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Abstract

Given a collection of graphs H, an H—decomposition of AK, is a
decomposition of the edges of AK, into isomorphic copies of graphs
in H. A kite is a triangle with a tail consisting of a single edge.
In this paper we investigate the decomposition problem when H is
the set containing a kite and a 4-cycle, that is; this paper gives a
complete solution to the problem of decomposing AK, into 7 kites
and s 4-cycles for every admissible values of v, A, r and s.
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1 Introduction and Definitions

Let G be a finite and simple graph. A G-design of order v and index A is
a pair (V,C) where V is the vertex set of AK, (A copies of the undirected
complete graph on v vertices) and C is a collection of isomorphic copies of
the graph G, called blocks, which partition the edges of AK,,. A kite is a
triangle with a tail consisting of a single edge. A kite system of order v
and index )\ is a G-design of order v and index A, where G is a kite. In
what follows we will denote the kite, having vertices {a;,a2,a3,a4} and
edges {{a1,a3}, {az,a3}, {a1,a2}, {as,as}} by (a1,az,a3) — a4. It is well-
known [12] and [16] that a kite system of order v and index A exists if
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and only if Av(v — 1) = 0 (mod 8). A 4-cycle system of order v and index
A is a G-design of order v and index A, where G is a 4-cycle. It is well-
known [15] that a 4-cycle system of order v and index \ exists if and
only if A(v — 1) is even and Av(v — 1) = 0 (mod 8). In what follows
we will denote the 4-cycle Cy having vertices {a),a2,as,a4} and edges
{{a1,a2}, {a2, a3}, {{as, as}, {a1,a4}} by (a1, a2, a3,a4).

Given a collection of graphs H, an H—decomposition of MK, is a decom-
position of the edges of MK, into isomorphic copies of graphs in H. The
copies of H € H in the decomposition are called blocks. The case when
H is a set of cycles of length at most v is the well-known Alspach’s con-
jecture [4]. For A = 1 there are several results for a decomposition of K,
into cycles of more than one length (see (3], (5], [6], (8], [9], [11] and [13}).
The Alspach’s conjecture has been completely settled in the case when all
components of H are cycles of the same length (see [6] and [17]); a solution
has been shown to exist in all such cases. The case when all components
of H are stars, has been studied by Lin and Shyu [14] for A = 1. Recently
many authors have settled decompositions of AK,, into stars Sx and cycles
Cpinthecase A\ > 1and h =k —1 = 3,4,5 and in the case A = 1 and
h =k =4 (see [1], [2], [19]).

Let J(v,A) denote the set of all pairs (r,s) such that there exists a
decomposition of AK, into r copies of kites and s copies of 4-cycles. Given
v>4dand A > 1, let s, = 3‘—”—(';—_11 and define /(v, A) according to the
following table

Table 1
A (mod 4) v I(v,A)

A=1 1 (mod 8) [ {(sv —z,z),x=0,1,...,8, — 3,8}
1,3 0 (mod 8) | {(sy —z,2),2=0,1,...,s, — 2
L,3,A>1| 1 (mod8) | {(sy—=z,2),x=0,1,..,5 —2,8}

2 0,1 (mod 4) | {(sv —z,2),2=0,1,...,5, — 2,8,}
0,A>4 v>4 {(sv —z,2),2=0,1,...,5, — 2,5,}

In this paper we investigate the decomposition of AK,, into kites and
4-cycles. In particular, we will prove the following result:

Main Theorem. Letv >4 and A > 1 be positive integers satisfying the
condition given in Table 1. Then J(v,\)= I(v,)).

2 Preliminaries and necessary conditions

In this section we will give necessary conditions for the existence of a de-
composition of AK,, into kites and 4-cycles.
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Lemma 2.1. Let v and A be positive integers. If (r,s) € J(v,A), then
(1) when A =1,3 (mod 4), v=0,1 (mod 8);

(2) when A =2 (mod 4), v=0,1 (mod 4);

(3) when A =0 (mod 4), v > 4.

Proof. Let (r,s) € J(v,A). Since r and s are non negative integers such
that 4r + 4s = )\1("2"——12, we easily obtain the necessary conditions. O

Lemma 2.2. Let v=1 (mod 8). If (r,8) € J(v,1) then (r,s) € I(v,1).

Proof. Let D be a decomposition of K, into r copies of kites and s copies
of 4-cycles. Assume r = 1. Let K! = (z1,72,73) — 74 be the unique kite
in D. Since z3 has even degree in K, and incident with 3 edges in K 1
K, — E(K') can not be decomposed into 4-cycles. Now assume 7 = 2. Let
K = (z1,%2,%3) — 4 and K% = (y1,¥2,y3) — ya denote those two copies
of kites in D. Since z;,% = 3,4 has even degree in K, and is incident with
odd number of edges in K, we obtain z3 = y3 and z4 = y4 or 3 = Y4
and z4 = y3. But then the edge (z3,z4) appears twice in K, which is
impossible. O

Lemma 2.3. Let v = 1 (mod 8) and A be an odd integer with A > 1. If
(r,8) € J(v, A) then (r,s) € I(v,A).

Proof. Let D be a decomposition of AK,, into r copies of kites and s copies
of 4-cycles. Assume r = 1. Let K! = (z1,z2,23) — x4 be the unique kite
in D. Since z3 has even degree in AK, and is incident with 3 edges in K,
MK, — K! can not be decomposed into 4-cycles. (]

Lemma 2.4. Letv =0 (mod 8) and A be an odd integer. If (r,s) € J(v,A)
then (r,s) € I(v,A).

Proof. Let D be a decomposition of AK, into r copies of kites and s copies
of 4-cycles. Let K1, K2, ..., K™ denote those r copies of kites. Since A and
v — 1 are odd, each vertex of AK, must occur in some K* as a vertex with
odd degree. Then necessarily we have r > 3. 0O

Lemma 2.5. Letv=0,1 (mod 4) and A=2 (mod 4) orv>4 and A =0
(mod 4). If (r,s) € J(v,\) then (r,s) € I(v,]).

Proof. Let D be a decomposition of AK,, into r copies of kites and s copies
of 4-cycles. Assume r = 1. Let K! = (21,22,23) — 24 be the unique kite
in D. Since x3 has even degree in AK, and is incident with 3 edges in K 1
MK, — K can not be decomposed into 4-cycles. O

Combining Lemmas 2.1, 2.2, 2.3, 2.4 and 2.5 we obtain the following
result.
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Lemma 2.6. Let v and A be positive integers such that there ezists a
decomposition of AK, into kites and 4-cycles. Then J(v,)) C I(v, A).

