar to the interpolation theorem for complete coloring [7) is
not true for b-coloring. Graphs G for which there exists a b-coloring using
k colors for every k € {x(G),...,b(G)} are known as b-continuous graphs.
Recently, there had been several papers on b-continuity of graphs ([2], [4],
(5], [9]). Some of the known families of graphs which are b-continuous are
chordal graphs, cographs and Pj-sparse graphs ([2],[4]). The b-spectrum
of a graph G, denoted by S,(G), is defined by:

Sy(G) = {k : G has a b-coloring using k colors}.

Clearly Sp(G) € {x(G),...,b(G)} and G is b-continuous iff S4(G) =
{X(G),....b(@)}.

The Cartesian product of two graphs G = (V4, E1) and H = (V;, Es),
denoted by GOH, has vertex set Vi x V,, and two vertices (z;,¥:1) and
(z2,y2) are adjacent in GOH iff either z; = z5 and y; is adjacent to y; in

H, or y; = y2 and z, is adjacent to z3 in G.
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Let n and k be positive integers, m = 2n+ k. We denote by [m] the set
{1,2,...,m} and by (™)) the collection of all n-subsets of [m]. The Kneser
graph K(m,n) [16] has vertex set ([':]) in which two vertices are adjacent
iff the corresponding n-subsets are disjoint. When k = 1, we have the odd
graphs. The famous Petersen graph is the odd graph K(5,2).

This paper deals with the b-chromatic number of Cartesian products of
Odd graphs. The study of the b-chromatic number of Cartesian product
of graphs was initiated by Kouider and Mahéo in [13] wherein they have

proved the following results.

Theorem 1.1 (M. Kouider and M. Mahéo (13])
For any two graphs G and H, b(GOH) > max {b(G),b(H)}.

Theorem 1.2 (M. Kouider and M. Mahéo [13])

Let G and H be two graphs such that G has a b(G)-stable (that is, inde-
pendent) dominating system, and H has a b(H)-stable dominating sys-
tem. Then b(GOH) > b(G) + b(H) — 1, and the graph GOH has a
(b(G) + b(H) — 1)-stable dominating system.

The above result can be generalized as follows (with the same proof).

Observation 1.3

Let G and H be two graphs such that G has a k-stable (that is, indepen-
dent) dominating system, and H has an l-stable dominating system. Then
GUH haes a (k + ! — 1)-stable dominating system.

One of the main problems concerning b-colorings is to completely chara-
terize those graphs G and H for which b(GOH) = max {b(G),b(H)}.
Equivalently, one has to characterize those graphs G and H for which
b(GOH) > max {b(G),b(H)}. Theorem 1.2 gives one such family. In this
paper, we find a few more classes of graphs G and H for which b(GOH) >
b(G) + b(H) — 1. These include odd graphs. In particular, we prove that
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for odd graphs Ok,, 1 < i < n and k; > 4 for each i, Ok, 00;,0... 00,
n

is b-continuous and b(Ok, 00, 0...00;, ) =1+ Y k;.
i=1

2 b-coloring of Cartesian product of odd graphs

We start this section with the following observation.

Observation 2.1

(i) If G has a b-coloring using k colors and H has a b-coloring using !
colors with k < I, then GOH has a b-coloring using | colors (and hence
b(GOH) > 1).

(ii) If G and H are b-continuous graphs, then Sy(GOH) 2 {x(GOH) =
max {x(G),x(H)}, ..., max {b(G),b(H)}}. In particular, if G and H are
b-continuous and b(GOH) = max {b(G),b(H)}, then GOH is b-continuous.

Proof. (i) Let G be a graph having a b-coloring using k colors and let the
colors used be 0,1,...,k — 1. Also let H be a graph having a b-coloring
using ! (> k) colors and let the colors used be 0,1,...,! — 1. Now color
the vertex (z,y) of GOH with (i + j) (mod l) if the color of = is i and y is
J. Choose one layer, corresponding to some z with color 0, we get a copy
of H where the set of vertices {(z,y) : y is a c.d.v. in H} forms a c.d.s.
in GOH. Moreover this is proper, as the end vertices of any edge in GOH
have distinct colors: consider an edge ((z,1), (z,¥2)). As (v1,v2) € E(H),
the colors of ; and y; are different. The reasoning is similar for an edge
((z1,9), (z2,y)). Thus GOH has a b-coloring using ! colors and hence
b(GOH) > 1.

