Rainbow connection numbers of ladders and Möbius ladders

Qingqiong Cai Yingbin Ma* Jiangli Song
Center for Combinatorics and LPMC-TJKLC,
Nankai University, Tianjin 300071, P.R. China
cqqnjnu620@163.com; mayingbin@yahoo.cn; songjiangli@mail.nankai.edu.cn

Abstract A path in an edge colored graph is said to be a rainbow path if no two edges on the path share the same color. An edge colored graph G is rainbow connected if there exists a u-v rainbow path for any two vertices u and v in G. The rainbow connection number of a graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. For any two vertices u and v of G, a rainbow u-v geodesic in G is a rainbow u-v path of length d(u,v), where d(u,v) is the distance between u and v. The graph G is strongly rainbow connected if there exists a rainbow u-v geodesic for any two vertices u and v in G. The strong rainbow connection number of G, denoted by src(G), is the smallest number of colors that are needed in order to make G strongly rainbow connected.

In this paper, we determine the precise (strong) rainbow connection numbers of ladders and Möbius ladders. Let p be an odd prime, we show the (strong) rainbow connection numbers of Cayley graphs on the dihedral group D_{2p} of order 2p and the cyclic group Z_{2p} of order 2p. In particular, an open problem posed by Li et al. in [8] is solved.

Keywords: ladder, Möbius ladder, Cayley graph, (strong) rainbow connection number

1 Introduction

All graphs considered in this paper are simple, finite and undirected. We refer to [2] for the graph-theoretic terms not described here. Connec-

^{*}Corresponding author

tivity is perhaps the most fundamental graph-theoretic property. There are many ways to strengthen the connectivity property, such as requiring hamiltonicity, k-connectivity, imposing bounds on the diameter, requiring the existence of edge-disjoint spanning trees, and so on. The rainbow connection number firstly introduced by Chartrand et al.[6] is also an interesting way to quantitavely strengthen the connectivity requirement.

Let G be a nontrivial connected graph with an edge colouring c: $E(G) \to \{1, 2, \dots, k\}, k \in \mathbb{N}$, where the adjacent edges may be coloured the same. A path is said to be a rainbow path if no two edges on the path share the same color. An edge colored graph G is rainbow connected if there exists a rainbow path between every pair of vertices. The rainbow connection number of a graph G, denoted by rc(G), is the smallest number of colors that are needed in order to make G rainbow connected. If His a connected spanning subgraph of a graph G, it is easy to verify that $rc(G) \leq rc(H)$. We note also the trivial fact that if C_n is a cycle with $n \geq 4$ vertices, then $rc(C_n) = src(C_n) = \lceil \frac{n}{2} \rceil$. For any two vertices u and v of G, a rainbow u - v geodesic in G is a rainbow u - v path of length d(u, v), where d(u, v) is the distance between u and v. The graph G is strongly rainbow connected if there exists a rainbow u-v geodesic for any two vertices u and v in G. The strong rainbow connection number of G, denoted by src(G), is the smallest number of colors that are needed in order to make G strongly rainbow connected. An easy observation is that if G is a nontrivial connected graph, we have $diam(G) \leq rc(G) \leq src(G) \leq m$, where diam(G) denotes the diameter of G and m is the size of G.

Recently there has been great interest in this concept and a lot of results have been published. Chakraborty et al. in [4] showed that computing rc(G) is NP-Hard. Therefore, there have been various investigations towards finding good upper bounds for rainbow connection numbers in terms of other graph parameters such as connectivity, minimum degree, radius etc.([1, 3, 7, 12]) and for many special graph classes such as integral graphs, Cayley graphs, line graphs etc.([5, 8, 9]). The reader can see [10] for a survey on this topic.

In this paper, we consider the (strong) rainbow connection numbers of ladders and Möbius ladders. For an integer $h \geq 3$, the ladder L_h of order 2h is a cubic graph constructed by taking two copies of the cycle C_h on disjoint vertex sets (u_1, u_2, \dots, u_h) and (v_1, v_2, \dots, v_h) , then joins the corresponding vertices $u_i v_i$ for $1 \leq i \leq h$. The Möbius ladder M_h of order 2h is obtained from the ladder by deleting the edges $u_1 u_h$ and $v_1 v_h$ and then inserting edges $u_1 v_h$ and $u_h v_1$. Our main result is stated as follows.

Theorem 1.1. For an integer $h \geq 3$.