3 Constructions and related structures

In this section we will introduce some useful definitions and results and
discuss some constructions we will use in proving the main theorem. For
missing terms or results that are not explicitly explained in the paper, the
reader is referred to [10] and its online updates.

A 3—GDD is a triple (V,G, B), where V is a finite set of vertices, G
= {G1,Ga,...,G,} is a partition of V into subsets, called groups and B is
a collection of isomorphic copies of K3, called blocks, which partitions the
edges of Kg, g,,....9. On V, where [G;| = g;. If fori =1,2,...,¢, there are
u; groups of size g;, we say that the 3—GDD is of type gy''g3? ... g;".

We recall the existence of some 3—GDDs we will need in the paper.

Lemma 3.1, [10] There exists a 3-GDD of type

o 2%, 4° for each t = 0,1 (mod 3), t > 3 (see page 255, Theorem 4.1 in
[10);

o 412% 8143 for each t > 1 (see page 255, Theorem 4.2 in [10)).

The following result will be used to partition the edges of AK, . into
4-cycles.

Theorem 3.2. [7] There exists a decomposition of AK, ,, into 4-cycles if
and only if
(1) v,u > 2; (2) Avu =0 (mod 4); (3) 2 = Au=0 (mod 2).

We need the following definition. Let (s1,t1) and (sq,t2) be two pairs
of non-negative integers. Define (s1,t)) +(s2,t2)=(s1 + s2,¢1 +t5). If X
and Y are two sets of pairs of non negative integers, then X + Y denotes
the set {(s1,1) + (s2,%2) : (s1,%1) € X, (s2,%2) € Y}. If X is a set of pairs
of non negative integers and h is a positive integer, then k * X denotes the
set of all pairs of non-negative integers which can be obtained by adding
any h elements of X together (repetitions of elements of X are allowed).

Lemma 3.3. There exists a decomposition of AK3 02 into r kites and s
4-cycles for all (r,s) € {(3(A — z),3z),z =0,1,...,A}.

Proof. Let A be a decomposition of Kj35 into 3 — 3z kites and 3z 4-
cycles for z = 0,1 (see step 1 in Appendix). Repeat A A-times. The
result is a decomposition of AK3 32 into r kites and s 4-cycles for each
(r,s) € A+ {(3,0),(0,3)}. a
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The next lemma is an immediate consequence of the definition of I(v, A).

Lemma 3.4. Let v and A be positive integers. Then

(1) whenA=1+2t,t > 1, I(v,A) =I(v,1) +t x I(v,2);
(2) whenv=0,1 (mod 4) , I(v,2t) =t xI(v,2);

(3) when v > 4, I(v,4t) =t « I(v,4).

Lemma 3.5. Let v and A be positive integers. If I(v,i)= J(v,1) for each
i=1,2,3,4, then I(v,)) C J(v, ) for each A > 4.

Proof. Suppose at first A = 1+ 2t, t > 0. Let (r,s) € I(v,A). Thus
r and s are nonnegative integers with r + s = Aﬂ(‘g—lll. By Lemma 3.4,
we have I(v,A) = I(v,1) +t * I(v,2). Then there exist two pairs of non
negative integers (r,s1) € I(v,1) and (r2, s2) € t*I(v,2) such that (r, s)=
(r1,81)+(r2, s2). Since I(v,i)= J(v,i), for i = 1,2, we have (r1,51) €
J(v,1) and (r2, 82) € t * J(v,2). Then there exists a decomposition of AK,
into r = r; 4+ 75 kites and s = s; + s2 4-cycles. Hence (r, s) € J(v, ). For
A =0,2 (mod 4) we proceed as above. This completes the proof. ]

Lemma 3.6. Let v, u, w and A be nonnegative integers. If

(1) (r1,81) € J(u+w,\);

(2) there ezists a decomposition of AKyyw — AK,, into ro copies of kites
and so copies of 4-cycles and

(3) there exists a decomposition of AK, , into A%t 4-cycles,
then (ry + 12,81 + s2 + Ag) € J(v +u+w,A).

Proof. Construct a decomposition of MK+, into r; copies of kites and s
copies of 4-cycles. Construct a decomposition of AK,4+w — AK,, into
copies of kites and s, copies of 4-cycles and finally construct a decompo-
sition of AK,,, into A%t 4-cycles. Then the result is a decomposition of
AK,pusw into 7y + 73 kites and s) + s2 + A%t 4-cycles. O

Let V and W be two sets with |[V| = v, [W| = w and W C V. Let
J(v,w, ) denote the set of all pairs (7, s) such that there exists a decom-
position of AK, — AK,, into 7 kites and s 4-cycles.

Lemma 3.7. Let v, g, t, u and w be non-negative integers such that v =
20t +2u+w. If

(1) there erists a 3—GDD of type ulg®;

(2) a decomposition of AKay4v into 7 kites and s, 4-cycles;

(3) a decomposition of AKgg4w — AKy into 72 kites and s; 4-cycles;

(4) a decomposition of AK> 3,2 into T3 kites and s3 4-cycles with (r3,s3) €
Ax{(3,0),(0,3)},
then there exists a decomposition of AKagty2utw into 7 kites and s 4-cycles
such that (r,s) € J(2u+w, ) +tx J(2g + w,w, ) + h* {(3(X — 1), 3i),i =
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0,1,...,A}, where h = w + 9-;3 is the number of blocks of the 3— GDD
of type ulgt.

Proof. Let (X,{G,G1,...,G:},B) be a 3—GDD of type ul g* where G is the
group of size v and G,,...,G; are the ¢ groups of size g. Let W be a set of
size w such that XNW = @. On each block B € B place a decomposition of
AK3 22 into 73 kites and s3 4-cycles with (r3, s3) € Ax{(3,0),(0,3)}. Placea
decomposition of AKj,., into 71 kites and s; 4-cycles on (G x {0,1})UW.
For each i = 1,2,...,t, place a decomposition of AK3y4, — AK,, into 72
kites and sy 4-cycles on G; x {0,1}. The result is a decomposition of
AKogtioutsw on V = (X x {0,1}) U W into r kites and s 4-cycles with
(r,s) € J(u+w,A) +t*J(29+w,w,A) + h* {(3(A—19),3i),i = 0,1,..., A},
where h = ﬂé'—ll + 9-:’;-‘1 is the number of blocks of the 3—GDD of type
ulgt,
0

Lemma 3.8. Let v, g, t and w be non-negative integers such that v =
29t +w. If

(1) there ezists a 3— GDD of type g*;

(2) a decomposition of AKag4y into 1 kites and s, 4-cycles;

(3) a decomposition of AKagw — MKy, into v kites and sg 4-cycles;

(4) a decomposition of AKj 3,2 into 3 kites and s3 4-cycles with (r3,s3) €
A+{(3,0),(0,3)},
then there exists a decomposition of AKage1+ into T kites and s 4-cycles such
that (r,s) € J(2g+w, ) + (t — 1) * J(2g + w,w, A) + h * {(3(A —4), 3i),i =
0,1,...,A}, where h = Lt(é'—ll is the number of blocks of the 3—GDD of
type gt.