(ii) Proof follows immediately from (i). [ |

We now define a family & of graphs.

Definition 2.2
Let & be the family of graphs H such that for every [ € Sy(H), there exists
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Figure 1: A graph H of the family &

a b-coloring using ! colors for H with a c.d.s. $* = {yo,¥1,...,¥1—1} such
that

(i) {¥1,---, w1} € Nu(yo) and Ny (y:)NNu(y;) = {wo}, 1 <i# 5 <1-1,
(ii) the sets {y1,...,y-1} and lL-Jl Ny (y:) are independent sets in H. (See
Figure 1). =

Note that the girth of all odd graphs other than the Petersen graph is 6.
Moreover it is shown in [1] that the family of odd graphs with the exception
of the Petersen graph belongs to &.

The importance of the family & is seen from the next theorem.

Theorem 2.3
Let G be any graph and H € . If G has a b-coloring using k colors and H
has a b-coloring using | colors and if 3 < k < I, then GOH has a b-coloring

using k + 1 — 1 colors.

Proof. Let g be a b-coloring of G using k colors with a cds. S =
{zoy...,Zk-1}. As H € & and | € Sy(H), there exists a b-coloring us-
ing ! colors, say h, for H with a c.d.s. S* = {yo,...,y-1} satisfying the
conditions (i) and (ii) of Definition 2.2. Let U; denote the color class con-
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Figure 2: Coloring ¢ given in the proof of Theorem 2.3

taining z;, 0 <i < k—1 in G, and V; denote the color class containing y;,
0<j<l-1lin H. Let X =V(G)\S and Y = V(H)\S*. We produce a
b-coloring ¢ for GOH using k + ! — 1 colors by means of g and h as follows:
()ForzeU;, i=0,1,...,k—1,set

c(z,yo0) = i. (See box (1) in Figure 2).
(2) Consider the vertices in X x ((S* U V) — {vo}) (See box (2) in Figure
2).
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(i) For z € Up — {z0}, y € ((S* U Vo) — {vo}), set

k+i—1 fy=yj j=12...,0 -1,

if y € Vo — {wo}-

e(z,y) =

(ii) For z € X\Uo, y € ((S* U Vo) — {t0}), set

14[i (mod (k—1))] ifzelU;, 1<i<k-1, ye S —{w}
c(z,y) =

c(z, yo) if y € Vo — {yo}-
(3) Next consider the vertices in V(G) x (Y\V;) (See box (3) in Figure 2).

ForzeU;, 0<i<k—landyeV;—{y;},1<j<l-1,set
c(z,y) =k +[(i+7—1) (mod (I —1))].

(4) Finally for the vertices in S x ((S*U Vo) — {yo}) (See box (4) in Figure
2), set

k+{(i+j—1)(mod (I-1))] ifz==2; y=y; 120, j>0,
c(z,y) =
e(z, yo) ify € Vo — {wo}.

We have to show that c is a b-coloring. Clearly ¢ uses k + { — 1 colors.
Recall that two vertices (x,y) and (z',y’) are adjacent in GOH if and only
if z = 2’ and y is adjacent to ¢’ in H or y = 3’ and z is adjacent to z’ in
G. As k < ! and the subgraph induced by the Cartesian product of two
independent sets is independent, ¢ is proper. Actually, what we have done
is to give a circular rotation of colors whenever there arises a conflict in
coloring due to presence of edges.

