b-coloring of Cartesian product of odd graphs

R. Balakrishnan^{1†} S. Francis Raj^{2‡} and T. Kavaskar^{3§}

Abstract

A b-coloring of a graph G with k colors is a proper coloring of G using k colors in which each color class contains a color dominating vertex, that is, a vertex which has a neighbor in each of the other color classes. The largest positive integer k for which G has a b-coloring using k colors is the b-chromatic number b(G) of G. The b-spectrum $S_b(G)$ of a graph G is the set of positive integers k, $\chi(G) \leq k \leq b(G)$, for which G has a b-coloring using k colors. A graph G is b-continuous if $S_b(G) = \{\chi(G), \ldots, b(G)\}$. It is known that for any two graphs G and G are continuous and the continuous of G and G and G and G and G are continuous and G and G and G and G and G are continuous and G and G and G and G and G are continuous and G are continuous and G are continuous and G are continuous and G and G are continuous and G are

Key Words: b-coloring, b-continuity, Cartesian product, odd graphs.

AMS Subject Classification: 05C15

1 Introduction

All graphs considered in this paper are finite, simple and undirected. A b-coloring of a graph G is a proper coloring of G in which each color class

^{1,3} Department of Mathematics, Bharathidasan University, Trichy-620024, India.

Department of Mathematics, Pondicherry University, Pondicherry-605014, India.
† mathbala@sify.com, [‡] francisraj_s@yahoo.com, [§] t_kavaskar@yahoo.com

has a color dominating vertex (c.d.v.), that is, a vertex that has a neighbor in each of the other color classes. The b-chromatic number b(G) of G is the largest k such that G has a b-coloring using k colors. For a given b-coloring of a graph, a set of c.d.v.'s, one from each class is known as a color dominating system (c.d.s.) of that b-coloring. Recently, there has been an increasing interest in the study of b-coloring. See, for instance, [3], [6], [10-15]. The concept of b-coloring was introduced by Irving and Manlove [8] in analogy to the achromatic number of a graph G (which gives the maximum number of color classes in a complete coloring of G [7]). They have shown that the determination of b(G) is NP-hard for general graphs, but polynomial for trees. From the very definition of b(G), the chromatic number $\chi(G)$ of G is the least k for which G admits a b-coloring using k colors. Thus $\chi(G) \leq b(G) \leq 1 + \Delta(G)$, where $\Delta(G)$ is the maximum degree of G.

While considering the hypercube Q_3 , it is easy to note that Q_3 has a b-coloring using 2 colors and 4 colors but none with 3 colors. Thus a statement similar to the interpolation theorem for complete coloring [7] is not true for b-coloring. Graphs G for which there exists a b-coloring using k colors for every $k \in \{\chi(G), \ldots, b(G)\}$ are known as b-continuous graphs. Recently, there had been several papers on b-continuity of graphs ([2], [4], [5], [9]). Some of the known families of graphs which are b-continuous are chordal graphs, cographs and P_4 -sparse graphs ([2],[4]). The b-spectrum of a graph G, denoted by $S_b(G)$, is defined by:

$$S_b(G) = \{k : G \text{ has a } b\text{-coloring using } k \text{ colors}\}.$$

Clearly $S_b(G) \subseteq \{\chi(G), \ldots, b(G)\}$ and G is b-continuous iff $S_b(G) = \{\chi(G), \ldots, b(G)\}.$

The Cartesian product of two graphs $G = (V_1, E_1)$ and $H = (V_2, E_2)$, denoted by $G \square H$, has vertex set $V_1 \times V_2$, and two vertices (x_1, y_1) and (x_2, y_2) are adjacent in $G \square H$ iff either $x_1 = x_2$ and y_1 is adjacent to y_2 in H, or $y_1 = y_2$ and x_1 is adjacent to x_2 in G.

Let n and k be positive integers, m = 2n + k. We denote by [m] the set $\{1, 2, ..., m\}$ and by $\binom{[m]}{n}$ the collection of all n-subsets of [m]. The Kneser graph K(m, n) [16] has vertex set $\binom{[m]}{n}$ in which two vertices are adjacent iff the corresponding n-subsets are disjoint. When k = 1, we have the odd graphs. The famous Petersen graph is the odd graph K(5, 2).