Proof. Let (X,{G,,Ga2,...,G.},B) be a 3—GDD of type g*, where G;s are
the groups of size g. Let W be a set of size w such that XN W = @. On
each block B € B place a decomposition of AK. 2,2,2 into r3 kites and s3 4-
cycles with (r3, s3) € A x {(3,0),(0,3)}. Place a decomposition of AK2.44
into r; kites and s; 4-cycles on (G x {0,1}) UW. For each i = 2,...,t
place a decomposition of AK3g4, — AK,, into 7, kites and s, 4-cycles on
Gi x {0,1}. The result is a decomposition of AKagi 1w into r kites and s
4-cycleson V = (X x {0,1}) UW, where (r,s) € J(29 + w, ) + (t — 1) =
J(29 +w,w, X) + hx {(3(A=1),36),6 = 0,1,..., A} where h = £2¢=1 js the
number of blocks of the 3—GDD of type g*.

O
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4 Proof of Main Theorem

By Lemma 2.6 J(v,A) C I(v,A), A > 1. We need to show that I(v,)) C
J(v,A). Thanks to the result in Lemma 3.5, it suffices to prove that
I(v,i) C J(v,%) for each i = 1,2,3,4. We consider each of these cases
in the subsections below.

4.1 X=1
Lemma 4.1. For any v =0,1,8,9 (mod 24), I(v,1) = J(v,1).

Proof. For v =8 and 9, see steps 10 and 11 of the Appendix. Let v = 8t+w,
t =0,1 (mod 3), ¢t > 3 and w € {0,1}. Start with a 3—-GDD of type 4t.
Give weight 2 to every point of the 3—GDD. Applying Lemma 3.8 with
g =4 and w € {0,1}, we obtain a decomposition of K, into r kites and s
4-cycles with (r, s) € h*{(3,0),(0,3)} +t*J(8+w,1), where h = %3:—11 is
the number of blocks of the 3-GDD of type 4°. Since |t*J(8+w,1)| > 3 and
h*{(3,0), (0, 3)}={(8¢(t — 1) — 3i,3i),i = 0,1, ..., 3D} it is easy to see
that I(8¢t+w, 1) = hx{(3,0), (0, 3)}+t*xJ(8+w, 1). Since h*{(3,0),(0,3)}+
t*J(8+w,1) C J(8 +w,1), it follows that I(v,1) C J(v,1). O

Lemma 4.2. For any v = 16,17 (mod 24), then I(v,1) = J(v,1).

Proof. For v = 16 and 17, see steps 12 and 13 of the Appendix. Let
v=_8t+w,t =2 (mod 3),t>5and w € {0,1}. Start with a 3—GDD of
type 8'4*~2. Give weight 2 to every point of the 3—GDD. Applying Lemma
3.7 with ¢ = 4, u = 8 and w € {0,1}, we obtain a decomposition of K,
into r kites and s 4-cycles with (r,s) € (t —2)* J(8+w,1) + J(16+w,1) +
h* {(3,0),(0,3)}, where h = B¢=2+D s the number of blocks of the
3—GDD of type 8'4¢~2, Since |(t-2)*J(8 +w,1) + J(16 + w,1)| > 3 and
h+{(3,0), (0, 3)}={(8(t—2)(t+1)—3i,3i),i = 0,1,..., 2B} it j5 easy
to see that I(8t+w, 1) = (t—2)*J(8+w, 1)+ J(16+w, 1)+h=*{(3,0),(0,3)}.
Since (t —2)* J(8+w,1) + J(16 +w, 1) + hx {(3,0),(0,3)} € J(8t +w, 1),
it follows that I(v,1) C J(v,1). O

42 A=2

Lemma 4.3. For any v=0,1,4,5 (mod 12), I(v,2) = J(v,2).

Proof. For v = 4 and 5, see steps 15 and 17 of the Appendix. Let v = 4t+w,
t=10,1 (mod 3), t > 3 and w € {0,1}. Start with a 3—GDD of type 2*.
Give weight 2 to every point of the 3—GDD. Applying Lemma 3.8 with
g =2and w € {0, 1}, we obtain a decomposition of 2K, into r kites and s 4-

cycles with (r, s) € hx{(6,0), (3,3), (0,6)}+t+xJ(4+w,2), where h = %3——1)
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is the number of blocks of the 3—GDD of type 2t. Since [t*J(4+w,2)| > 3
and h x {(6,0), (3,3), (0,6)} = {(4¢(t — 1) ~ 3i,34), i = 0,1,.., 2Dy i
is easy to see that I(4t +w,2) = hx {(6,0),(3,3),(0,6)} +t * J(4 +w,2).
Since h * {(6,0), (3,3), (0,6)} + ¢t * J(4 + w,2) C J(4t + w,2), it follows
that I(v,2) C J(v,2). O

Lemma 4.4. For any v = 8,9 (mod 12), then I(v,2) = J(v,2).

Proof. For v = 8 and 9 see steps 18 and 19 of the Appendix. Let v = 4t +w,
t=2 (mod 3),¢t > 5 and w € {0,1}. Start with a 3~GDD of type 412t-2,
Give weight 2 to every point of the 3—GDD. Applying Lemma 3.7 with
9=2,u=4and w e {0,1}, we obtain a decomposition of 2K, into 7
kites and s 4-cycles with (r,s) € (t —2)* J(4 + w,2) + J(8 + w,2) + h *
{(6,0),(3,3),(0,6)}, where h = Mﬂ is the number of blocks of the
3—GDD of type 4!2¢~2. Since |(t — 2) * J(4 + w,2) + J(8 + w,2)] > 3 and
hx {(6,0), (3,3),(0,6)}={(2(t - 2)(t +1) - 3, 3d),i = 0,1,..., A=)}
it is easy to see that I(4t + w,2) = (t — 2) * J(4 + w,2) + J(8 + w,2) +
h + {(6,0),(3,3),(0,6)}. Since (t —2) * J(4 + w,2) + J(8 + w,2) + h *
{(6,0),(3,3),(0,6)} C J(4t + w,2), it follows that I(v,2) C J(v,2). O

43 A=3

Lemma 4.5. For any v =0,1 (mod 8), I(v,3) = J(v,3).