Consider the set of vertices (S x {yo})U({zo} x S*) whose cardinality is
k+1—1. We shall show that the vertices of this set are c.d.v.’s of distinct
color classes. By definition of ¢, one can see that they belong to distinct
color classes. As H € &, y1,y2,.-.,¥i-1 are all neighbors of yo in H and
therefore the vertices of S x {yo} are c.d.v.’s of their corresponding color
classes. Next, consider the set {zo} X (S*\yo). If zo has a neighbor in each
of the class U;\{z;}, i # 0, then the vertices of {zo} X (S*\yo) are c.d.v’s
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for the color classes k,k +1,...,k 4+ [ — 2. Otherwise, there exists at least
one iin {1,2,...,k — 1} for which the above condition fails. Without loss
of generality, assume that zo has no neighbor in Uj\{z1},...,U;\{z,},1 <
r < k — 1. In this case no vertex of {z¢} x S*\{yo} has a neighbor with its
color in {2,3,...,1+ (r mod k — 1)} (see box 2 of Figure 2).

In order to overcome this case we shall recolor some of the vertices in
{ro} x Y by using the fact that these colors are also present in box (4) of
Figure 2. Recall that S* is a star having center yo and with y,...,¥-1
forming an independent set in H. As the y;’s are c.d.v.’s in H, each y;
should have a neighbor in V,\{ys}, foreachs=1,...,5—1,5+1,...,1—-1.
Call such a neighbor in V,\{y,} as y;,. As z¢ is adjacent to z3,...,zy,
the vertex (zo,y;) is adjacent to the vertices (z1,y;),...,(zr,y;) receiv-
ing the colors k + (j (mod (I = 1))),...,k + [( + 7 — 1) (mod (I — 1))],
respectively. Also since the vertices (zo,y;,) for 1 < 7 < I —1 and
s=1+[j (mod (I —1))],...,1+ [(j + 1) (mod (I — 1))] form an inde-
pendent set (by (ii) of Definition 2.2), by arbitrarily coloring these vertices
by distinct colors from {2,3,...,1 + [r (mod (k — 1))]}, it is seen that the
set of vertices {(zo,y;): 1 < j <!-1} forms c.d.v.’s of their corresponding

color classes. |

Corollary 2.4
IfH € & andb(G) < b(H), thenb(GOH) > b(G)+b(H)-1. [ ]

Let us now consider the odd graphs Ok, k > 4. In [1] and [9)], it was
shown that b(Ox) = k+1, Oy is b-continuous and that Oy € &, k > 4. We
also know that x(Ox) = 3 [17]. We now show that the Cartesian products

of odd graphs are b-continuous.

Theorem 2.5
IfG = Oy, and H = Oy, are odd graphs, where k1, ky > 4, then (O, 00x,)
k1 + k2 + 1 and Ok, 00y, is b-continuous.
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Proof. As mentioned already, odd graphs belong to &#. Thus by Theorem
2.3, if O, has a b-coloring using k colors and O, has a b-coloring using !
colors and if 3 < k < I, then GOH has a b-coloring using &k + { — 1 colors.
We now consider the case when k£ > 1 > 4.

Claim. If Ok, has a b-coloring using k colors and O, has a b-coloring
using { colors (where 4 < ! < k) colors, then GOH has a b-coloring using
k+1—1 colors.

Assume for the moment that the claim is true. Then if Ok, has a
b-coloring using k colors and Oy, has a b-coloring using [ colors and if
3<k<lorifk>12> 4, then O, 00k, has a b-coloring using k +1{ -1
colors.

We know that b(Ox) = k + 1. Thus Ok, 00y, has a b-coloring using
(k1 +1) + (k2 +1) —1 = ky + k2 + 1 colors and hence k; + k2 +1 <
b(Ok,00k,) < A(Ok,00k,) +1 = A(Ok,) + A(Ok,) +1 = k1 + ka2 + 1.
Therefore b(Ok, 00y,) = k1 + k2 + 1.

Next let us prove that Ok, 0O, is b-continuous. As odd graphs are
b-continuous, Sp(Ok,) = {3,4,...,k1 +1}, and Sp(Ok,) = {3,4,..., k2 +1}
and therefore we see that {6,7,...,k1 + ka2 +1} C Sp(Ok,004,). We know
that x(Ok,) = x(Ox,) = 3, b(O,) = k1+1 >4+ 1 =15 and b(O,) =
k2 412> 4+1=5. Hence, by Observation 2.1, {3,4,5} C S;(Ox,00x,).