This paper deals with the b-chromatic number of Cartesian products of Odd graphs. The study of the b-chromatic number of Cartesian product of graphs was initiated by Kouider and Mahéo in [13] wherein they have proved the following results.

Theorem 1.1 (M. Kouider and M. Mahéo [13]) For any two graphs G and H, $b(G \square H) \ge \max\{b(G), b(H)\}$.

Theorem 1.2 (M. Kouider and M. Mahéo [13])

Let G and H be two graphs such that G has a b(G)-stable (that is, independent) dominating system, and H has a b(H)-stable dominating system. Then $b(G \square H) \geq b(G) + b(H) - 1$, and the graph $G \square H$ has a (b(G) + b(H) - 1)-stable dominating system.

The above result can be generalized as follows (with the same proof).

Observation 1.3

Let G and H be two graphs such that G has a k-stable (that is, independent) dominating system, and H has an l-stable dominating system. Then $G \square H$ has a (k+l-1)-stable dominating system.

One of the main problems concerning b-colorings is to completely charaterize those graphs G and H for which $b(G \square H) = \max \{b(G), b(H)\}$. Equivalently, one has to characterize those graphs G and H for which $b(G \square H) > \max \{b(G), b(H)\}$. Theorem 1.2 gives one such family. In this paper, we find a few more classes of graphs G and H for which $b(G \square H) \ge b(G) + b(H) - 1$. These include odd graphs. In particular, we prove that

for odd graphs O_{k_i} , $1 \le i \le n$ and $k_i \ge 4$ for each i, $O_{k_1} \square O_{k_2} \square \ldots \square O_{k_n}$ is b-continuous and $b(O_{k_1} \square O_{k_2} \square \ldots \square O_{k_n}) = 1 + \sum_{i=1}^n k_i$.

2 b-coloring of Cartesian product of odd graphs

We start this section with the following observation.

Observation 2.1

- (i) If G has a b-coloring using k colors and H has a b-coloring using l colors with $k \leq l$, then $G \square H$ has a b-coloring using l colors (and hence $b(G \square H) \geq l$).
- (ii) If G and H are b-continuous graphs, then $S_b(G \square H) \supseteq \{\chi(G \square H) = \max\{\chi(G), \chi(H)\}, \ldots, \max\{b(G), b(H)\}\}$. In particular, if G and H are b-continuous and $b(G \square H) = \max\{b(G), b(H)\}$, then $G \square H$ is b-continuous.

Proof. (i) Let G be a graph having a b-coloring using k colors and let the colors used be $0,1,\ldots,k-1$. Also let H be a graph having a b-coloring using $l \geq k$ colors and let the colors used be $0,1,\ldots,l-1$. Now color the vertex (x,y) of $G \square H$ with $(i+j) \pmod{l}$ if the color of x is i and y is j. Choose one layer, corresponding to some x with color 0, we get a copy of H where the set of vertices $\{(x,y):y \text{ is a c.d.v. in } H\}$ forms a c.d.s. in $G \square H$. Moreover this is proper, as the end vertices of any edge in $G \square H$ have distinct colors: consider an edge $((x,y_1),(x,y_2))$. As $(y_1,y_2) \in E(H)$, the colors of y_1 and y_2 are different. The reasoning is similar for an edge $((x_1,y),(x_2,y))$. Thus $G \square H$ has a b-coloring using l colors and hence $b(G \square H) \geq l$.

(ii) Proof follows immediately from (i).

We now define a family \mathcal{F} of graphs.

Definition 2.2

Let \mathscr{F} be the family of graphs H such that for every $l \in S_b(H)$, there exists

Figure 1: A graph H of the family \mathscr{F}

a b-coloring using l colors for H with a c.d.s. $S^* = \{y_0, y_1, \dots, y_{l-1}\}$ such that

(i)
$$\{y_1, \ldots, y_{l-1}\} \subseteq N_H(y_0)$$
 and $N_H(y_i) \cap N_H(y_j) = \{y_0\}, 1 \le i \ne j \le l-1$,

(ii) the sets $\{y_1, \ldots, y_{l-1}\}$ and $\bigcup_{i=1}^{l-1} N_H(y_i)$ are independent sets in H. (See Figure 1).

Note that the girth of all odd graphs other than the Petersen graph is 6. Moreover it is shown in [1] that the family of odd graphs with the exception of the Petersen graph belongs to \mathscr{F} .