Proof. Lemma 3.4 and the results in Sections 4.1 and 4.2 give I(v,3)
I(v,1) + I(v,2) = J(v,1) + J(v,2). Since it is easy to see that J(v,1)
J(v,2) € J(v,3), it follows that I(v,3) C J(v,3).

o+

4.4 =4
Lemma 4.6. For any v=0,1 (mod 4), I(v,4) = J(v,4).

Proof. Lemma 3.4 and the results of Section 4.2 gives I(v,4) = 2x (v, 2) =
2% J(v,2). Since it is easy to see that 2 x J(v,2) C J(v,4), we have
I(v,4) € J(v,4). 0

Lemma 4.7. For any v =2,3,6,7 (mod 12), I(v,4) = J(v,4).

Proof. For v = 6 and 7, see steps 20 and 22 of the Appendix. Let v = 4t+w,
t=0,1 (mod 3),t >3 and w € {2,3}. Start with a 3—GDD of type 2t.
Give weight 2 to every point of the 3—GDD. Applying Lemma 3.8 with
g =2and w € {2, 3}, we obtain a decomposition of 4K, into r kites and s 4-
cycles with (r, s) € h*{(12,0), (9,3), (6,6),(3,9),(0,12)} + J(4+w, 4) + (t—
1)*J(4+w,w,4), where h = 3‘%—"—12 is the number of blocks of the 3—GDD
of type 2* (see step 14 of the Appendix for J(6,2,4)). Since |J(4+w,4)+(t—
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1)+ J(4 +w,w,4)| > 3 and h* {(12,0), (9, 3),(6,6),(3,9), (0,12)}={(8¢(t —
1)-3i,3i),i = 0,1,..., 241 it is easy to see that T(4t+w, 4) = h*{(12,0),
(9,3), (6,6), (3,9), (0,12)} + J4 + w,4) + (t — 1) * J(4 + w,w,4). Since
h%{(12,0), (9, 3), (6,6), (3,9), (0,12)}+J (44w, 4)+(t—1)*J(4+w,w,4) C
J(v,4), it follows that I(v,4) C J(v, 4). a

Lemma 4.8. For any v = 10,11 (mod 12), then I(v,4) = J(v,4).

Proof. For v = 10 and 11, see steps 23 and 24 of the Appendix. Let
v=4t+w,t =2 (mod 3), ¢t > 5 and w € {2,3}. Start with an 3-GDD of
type 412¢-2, Give weight 2 to every point of the 3-GDD. Applying Lemma
3.7 with ¢ = 2, u = 4 and w € {2,3}, we obtain a decomposition of 4K,
into r kites and s 4-cycles with (r,s) € (t — 2) * J(4 + w,w,4) + J(8 +
w,4) + h * {(12,0), (9, 3), (6,6), (3,9), (0,12)}, where h = 2t=2C+D) g the
number of blocks of the 3-GDD of type 422 (see step 16 of the Appendix
for J(7,3,4)). Now because |(t — 2) * J(4 + w,w,4) + J(8 + w,4)| > 3 and
b+ {(12,0), (9,3), (6,6), (3,9), (0,12)} = {(2(t — 2)(¢ + 1) — 3i,3i),i =
0,1, ..., 2=2CHY it s easy to verify that I(4t + w,4) = (t —2)* J(4 +
w,w,4)+J(8+w,4)+h*{(12,0),(9, 3), (6,6),(3,9), (0,12)}. Since (t—2)*
J(4+w,w,4)+J(8+w,4)+hx{(12,0), (9, 3), (6,6), (3,9),(0,12)} C J(v,4),
it follows that I(v,4) C J(v,4).

O
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Appendix

. A decomposition of K329 into 3 — z kites and z 4-cycles, z = 0, 3
having the vertex set V(K2,22) = {a,b} U {1,2} U {z,y}.

e (0,3):
{(1,2,2,9),(a,z,b,y), (a,1,b,2)}.
e (3,0):
{(y, 2, a) -1, (b’ 2a$) —a, (ba Y, l) - :!3}.

. A decomposition of K9 — K> into 11 kites having the vertex set
{0,1,...,7} U {a, b} with hole on {a,b}.

e (11,0) € J(10,2,1):
{(a,3,0) — 5, (a,5,2) — 4, (a,7,1) — 4, (a,6,4) — 3, (b,4,0) — 6,
(b,5,1) — 6, (b,2,6) — 3, (b,7,3) — 5, (2,3,1) — 0, (6,7,5) — 4,
(2,0,7) - 4}.

. A decomposition of Ky, — K3 into 13 kites having the vertex set
{0,1,...,7} U {a, b, 00} with hole on {a, b, c0}.

e (13,0) € J(11,3,1):
{(2,3,0)-5, (a,5,2) — o0, (a,7,1)~4, (a,6,4) — 00, (b,4,0) — o0,
(b,5,1)—00, (,2,6)—00, (b,3,7) -0, (2,1,3) — o0, (6,7,5)—o00,
(2,0,7) - 4, (1,0,6) — 3, (3,5,4) — 2}.

. A decomposition of K12 — K, into 15 kites having the vertex set
{0,1,...,7} U {a, b, c,d} with hole on {a,b,c,d}.

® (15,0) € J(12,4,1):
{(e,1,0) - 7, (a,3,2) - 1, (,5,4) — 3, (a,6,7) — 3, (b,4,6) —
(6,3,1) — 4, (b,2,0) — 3, (5,7,5) — 2, (c,6,0) — 4, (c,7,1) — 5,
(c,4,2) 6, (c,3,5) — 6, (5,0,d) — 2, (1,6,d) — 3, (d,4,7) — 2}

. A decomposition of K13 — K5 into 17 kites having the vertex set
{0,1,...,7} U {a,b,c,d, 00} with hole on {a,b,¢c,d, co}.

o (17,0) € J(13,5,1):
{(a,0,1) - o0, (a,3,2)— o0, (a,5,4) -3, (a,7,6) — oo, (b,4,6) — 3
(b,1,3) — 00, (b,2,0) — oo, (5,7,5) o0, (c, 6,0)— 4, (c,1,7) —
(c,4,2)—6, (c,3,5) — 6, (5,0,d) — 2, (1,6,d) — 3, (d,7,4)—oo
(01 3, 7) -2, (2» 5, 1) - 4}

. A decomposition of K;4 — Kg into 19 kites having the vertex set
{0,1,..,7} U {a,b,c,d,e, f} with hole on {a,b,c,d, e, f}.
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10.

e (19,0) € J(14,6,1):
{(a,1,0) —e, (a,3,2) — d, (a,5,4) — ¢, (a,7,6) — d, (b,4,3) — 6,
(b,0,7) — 4, (b,2,1) — 6, (4,6,5) -0, (c,2,0) — 3, (¢,3,1) -7,
(c,6,4) — 2, (c,7,5) — 3, (4,0,d) — 3, (1,5,d) — 7, (2,6,¢) — 1,
(3,7,e) -5, (0,6, f) -3, (1,4, f) - 7, (£,5,2) — 7}.