(i) Let $G = L_h$ be the ladder, then $rc(G) = src(G) = \lceil \frac{h+1}{2} \rceil$.

(ii) Let
$$G = M_h$$
 be the Möbius ladder, then $rc(G) = src(G) = \lceil \frac{h}{2} \rceil$.

In fact, ladders and Möbius ladders are connected Cayley graphs. Let Γ be a finite group, and S an inverse closed subset of Γ satisfying $1 \notin S$, the Cayley graph $G = \text{Cay}(\Gamma, S)$ of Γ with respect to S is defined by

$$V(G) = \Gamma,$$

 $E(G) = \{\{g, h\} | g^{-1}h \in S\}.$

Then $\operatorname{Cay}(G,S)$ is a well-defined simple regular graph of valency |S|. It is well-known that $\operatorname{Cay}(\Gamma,S)$ is connected if and only if S is a generating set of Γ . Throughout the remainder of this paper, we denote $\bar{S}:=S\cup S^{-1}$, where $S^{-1}=\{s^{-1},s\in S\}$.

Interconnection networks are often modeled by highly symmetric Cayley graphs. The rainbow connection number of a graph can be applied to measure the safety of a network. Thus the object of the rainbow connection number of Cayley graphs should be meaningful. In [8], the upper and lower bounds for the (strong) rainbow connection numbers of Cayley graphs on abelian groups were investigated. They also posed an open problem as follows.

Open problem: Given an abelian group Γ and a minimal generating set $S \subseteq \Gamma \setminus \{1\}$ of Γ , when some element $s \in \overline{S}$ has an *odd order*, is it true that

$$rc(\operatorname{Cay}(\Gamma, \bar{S})) = src(\operatorname{Cay}(\Gamma, \bar{S})) = \sum_{s \in S} \lceil \frac{|s|}{2} \rceil$$
?

We answer the problem in terms of the following theorem.

Theorem 1.2. Let $G = \operatorname{Cay}(\Gamma, \overline{S})$ be a connected graph, where Γ is a finite group of order 2p and p is an odd prime.

- (i) If S is a minimal generating set of Γ such that $|\bar{S}| = 2$, then rc(G) = src(G) = p.
- (ii) If S is a minimal generating set of Γ such that $|\bar{S}|=3$, then $rc(G)=src(G)=\frac{p+1}{2}$.

In addition, if Γ is a group of order 4, we give the precise value of the (strong) rainbow connection numbers of $\operatorname{Cay}(\Gamma, \bar{S})$. Therefore, the (strong) rainbow connection numbers of Cayley graphs of order 2p (p is a prime) are completely discussed in this paper. As is customary, unless stated otherwise, it will be assumed that i, j are nonnegative integers and p is an odd prime in the following sections.

2 Proof of Theorem 1.1

The Cartesian product of graphs G and H is the graph $G \square H$ whose vertex set is $V(G) \times V(H)$ and whose edge set is the set of all pairs $(u_1, v_1)(u_2, v_2)$ such that either $u_1u_2 \in E(G)$ and $v_1 = v_2$, or $v_1v_2 \in E(H)$ and $u_1 = u_2$. Now we recall a result from [11].

Lemma 2.1. Let $G^* = G_1 \square G_2 \square \ldots \square G_k (k \geq 2)$, where each $G_i (1 \leq i \leq k)$ is connected, then we have

$$rc(G^*) \leq \sum_{i=1}^k rc(G_i).$$

Moreover, if $diam(G_i) = rc(G_i)$ for each G_i , then the equality holds.

Proof of Theorem 1.1. (i) If h is an even integer, then it is easy to obtain that $diam(G) = \frac{h}{2} + 1$. Since $G = C_h \square K_2$, $rc(C_h) = diam(C_h) = \frac{h}{2}$, and $rc(K_2) = diam(K_2) = 1$ we have $rc(G) = diam(G) = \frac{h}{2} + 1$ by Lemma 2.1. Define a colouring C showed in [11, Theorem 4.4] by

$$C(e) = \begin{cases} i & \text{if } e = u_i u_{i+1} \text{ and } e = v_i v_{i+1} & \text{for } 1 \le i \le \frac{h}{2}, \\ i - \frac{h}{2} & \text{if } e = u_i u_{i+1} \text{ and } e = v_i v_{i+1} \text{ for } \frac{h+2}{2} \le i \le h, \\ \frac{h+2}{2} & \text{if } e = u_i v_i & \text{for } 1 \le i \le h. \end{cases}$$

An easy observation is that the coloring makes G strongly rainbow connected. Therefore, $rc(G) = src(G) = \frac{h}{2} + 1$. Now we only need to show that $rc(G) = src(G) = \frac{h+1}{2}$, where h is an odd integer (see Figure 1).