The importance of the family \mathcal{F} is seen from the next theorem.

Theorem 2.3

Let G be any graph and $H \in \mathcal{F}$. If G has a b-coloring using k colors and H has a b-coloring using l colors and if $3 \le k < l$, then $G \square H$ has a b-coloring using k + l - 1 colors.

Proof. Let g be a b-coloring of G using k colors with a c.d.s. $S = \{x_0, \ldots, x_{k-1}\}$. As $H \in \mathscr{F}$ and $l \in S_b(H)$, there exists a b-coloring using l colors, say h, for H with a c.d.s. $S^* = \{y_0, \ldots, y_{l-1}\}$ satisfying the conditions (i) and (ii) of Definition 2.2. Let U_i denote the color class con-

Figure 2: Coloring c given in the proof of Theorem 2.3

taining x_i , $0 \le i \le k-1$ in G, and V_j denote the color class containing y_j , $0 \le j \le l-1$ in H. Let $X = V(G) \setminus S$ and $Y = V(H) \setminus S^*$. We produce a b-coloring c for $G \square H$ using k+l-1 colors by means of g and h as follows:

- (1) For $x \in U_i$, i = 0, 1, ..., k 1, set
 - $c(x, y_0) = i$. (See box (1) in Figure 2).
- (2) Consider the vertices in $X \times ((S^* \cup V_0) \{y_0\})$ (See box (2) in Figure 2).

(i) For
$$x \in U_0 - \{x_0\}, y \in ((S^* \cup V_0) - \{y_0\}), \text{ set}$$

$$c(x,y) = \begin{cases} k+j-1 & \text{if } y = y_j, \ j = 1, 2, \dots, l-1, \\ 0 & \text{if } y \in V_0 - \{y_0\}. \end{cases}$$

(ii) For
$$x \in X \setminus U_0$$
, $y \in ((S^* \cup V_0) - \{y_0\})$, set

$$c(x,y) = \begin{cases} 1 + [i \pmod{(k-1)}] & \text{if } x \in U_i, \ 1 \le i \le k-1, \ y \in S^* - \{y_0\}, \\ c(x,y_0) & \text{if } y \in V_0 - \{y_0\}. \end{cases}$$

- (3) Next consider the vertices in $V(G) \times (Y \setminus V_0)$ (See box (3) in Figure 2). For $x \in U_i$, $0 \le i \le k-1$ and $y \in V_j \{y_j\}$, $1 \le j \le l-1$, set $c(x,y) = k + [(i+j-1) \pmod{(l-1)}].$
- (4) Finally for the vertices in $S \times ((S^* \cup V_0) \{y_0\})$ (See box (4) in Figure 2), set

$$c(x,y) = \begin{cases} k + [(i+j-1) \pmod{(l-1)}] & \text{if } x = x_i, \ y = y_j, \ i \ge 0, \ j > 0, \\ c(x,y_0) & \text{if } y \in V_0 - \{y_0\}. \end{cases}$$

We have to show that c is a b-coloring. Clearly c uses k+l-1 colors. Recall that two vertices (x,y) and (x',y') are adjacent in $G \square H$ if and only if x=x' and y is adjacent to y' in H or y=y' and x is adjacent to x' in G. As k < l and the subgraph induced by the Cartesian product of two independent sets is independent, c is proper. Actually, what we have done is to give a circular rotation of colors whenever there arises a conflict in coloring due to presence of edges.

Consider the set of vertices $(S \times \{y_0\}) \cup (\{x_0\} \times S^*)$ whose cardinality is k+l-1. We shall show that the vertices of this set are c.d.v.'s of distinct color classes. By definition of c, one can see that they belong to distinct color classes. As $H \in \mathcal{F}$, $y_1, y_2, \ldots, y_{l-1}$ are all neighbors of y_0 in H and therefore the vertices of $S \times \{y_0\}$ are c.d.v.'s of their corresponding color classes. Next, consider the set $\{x_0\} \times (S^* \setminus y_0)$. If x_0 has a neighbor in each of the class $U_i \setminus \{x_i\}$, $i \neq 0$, then the vertices of $\{x_0\} \times (S^* \setminus y_0)$ are c.d.v's

for the color classes $k, k+1, \ldots, k+l-2$. Otherwise, there exists at least one i in $\{1, 2, \ldots, k-1\}$ for which the above condition fails. Without loss of generality, assume that x_0 has no neighbor in $U_1 \setminus \{x_1\}, \ldots, U_r \setminus \{x_r\}, 1 \le r \le k-1$. In this case no vertex of $\{x_0\} \times S^* \setminus \{y_0\}$ has a neighbor with its color in $\{2, 3, \ldots, 1+(r \mod k-1)\}$ (see box 2 of Figure 2).