A decomposition of K5 — K7 into 21 kites having the vertex set
{0,1,...,7} U {e,b,c,d,e, f,00} with hole on {a,b,c,d,e, f,00}.

e (19,0) € J(15,7,1):
{(a,1,0) —e, (a,3,2) —d, (a,5,4) —e, (a,7,6) —d, (b,4,3) — o0,
(6,0,7) — o0, (b,2,1)—86, (b,5,6) — 00, (¢, 2,0) — 00, (¢,3,1) — 00,
(¢,6,4) — o0, (c,7,5) — o0, (4,0,d) — 3, (1,5,d) - 7, (2,6,e) — 1,
(3,7,e) =5, (0,6, f) — 3, (1,4, ) = 7, (£,5,2) — 00, 4,2,7) -1,
(5,0,3) — 6}.

. A decomposition of K¢ — Kz into 23 kites having the vertex set

{0,1,...,7Y U {a,b,c,d,e, f,g,h} with hole on {a,b,¢c,d,e, f,g, h}.

e (23,0) € J(16,8,1):
{(e,1,0) — g, (a,7,5) — h, (a,3,6) — ¢, (b,1,2) — a, (b,6,0) —e,
(b741 7) — €, (C, 3;2) -9 (6,4,0) =5, (C, 1$7) - d: (d7 4, 3) - b,
(d,2,0) — £, (d,1,5) — 2, (e,4,5) —c, (e,3,1) — f, (6,€,2) = 7,
(6,f,5) - ba (2:fs4) - a, (f77)3) -0, (g)7)6) _d> (91553) —h,
(9:4,1) — 6, (7.0,R) — 1, (4,6, h) — 2}.

. A decomposition of K17 — Ky into 25 kites having the vertex set

{0,1,...,7}U{a,b,c,d,e, f, g, h, 0} with hole on {a, b,¢c,d, e, f, g, h,00}.

e (23,0) € J(17,9,1):
{(a,l,O) -0 (a'! 7, 5) - ha (a,3,6) -6 (b’ 112) —-a, (bv 6’0) -6
(b,4,7) — e, (c,3,2) — g, (¢,0,4) — 00, (¢,1,7) — d, (d,4,3) — b,
(d,2,0) _f’ (dasal)'—oo’ (6?415)_61 (ev3:1)_f’ (8,2,6)—00,
(6yf15) —ba (27f)4) - a, (f’3!7) — 00, (9,7,6) _d3 (9,5,3) —h,
(9,4,1)—86, (7,0,h)—1, (4,6, h) -2, (5,00,2) — 7, (3, 00,0) —5}.

J(8,1)=I(8,1).
Let {1,...,7} U {c0} be the vertex set. Then

e (7,0) € J(8,1):
Develop the base block (1,3,0) — oo in (mod 7).

e (6,1) € J(8,1):
{(6,1,3)—7, (2,6,7)—00, (3,00,2)~1, (1,00,4) =7, (1,7,5)— 00,
(5,4,6) — 00, (2,4,3,5)}.
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e (5,2) € J(8,1): »
{(5,00,6)—4, (5,4,2)—00, (6,7,3)~—00, (4,0, 7)—5, (2,3, 1)—o0,
(2,7,1,6), (3,5,1,4)}.

* (4,3) € J(8,1):
{(3,2,5) - 1, (4,3,6) — 2, (4,1,7) — 3, (1,2, 00) — 4, (5,6, 7,00),
(2,4,5,7), (1,3,00,6)}.

11. J(9,1)=1(9,1).
Let {0,1,...,8} be the vertex set. Then

e (9,0) € J(9,1):
Develop the base block (1,3,0) — 4 in (mod 9).

e (8,1)e J(9,1):
{(6,0,5) — 4, (1,7,6) — 3, (0,8,7) — 2, (2,5,8) — 1, (3,0,1) — 5,
(4,0,2) -6, (7,5,3) — 8, (8,6,4) — 7, (1,2,3, 4)}.

o (7,2) € J(9,1):
{(7,8,2) — 1, (3,4,0) - 2, (8,0,1) — 7, (4,5,7) — 0, (6,0,5) - 8,
(4,6,8) — 3, (7,6,3) — 5, (1,6,2,5), (4,2,3,1)}.

* (6,3) e J(9,1):

{(7,4,2) - 1, (5,8,3) — 2, (0,6,1) — 3, (4,6,8) — 7, (4,5,0) — 8,
(5,6,7) - 0, (1,5,2,8), (1,4,3,7), (2,6,3,0)}.

o (5,4) € J(9,1):

{(7’ 51 2) - 01 (67 71 3) - 11 (7’074) - 21 (5:890) - 31 (61 0: 1) - 47
(1,2,8,7), (1,5,4,8), (2,3,4,6), (3,5,6,8)}.

o (4,5) € J(9,1):

{(5,0,2) - 1, (6,0,3) — 2, (7,0,4) — 3, (8,0,1) — 4, (5,6,7,8),
(1,7,5,3), (1,5,4,6), (2,6,8,4), (3,7,2,8)}.

e (3,6) € J(9,1).
{4.7,2) - 1, (5,8,3) — 2, (6,0,1) — 3, (5,6,8,7), (1,4,3,7),
(1,5,2,8), (2,0,3,6), (4,5,0,8), (4,6, 7,0)}.

e (0,9) € J(9,1):
Develop the base block (0,2,5,4) in (mod 9).

12. J(16,1)=I(16,1).

By Lemma 2.6 J(16,1) C I(16,1). We need to show that I(16,1) C
J(16,1). Consider Lemma 3.6 with v = u = 8, w = 0. Using the
results of J(8,1) in 10 of the Appendix and a decomposition of K3 g
into 16 4-cycles (see [18]) we can get {(14, 16),(13,17),....,(8,22)} C
J(16,1). The rest follows by applying Lemma 3.6 with v = 8, w = z,
u=8—uz,z € {2,4,6,8} and using results in 2, 4, 6, 8 and 10 of the
Appendix, respectively.
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13. J(17,1)=I(17,1).