This proves that Ok, OOy, is b-continuous.

Proof of the Claim.

Since Ok, satisfies the conditions (i) and (ii) of Definition 2.2, there
exists a c.d.s. S = {zg,%1,...,Zk—1} such that (S) is a star with center
at ;. Since x(Ok,) = 3, V(Ok,) is So U S1 U Sz (union of the three color
classes), where we may suppose that o € Sp and z; € S;. We now assume
the notations given in the proof of Theorem 2.3 and give the following
coloring:

(1) ForzelU;, i=0,1,...,k—1, set
e(z,yo) = i. (See box (1) in Figure 3)
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(2) Consider the vertices in X x (S* UV —{yo0}). (See box (2) in Figure 3)
(i) For z € Up — {z0} and y € (S* U Vo — {yo}), set

k+{E+35—1) (mod (1—1))) ifxeUpnS;—{zo}, 0<i<2,
c(z,y) = y=y;, 1<j<l-1,
0 ify € Vo — {yo}-

(ii) For =z € X\Up, y € (S* UV — {v0}), set

1+ [¢ (mod (k—1))] ifzeU;, andy € S* — {yo},
c(z,y) = .

e(z, o) if y € Vo — {wo}-

(3) Next consider the vertices in V(G) x (Y\Vp). (See box (3) in Figure 3)
ForzeS;, 0<i<2andyeV;—{y;},1<j<l-1,set
o(z,y) = k+ [(i+j — 1) (mod (I - 1)).

(4) Finally consider the vertices in S x (§* U Vp) — {y0}) (See box (4) in
Figure 3), set

k+[{(i+j—1)(mod (I-1))] ifzeSNS;,0<5i<2,y=y;,
clz,y) = 1<j<i-1
c(z, yo) if y € Vo — {wo}-

Checking that the coloring is proper is similar to what was given in the
proof of Theorem 2.3. We note that o is adjacent to z; in (S). If 2o has a
neighbor in U; — {z;}, then we are done. Otherwise the vertex (zo, y;), for
1 € j <1 -1, has no neighbors in the color class 2. In order to overcome
this, we recolor its neighbors in {z¢} X V(Og,). This can be done as in the
proof of Theorem 2.3. This gives the desired b-coloring for Ok, OOk, using
k+1—1 colors. |

Note that the c.d.s. {{zo} x $*}U{S x {y0}} of Ok, 00k, obtained in

Theorem 2.5, contains a vertex of degree one in the induced subgraph of

{{:120} X S'} U {S X {yo}}.
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Corollary 2.6
IfO;,i=1,2,...,n are odd graphs with k; > 4 for each i, then O, OO0,
n
0...00g, is b-continuous and b(O,00;,0...00k ) =1+ Y k.
i=1

Proof. Proof is by induction on n. For n = 2, the result is true by
Theorem 2.5. So assume that the result is true for all j < n — 1 where
n > 3. We now prove the result for n. Consider Ok, 00,0...00;, =
(Or,00k,0...00k,_,)00,. By induction hypothesis b(Ox, OO, ...
OO0, _,) = 1-+-ni1 ki and Ok, 004,0...00, _, is b-continuous. Note that
by applying theit=elchnique used in Theorem 2.5 step by step to Ok, 00, 0. ..
OOk, _,, we can find a b-coloring using k colors (where 3 = max {x(Ox, )0
X(Ok,)0...0x(Ok,_,)} < k < b(Ok,00;,0...00,_,)) for which there
is a c.ds. § of Ok, 00,0...00,_, which has a vertex of degree one
in (S). Also as mentioned above 3 = max {x(Ok, ), Xx(Ok,),- - -, X(Ok,_,)}-
Thus arguments similar to Theorem 2.5 can be used to prove that (Ok, OOy,
0...00k,_,)00x, is b-continuous and b(Ok, 00,0...00,) = 1+ Zn:l k;.
i=
[
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