In order to overcome this case we shall recolor some of the vertices in $\{x_0\} \times Y$ by using the fact that these colors are also present in box (4) of Figure 2. Recall that S^* is a star having center y_0 and with y_1, \ldots, y_{l-1} forming an independent set in H. As the y_j 's are c.d.v.'s in H, each y_j should have a neighbor in $V_s \setminus \{y_s\}$, for each $s = 1, \ldots, j-1, j+1, \ldots, l-1$. Call such a neighbor in $V_s \setminus \{y_s\}$ as y_j . As x_0 is adjacent to x_1, \ldots, x_r , the vertex (x_0, y_j) is adjacent to the vertices $(x_1, y_j), \ldots, (x_r, y_j)$ receiving the colors $k + [j \pmod{(l-1)}], \ldots, k + [(j+r-1) \pmod{(l-1)}]$, respectively. Also since the vertices (x_0, y_j) for $1 \le j \le l-1$ and $s = 1 + [j \pmod{(l-1)}], \ldots, 1 + [(j+r) \pmod{(l-1)}]$ form an independent set (by (ii) of Definition 2.2), by arbitrarily coloring these vertices by distinct colors from $\{2, 3, \ldots, 1 + [r \pmod{(k-1)}]\}$, it is seen that the set of vertices $\{(x_0, y_j): 1 \le j \le l-1\}$ forms c.d.v.'s of their corresponding color classes.

Corollary 2.4

If
$$H \in \mathscr{F}$$
 and $b(G) < b(H)$, then $b(G \square H) \ge b(G) + b(H) - 1$.

Let us now consider the odd graphs O_k , $k \geq 4$. In [1] and [9], it was shown that $b(O_k) = k+1$, O_k is b-continuous and that $O_k \in \mathscr{F}$, $k \geq 4$. We also know that $\chi(O_k) = 3$ [17]. We now show that the Cartesian products of odd graphs are b-continuous.

Theorem 2.5

If $G = O_{k_1}$ and $H = O_{k_2}$ are odd graphs, where $k_1, k_2 \ge 4$, then $b(O_{k_1} \square O_{k_2}) = k_1 + k_2 + 1$ and $O_{k_1} \square O_{k_2}$ is b-continuous.

Proof. As mentioned already, odd graphs belong to \mathscr{F} . Thus by Theorem 2.3, if O_{k_1} has a b-coloring using k colors and O_{k_2} has a b-coloring using l colors and if $1 \le k < l$, then $G \square H$ has a b-coloring using $1 \le k < l$ colors. We now consider the case when $1 \le l \le l$.

Claim. If O_{k_1} has a b-coloring using k colors and O_{k_2} has a b-coloring using l colors (where $1 \le l \le k$) colors, then $G \square H$ has a b-coloring using $l \ge l \le k$ colors.

Assume for the moment that the claim is true. Then if O_{k_1} has a b-coloring using k colors and O_{k_2} has a b-coloring using l colors and if $3 \le k < l$ or if $k \ge l \ge 4$, then $O_{k_1} \square O_{k_2}$ has a b-coloring using k + l - 1 colors.

We know that $b(O_k) = k+1$. Thus $O_{k_1} \square O_{k_2}$ has a b-coloring using $(k_1+1)+(k_2+1)-1=k_1+k_2+1$ colors and hence $k_1+k_2+1 \le b(O_{k_1}\square O_{k_2}) \le \Delta(O_{k_1}\square O_{k_2})+1=\Delta(O_{k_1})+\Delta(O_{k_2})+1=k_1+k_2+1$. Therefore $b(O_{k_1}\square O_{k_2})=k_1+k_2+1$.