By Lemma 2.6 J(17,1) C I(17,1). We need to show that I(17,1) C
J(17,1). Consider Lemma 3.6 with v = u = 8, w = 1. Using the
results in 11 of the Appendix and a decomposition of Kgg into 16
4-cycles (see [18]) we can get {(18,16),(17,17),....,(3,31),(0,34)} C
J(17,1). The rest follows by applying Lemma 3.6 with v = 8, w =
z+1,u=8—z,z € {2,4,6,8} and using results in 3, 5, 7, 9 and 11
of the Appendix, respectively.

14. A decomposition of 2K — 2K, into 7 — x kites and = 4 cycles for
z=0,1,2,3,4,5,7 having the vertex set {0,1,2,3} U {a, b} with hole
on {a,b}. J(6,2,2)={(7,0),(6,1),...(2,5),(0,7)}.

o (7,0) € J(6,2,2):
{(1,3,a) = 0, (2,3,6) — 1, (2,0,a) — 1, (1,b,0) — 3, (1,0,2) —a,
(1,3,2) — b, (b,0,3) — a}.

o (6,1) € J(6,2,2):

{(1,3,a) -0, (b,3,2) —a, (2,0,b) — 1, (1,5,0) — 2, (2,a,1) — 3,
(0,a,3) — b, (0,1,2,3)}.

e (5,2) € J(6,2,2):

{(1,3,b) -0, (a,3,2) — b, (2,3,a) ~ 1, (1,,0) —a, (0,3,1) — 2,
(6,2,0,3), (0,2,1,a)}.

o (4,3) € J(6,2,2):

{(a‘? 3‘1) - 0) (b1 1s3) - 2, (01 3’ 2) - la (1) 21 0) - 37 (a)oa bs 2))
(a,2,b,0), (3,b,1,a)}.

o (3,4) € J(6,2,2):

{(2,3,1) -0, (0,3,2) -1, (1,3,0) — 2, (a,0,b,1), (a,1,b,2),
(aa 2: b7 3)’ (a)3,b10)}'

e (2,5) € J(6,2,2):

{(2,3,1)-0, (2,3,0)-1, (0,2,1, 3), (a,0,b,1), (a,1,b,2), (a, 2,b,3),
(e,3,b,0)}.

o (0,7) € J(6,2,2):

{(2,3,1,0), (2,3,0,1), (0,2,1,3), (a,0,b,1), (a,1,b,2), (a,2,b,3),
(a,3,b,0)}

15. J(4,2)=I(4,2).
Let {0,1,2, 3} be the vertex set.

e (3,0) € J(4,2):
{(3,0,2) - 1,(0,1,3) — 2,(0,2,1) — 3}.

e (2,1) € J(4,2):
{(3,2,0) - 1,(2,3,1) — 0,(0,2,1,3)}.
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o (0,3) € J(4,2):
{(0,1,2, 3),(0,2,3,1),(0,2,1,3)}.

16. A decomposition of 2K7 — 2K3 into 9 — z kites and z 4-cycles for
z =0,1,2,3,4,5,6,7,9 having the vertex set {0,1,2,3} U {a,b,c}
with hole on {e,b,c}. J(7,3,2)={(9,0),(8,1),...,(2,7),(0,9)}.

* (9,0) € J(7,3,2):
{(3a b,O) —a, (3,6,1) - b7 (3;0',2) - ¢, (11 210') - 0, (0,2:b) - 1:
(1,0,¢) - 2, (a,3,1) -0, (3,b,2) — 1, (3,¢,0) — 2}.

e (8,1) € J(7,3,2):
{(1,3,a) -0, (0,2,a) — 1, (1,3,¢) = 0, (0,2,¢) — 1, (b,2,1) — O,
(4,3,2) -1, (b,0,3) — 2, (b,1,0) — 3, (a,2,¢,3)}.

e (7,2) € J(7,3,2):
{(0,3,b) — 1, (a,3,1) — b, (2,a,3) — ¢, (2,b,0) — a, (0,1,¢) — 2,
(1,2,2) -0, (0,¢,2) - 3, (b,2,1,3), (c,1,0,3)}.

e (6,3) € J(7,3,2):
{(2,5,0) —q, (3,1,a) - 0, (0,¢,1) — b, (3,2,b) - 1, (1,a,2) — ¢,
(3,0,¢) - 2, (a,2,1,3), (,0,2,3), (¢, 1,0,3)}.

o (5,4) € J(7,3,2):
{(2,3,a) - 0, (0,3,0) - 1, (1,¢,0) —a, (¢,0,2) — b, (c,3,1) — 2,
(a,1,b,3), (b,2,1,0), (¢, 2,0,3), (a,1,3,2)}.

* (4,5) € J(7,3,2):
{(0$112) - ba (11213) - b1 (3,0’2) - C, (1,0$3) - ¢ (b,O,C, 1)’
(a, O:b,l)y (ay 2, b93)’ (a'a 1,¢, 2)s (a" 3,Cv0)}'

¢ {(3,6),(2,7),(0,9)} C J(7,3,2):
Theorem 3.2 with u = 4, v = 3 and A = 2 together with the step
15 of the Appendix give {(3,6),(2,7),(0,9)} C J(7,3,2).

17. J(5,2)=1(5,2).
Let {0,1,2,3,4} be the vertex set.

e (5,0) € J(5,2):
Develop the base block {(1,2,4) — 0} in (mod 5).

o (0,5) € J(5,2):
Develop the base block {(0,1,3,2)} in (mod 5)

* (4,1) € J(5,2):
{(4,2,1) = 0,(3,4,0) — 1,(1,4,3) — 2,(0,4,2) — 3, (0,2, 1,3)}.

e (3,2) € J(5,2):
{(3,4,2) — 1,(1,4,0) - 2,(4,3,1) - 0,(0,4,2,3), (0,2, 1,3)}.
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e (2,3) € J(5,2):
{(2,3,0) - 1,(2,4,1) - 0,(4,0,3,1),(4,0,2,3),(4,3,1,2)}.

18. J(8,2)=I(8,2).

e By step 10 of the Appendix {(14,0),(13,1),....,(8,6)} C J(8,2).
Lemma 3.6 with u = v = 4 and w = 0 gives {(6,8), (5,9),....,
(2,12),(0,14)} € J(8,2).

o (7,7) € J(8,2):

Let Kg be {0,...,6} U {oo} be the vertex set. Develop the base
blocks {(1,2,3) — 0,(c0,0,2,5)} in (mod 7).

19. J(9,2)=I1(9,2).
Let {0,1,2,3} be the vertex set.

e By step 11 of the Appendix {(18,0),(17,1),....,(3,15),(0,18)}
C J(9,2). Lemma 3.6 with v =v =4 and w =1 gives (2,16) €
J(8,2).

20. J(6,4)=I(6, 4).
Let {0,1,2,3,4} U {oo} be the vertex set. Then

e (15,0) € J(6,4):
Develop the base blocks {(1, 3,0) — o0, (1,2,00)-0,(1,2,3) -0}
in (mod 5).

e (14,1) € J(6,4):
Develop the base blocks {(1,00,0) —3,(1,2,0) — 3} in (mod 5).
Then add the blocks {(3,00,1) — 0, (4, 00,2) — 1, (4,00,3) — 2,
(2,00,0) — 3, (c0,0,4,1)}.

e (13,2) € J(6,4):
Develop the base blocks {(0, 0, 2) -1, (0,00,2) —1} in (mod 5).
Then add the blocks {(3,4,1) - 0, (3,4,2) — 1, (1,4,0) — 2,
0,3,1,2), (0,3,2,4)}.

e (12,3) € J(6,4):
Develop the base blocks {(0, 00, 2)—1,(0,00,2)—1} in (mod 5).
Then add the blocks {(3,4,1)—0, (4,2,0)—1, (1,2,3,4), (0,3,1,2),
0,3,2,4)}.

o (11,4) € J(6,4):
{(00,3,1)-0, (2,3,0)—00, (4,00, 2)-1, (0, 00,3)-2, (1,2,00) -4,
(1,0,4) -3, (00, 3,2) -0, (00,2,4)—1, (c0,4,0) -2, (c0,1,3) —4,
(00,0,1) — 3, (0,4,2,3), (1,0,3,4), (1,4,0,2), (4,3,1,2)}.
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e (10,5) € J(6,4):
Develop the base blocks {(1,3,0) — o0, (1,2,00) —0,(0,1, 3,2)}
in (mod 5).

e (9,6) € J(6,4):
Develop the base blocks {(1,00,0) — 3,(0,4,2,3)} in (mod 5).
Then add the blocks {(3,00,1) — 0, (4,00,2) — 1, (4,00,3) —
(2,00,0) — 3, (00,0,4,1)}.

e (8,7) € J(6,4):
Develop the base blocks {(1,2,0, 00), (0, 00,2) —1)} in (mod 5).
Then add the blocks {(3,4,1) — 0, (3,4,2) -1, (1,4,0) — 2,
(0,3,1,2), (0,3,2,4)}.

o (7,8) € J(6,4):
Develop the base blocks {(1, 2,0, o), (1, ,2) 0} in (mod 5).
Then add the blocks {(3,4,1)-0, (4,2,0)-1, (1,2, 3,4), (0,3,1,2),
(0,3,2,4)}.

* (6,9) € J(6,4):
{(0,3,1)—0, (2,3,0)—00, (4,00,2)—1, (0, 00,3) =2, (1,2, 00) —
4, (1,0,4) — 3, (0,0,4,3), (,0,2,4), (00,2,0,1), (c0,4,1,3),
(0,2,3,1), (0,4,2,3), (1,0,3,4), (1,4,0,2), (4,3,1,2)}.

e (5,10) € J(6,4):
Develop the base blocks {(3, 1,0, 00), (00,1,2) -0, (0,1,3,5)} in
(mod 5).

* (4,11) € J(6,4):
Develop the base blocks {(1,0,3,00), (0,4,2,3)} in (mod 5) and
add the blocks {(3, 00,1)-0, (4, 00,2)—1, (4, 00, 3)~2, (2, 00, 0)—
3, (0,0,4,1)}.

° (3,12) € J(6,4):
Develop the base blocks {(1, 2,0, o), (1,2,0,00)} in (mod 5) and
add the blocks {(3,4,1) ~0,(3,4,2) — 1,(1,4,0) — 2,(0,3,1,2),
(0,3,2,4)}.

e (2,13) € J(6,4):
Develop the base blocks {(1,0,3,00),(0,4,2,3)} in (mod 5) and
add the blocks {(1,2,00) -0, (3,4, )-0,(0,1,3,2), (0, 3,0,4),
(00,1,4,2)}.

o (0,15) € J(6,4):
Develop the base blocks {(1,0, 3, ), (1,0, 3,00),(0,4,2,3)} in
(mod 5).

21. A decomposition of 4Ks — 4K, into 9 — x kites and z 4-cycles for
z = 0,3,9 having the vertex set {0, 1,2} U {a,b} with hole on {a, b}.

314



® (9,0) € J(5,2,4):
{(1,2,a) - 0,(2,0,b) - 1,(2,0,a) — 1,(1,0,b) — 2,(2,0,1) —
0,1,a) — 2,(,0,2) — 1,(0,1,a) — 2,(1,2,b) — 0}.

e (6,3) € J(5,2,4):
{(0,1,2) — a,(2,0,1) — a, (1,2,0) — a, (0,1,b) — 2, (1,2, b) —
(2,0,a) - 1,(0,aq,1,b),(0,a,2,b),(1,a,2,b)}.

e (0,9) € J(5,2,4):
{(0,1,2,a), (0,1,2,b), (1,2,0,0), (1,2,0,), (2,0,1,b), (2,0,1,a),
0,a,1,b), (0,a,2,b), (1,a,2,b)}.

22. J(7,4)=I(7,4).
Let {0,1,2,3,4,5,6} be the vertex set.

e Lemma 3.6 with v = 3, v = 2 and w = 2, Lemma 4.6 and
step 21 of the Appendix give {(15,6),(14,7),...,(2,19), (0,21)}
€ J(7,4).

o (7,14) € J(7,4):

Develop the base blocks {(0,1,2) - 4, (0,3,5,1), (0,3,5,1)} in
(mod 7).

e (21,0) € J(7,4):

Develop the base blocks {(3,4,1) - 0,(1,4,2) — 0,(1,4,2) — 5}
in (mod 7).

e (20,1) € J(7,4):

Develop the base blocks {(1,4,2) —0,(1,4,2) — 5} in (mod 7).
Then add the blocks {(2,4,3) — 1, (4,6,5) — 0, (0,4,1) -5,
(3,6,2) — 1, (0,6,1) — 2, (4,5,3) — 0, (0,2,5,6)}.

e (19,2) € J(7,4):

Develop the base blocks {(1,4,2) —0,(1,4,2) — 5} in (mod 7).
Then add the blocks {(2,4,3) — 1, (4,6,5) — 3, (0,4,1) — 5,
(3,6,2) — 1, (0,6,1) — 2, (0,3,4,5), (0,2,5,6)}.

o (18,3) € J(7,4).