Next let us prove that $O_{k_1}\square O_{k_2}$ is b-continuous. As odd graphs are b-continuous, $S_b(O_{k_1})=\{3,4,\ldots,k_1+1\}$, and $S_b(O_{k_2})=\{3,4,\ldots,k_2+1\}$ and therefore we see that $\{6,7,\ldots,k_1+k_2+1\}\subseteq S_b(O_{k_1}\square O_{k_2})$. We know that $\chi(O_{k_1})=\chi(O_{k_2})=3$, $b(O_{k_1})=k_1+1\geq 4+1=5$ and $b(O_{k_2})=k_2+1\geq 4+1=5$. Hence, by Observation 2.1, $\{3,4,5\}\subseteq S_b(O_{k_1}\square O_{k_2})$. This proves that $O_{k_1}\square O_{k_2}$ is b-continuous.

Proof of the Claim.

Since O_{k_1} satisfies the conditions (i) and (ii) of Definition 2.2, there exists a c.d.s. $S = \{x_0, x_1, \ldots, x_{k-1}\}$ such that $\langle S \rangle$ is a star with center at x_1 . Since $\chi(O_{k_1}) = 3$, $V(O_{k_1})$ is $S_0 \cup S_1 \cup S_2$ (union of the three color classes), where we may suppose that $x_0 \in S_0$ and $x_1 \in S_1$. We now assume the notations given in the proof of Theorem 2.3 and give the following coloring:

(1) For
$$x \in U_i$$
, $i = 0, 1, ..., k - 1$, set $c(x, y_0) = i$. (See box (1) in Figure 3)

Figure 3: Coloring c given in the proof of Theorem 2.5

- (2) Consider the vertices in $X \times (S^* \cup V_0 \{y_0\})$. (See box (2) in Figure 3)
 - (i) For $x \in U_0 \{x_0\}$ and $y \in (S^* \cup V_0 \{y_0\})$, set

$$c(x,y) = \begin{cases} k + [(i+j-1) \pmod{(l-1)}] & \text{if } x \in U_0 \cap S_i - \{x_0\}, \ 0 \le i \le 2, \\ \\ y = y_j, \ 1 \le j \le l-1, \\ \\ 0 & \text{if } y \in V_0 - \{y_0\}. \end{cases}$$

(ii) For $x \in X \setminus U_0, y \in (S^* \cup V_0 - \{y_0\})$, set

$$c(x,y) = \begin{cases} 1 + [i \pmod{(k-1)}] & \text{if } x \in U_i, \text{ and } y \in S^* - \{y_0\}, \\ c(x,y_0) & \text{if } y \in V_0 - \{y_0\}. \end{cases}$$

- (3) Next consider the vertices in $V(G) \times (Y \setminus V_0)$. (See box (3) in Figure 3) For $x \in S_i$, $0 \le i \le 2$ and $y \in V_j \{y_j\}$, $1 \le j \le l-1$, set $c(x,y) = k + [(i+j-1) \pmod{(l-1)}]$.
- (4) Finally consider the vertices in $S \times (S^* \cup V_0) \{y_0\}$) (See box (4) in Figure 3), set

$$c(x,y) = \begin{cases} k + [(i+j-1) \pmod{(l-1)}] & \text{if } x \in S \cap S_i, \ 0 \le i \le 2, \ y = y_j, \\ \\ 1 \le j \le l-1 \\ \\ c(x,y_0) & \text{if } y \in V_0 - \{y_0\}. \end{cases}$$

Checking that the coloring is proper is similar to what was given in the proof of Theorem 2.3. We note that x_0 is adjacent to x_1 in $\langle S \rangle$. If x_0 has a neighbor in $U_1 - \{x_1\}$, then we are done. Otherwise the vertex (x_0, y_j) , for $1 \leq j \leq l-1$, has no neighbors in the color class 2. In order to overcome this, we recolor its neighbors in $\{x_0\} \times V(O_{k_2})$. This can be done as in the proof of Theorem 2.3. This gives the desired b-coloring for $O_{k_1} \square O_{k_2}$ using k+l-1 colors.

Note that the c.d.s. $\{\{x_0\} \times S^*\} \cup \{S \times \{y_0\}\}$ of $O_{k_1} \square O_{k_2}$ obtained in Theorem 2.5, contains a vertex of degree one in the induced subgraph of $\{\{x_0\} \times S^*\} \cup \{S \times \{y_0\}\}$.