Develop the base blocks {(1,4,2) —0,(1,4,2) — 5} in (mod 7).
Then add the blocks {(0,5,2) — 1, (0,4,1) — 2, (3,6,5) — 4,
(2,3,4) — 5, (0,6,5,1), (1,3,4,6), (3,2,6,0)}.

o (17,4) € J(7,4).

Develop the base blocks {(1,4,2) —0,(1,4,2) — 5} in (mod 7).
Then add the blocks {(2,4,3) — 1, (0,4,1) — 5, (4,6,5) — 3,
(1,2,0,86), (1,2,5,0), (3,4,5,6), (3,2,6,0)}.

o (16,5) € J(7,4).

Develop the base blocks {(1,4,2) - 0,(1, ,2) 5}
Then add the blocks {(0, 5,2)-1, (0,4,1)-2, (0,6, 5,
(2,4,5,3), (3,4,5,6), (3,2,6,0)}.

in (mod 7).
1), (1,3,4,6),
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23. J(10,4)=I(10, 4)

e Lemma 4.6 with v = 3, u = 5 and w = 2 and steps 21, 22 of the
Appendix give {(30,15), (29,16), ....,(2,43), (0,45)} C J(10,4).

e {(31,14),...,(35,10)} C J(10,4):
Let X = {a;,i € Zs} and Y = {b;,i € Z5} be two disjoint
sets. Let V = X UY be the vertex set. Form the following 25
kites {(@is1,@it3,b:) — i, (big3, bigs, @ig2) —bi, (Gig1, Gita, bi) —
ai, (bi43, biva, @iy2) — by, (biy big2,0i41) — a4, € Z5} and 10 4-
cycles {(ai,ai+1abi+l:bi+4)’(aiybi+1vai+37bi+3),i € Zs} on V.
Take a decomposition of 2K with (r1,s,) € J(5,2) on X and
a decomposition of 2Ks with (r2,s;) € J(5,2) on Y. Thus
we obtain a decomposition of 4K)q into 25 + 7; + 9 kites and
10 + s; + s2 4-cycles.

e {(36,9),...,(40,5)} C J(10,4):
Let X = {a,-,i € Z5} and Y = {bi,i € Zs} be two disjoint sets.
Let V = X UY be the vertex set. Form the following 30 kites
{(ais1,ait3,b:) — ai, (biya, biya, @iv2) — by, (@it1, aig3, b;) — as,
(bi+3,bisas @ig2) — by, (big1, biys, ai) — by, (@it1, iz, b)) —ai,i €
Zs} and 5 4-cycles {(ai, @it1,bit+2,bisa),i € Zs} on V. Take a
decomposition of 2K with (r1,s;) € J(5,2) on X and a decom-
position of 2K5 with (r2,s2) € J(5,2) on Y. Hence we obtain
a decomposition of 4Kjq into 30 + 7 + 7, kites and 5 + s; + s2
4-cycles.

o {(41,4),...,(45,0)} C J(10,4):
Let X = {ai,i € Zs} and Y = {b;,i € Z5} be two disjoint sets.
Let V = X UY be the vertex set. Form the following 35 kites
{(@it1,ai43,b:) — @i, (big3, bigs, @ig2) — by, (aig1, aigs, b;) — ai,
(bit3, biva, ira) — by, (big1, bit3, 1) = by, (@ig1, aiva, bi) — ai,
(b, biy2,0:41) —ai, i € Zs} on V. Take a decomposition of 2K
with (r1,s1) € J(5,2) on X and a decomposition of 2K with
(r2,82) € J(5,2) on Y. Hence we obtain a decomposition of
4K into 35 + 7| + r; kites and s, + s, 4-cycles.

24. J(11,4)=I(11,4).

e Lemma 4.6 with v = 3, v = 6 and w = 2, Lemma 4.6 together
with step 21 of the Appendix give {(37,18),(36,19),....,(2,53),
(0,55)} C J(11,4).

o {(38,17),...,,(45,10)} C J(11,4):

Let X = {ai,i € Zs} and Y = {b;,i € Zs} be two disjoint sets.
Let V = X UY be the vertex set. Form the following 35 kites
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{(ai41,00,b;) — @i, (biys, 00, ai42) — by, (biy3, bitq,ais2) — ai,
(@it1,00,8;) — a3, (biy4,00,@i42) — by, (bit3, bits, @iv2) — @i,

(bi, b,'+2, a.i.,.l)—a,»,i € Z5} and 10 4—cycles {(a,-, Aif1, bi+1, bi+4),
(@iybig1,ai43,bis3),% € Z5} on V. Take a decomposition of 2K
with (r1,s;) € J(5,2) on X and a decomposition of 2Ky with
(r2,82) € J(5,2) on Y.Thus we obtain a decomposition of 4K
into 35 + ry + ro kites and 10 + s; + s 4-cycles.

{(46,9), .., (50,5)} C J(11,4):

Let X = {a;,i € Z5} and Y = {b;,i € Z5} be two disjoint sets.
Let V= X UY be the vertex set. Form the following 40 kites
{(@is1,00,b;) — ai, (biyq, 00, @ig2) — by, (biy3, biva, aiv2) — @iy
(@ig1,00,b;) — a;, (bira, 00, aiy2) — by, (big3, bita, @iva) — as,
(bis1,bix3,a;) — by, (@is1,0i42,0i) — ai,i € Zs} and 5 4-cycles
{(ai,ais1,bit2,bir4),i € Z5} on V. Take a decomposition of
2K with (r1,81) € J(5,2) on X and a decomposition of 2K
with (rg,s2) € J(5,2) on Y. Thus we obtain a decomposition of
4K, into 40 + r + ro kites and 5 + s; + sg 4-cycles.

{(51,4), ..., (55,0)} C J(11,4):

Let X = {a;,i € Z5} and Y = {b;,i € Zs} be two disjoint sets.
Let V = X UY be the vertex set. Form the following 45 kites
{@is1,00,b;) — a;, (biyq, 00, 0i2) — by, (bir3, bita, Give) — ai,
(@i41,00,bi) — @i, (biga, 00, @iv2) — bi, (bit3, bisa, it2) — ai,
(bit1,bits, ai)=bi, (@is1,@is2, bi)—as, (bi, biy2, aiy1)—ai, i € Zs}
on V. Take a decomposition of 2K5 with (ry,s;) € J(5,2) on X
and a decomposition of 2K with (r2, s2) € J(5,2) on Y. Thus
we obtain a decomposition of 4K, into 45 + r; + ro kites and
s1 + 82 4-cycles.
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