Corollary 2.6

If O_{k_i} , i = 1, 2, ..., n are odd graphs with $k_i \ge 4$ for each i, then $O_{k_1} \square O_{k_2} \square ... \square O_{k_n}$ is b-continuous and $b(O_{k_1} \square O_{k_2} \square ... \square O_{k_n}) = 1 + \sum_{i=1}^n k_i$.

Proof. Proof is by induction on n. For n=2, the result is true by Theorem 2.5. So assume that the result is true for all $j \leq n-1$ where $n \geq 3$. We now prove the result for n. Consider $O_{k_1} \square O_{k_2} \square \ldots \square O_{k_n} = \left(O_{k_1} \square O_{k_2} \square \ldots \square O_{k_{n-1}}\right) \square O_{k_n}$. By induction hypothesis $b(O_{k_1} \square O_{k_2} \square \ldots \square O_{k_n}) = 1 + \sum_{i=1}^{n-1} k_i$ and $O_{k_1} \square O_{k_2} \square \ldots \square O_{k_{n-1}}$ is b-continuous. Note that by applying the technique used in Theorem 2.5 step by step to $O_{k_1} \square O_{k_2} \square \ldots \square O_{k_{n-1}}$, we can find a b-coloring using k colors (where k=1 and k=1 and k=1 colors in k=1 by k=1 colors in k=1 c

Acknowledgment

For the first author, this research was supported by the Department of Science and Technology, Government of India grant DST SR / S4 / MS: 497 / 2009 while for the second and third author, it was supported by Dr. D.S. Kothari Post Doctoral Fellowship, University Grants Commission, Government of India grant F-4-2/2006(BSR)/13-206/2008(BSR) dated 04 August 2009 and F.4-2/2006(BSR)/13-511-2011(BSR) dated 26 August 2011 respectively at the Department of Mathematics, Bharathidasan University, Tiruchirappalli, India.

References

- R. Balakrishnan, T. Kavaskar, b-coloring of Kneser graphs, Discrete Appl. Math., 160 (2012) 9-14.
- [2] F. Bonomo, G. Duran, F. Maffray, J. Marenco, M. Valencia-Pabon, On the b-coloring of Cographs and P₄-Sparse Graphs, Graphs and Combin. 25 (2009) 153-167.
- [3] B. Effantin, H. Kheddouci, The b-chromatic number of some power graphs, Discrete Math. Theor. Comput. Sci. 6 (2003) 45-54.
- [4] T. Faik, About the b-continuity of graphs, Electronic Notes in Discrete Math. 17 (2004) 151-156.
- [5] T. Faik, J.F. Sacle, Some b-continuous classes of graph, Technical Report N1350, LRI, Universite de Paris, Sud. (2003).
- [6] H. Hajiabolhassan, On the b-chromatic number of Kneser graphs, Discrete Appl. Math. 158 (2010) 232–234.
- [7] F. Harary, S. Hedetniemi, The achromatic number of a graph, J. Combin. Theory 8 (1970) 154-161.
- [8] R.W. Irving, D.F. Manlove, The b-chromatic number of a graph, Discrete Appl. Math. 91 (1999) 127-141.
- [9] R. Javadi, B. Omoomi, On b-coloring of the Kneser graphs, Discrete Math. 309 (2009) 4399-4408.
- [10] R. Javadi, B. Omoomi, On the b-coloring of Cartesian product of graphs, to appear in ARS combinatorica.
- [11] M. Jakovac, S. Klavžar, The b-chromatic number of cubic graphs, Graphs and Combinatorics 26 (2010) 107-118.
- [12] J. Kratochvil, Z. Tuza, M. Voigt, On the b-chromatic number of graphs, Lecture Notes in Comput. Sci. 2573 (2002) 310-320.

- [13] M. Kouider, M. Mahéo, Some bounds for the b-chromatic number of a graph, Discrete Math. 256 (2002) 267-277.
- [14] M. Kouider, M. Mahéo, The b-chromatic number of the Cartesian product of two graphs, Studia Sci. Math. Hungar. 44 (2007) 49-55.
- [15] M. Kouider, M. Zaker, Bounds for the b-chromatic number of some families of graphs, Discrete Math. 306 (2006) 617-623.
- [16] Kneser M, Aufgabe 360, Jber. Deutsch. Math.-Verein. 58 (1955), 27.
- [17] L. Lovasz, Kneser's conjecture, chromatic number and homotopy, J. Combin. Theory Ser. A 25 (1978) 319-324.