(1) For $1 \leq i, j \leq h$, it is not hard to see that $d(u_i, u_j) \leq \frac{h-1}{2}$, $d(v_i, v_j) \leq \frac{h-1}{2}$ and $d(u_i, v_j) \leq \frac{h-1}{2} + 1 = \frac{h+1}{2}$. Hence the diameter of G is $\frac{h+1}{2}$. Then we obtain $src(G) \geq rc(G) \geq diam(G) = \frac{h+1}{2}$.

(2) Define a colouring C of the graph G by

$$C(e) = \left\{ \begin{array}{ll} i & \text{if } e = u_i u_{i+1} \text{ and } e = v_i v_{i+1} & \text{for } 1 \leq i \leq \frac{h+1}{2}, \\ i - \frac{h+1}{2} & \text{if } e = u_i u_{i+1}, \ e = v_i v_{i+1} \text{ and } e = u_i v_i \text{ for } \frac{h+3}{2} \leq i \leq h, \\ \frac{h+1}{2} & \text{if } e = u_i v_i & \text{for } 1 \leq i \leq \frac{h+1}{2}. \end{array} \right.$$

Next we will show C is a strong rainbow $\frac{h+1}{2}$ -colouring of G, that is, G contains a rainbow x-y geodesic for every two vertices x and y of G.

First, observe that if $x, y \in U = \{u_1, u_2, \ldots, u_h\}$ or $x, y \in V = \{v_1, v_2, \ldots, v_h\}$, there exists a rainbow x - y geodesic contained in the cycle $C_1 = (u_1, u_2, \ldots, u_h, u_1)$ or $C_2 = (v_1, v_2, \ldots, v_h, v_1)$. It remains to

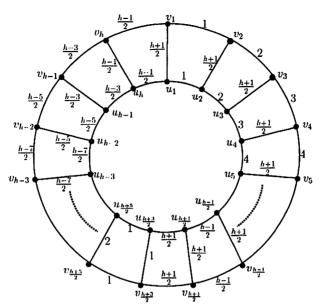


Figure 1: $G = L_h$, where $h = 1 \pmod{2}$.

prove that if $x \in U$ and $y \in V$, or $x \in V$ and $y \in U$, then G contains a rainbow x - y geodesic. Without loss of generality, we assume that $x \in U$ and $y \in V$. Since $d(x, y) \leq \frac{h+1}{2}$, x and y must be contained in a connected induced subgraph H of G, which satisfies:

- (a) |V(H)| = h + 1;
- (b) $V(H) = \{u_i, v_i \mid u_i \in U, v_i \in V, 1 \le i \le h\}.$

It is clear that H contains a x-y geodesic in G and H must be one of the following four cases:

Case 1:
$$V(H) = \{u_1, u_2, \dots, u_{\frac{h+1}{2}}; v_1, v_2, \dots, v_{\frac{h+1}{2}}\}.$$

Suppose that $x=u_i\in H,\ y=v_j\in H,\ 1\leq i,j\leq \frac{h+1}{2}$. If $j\leq i$, the path $v_j,v_{j+1},\ldots,v_i,u_i$ is a rainbow v_j-u_i geodesic; if $i\leq j$, the path $u_i,u_{i+1},\ldots,u_j,v_j$ is a rainbow u_i-v_j geodesic.

Case 2: $V(H) = \{u_{\frac{h+3}{2}}, u_{\frac{h+5}{2}}, \dots, u_h, u_{h+1}; v_{\frac{h+3}{2}}, v_{\frac{h+5}{2}}, \dots, v_h, v_{h+1}\},$ where $u_{h+1} = u_1$ and $v_{h+1} = v_1$.

Suppose that $x = u_i \in H$, $y = v_j \in H$, $\frac{h+3}{2} \le i, j \le h+1$. Assume $j \le i$, the path $v_j, v_{j+1}, \ldots, v_i, u_i$ is a rainbow $v_j - u_i$ geodesic; assume $i \le j$, the path $u_i, u_{i+1}, \ldots, u_j, v_j$ is a rainbow $u_i - v_j$ geodesic.

Case 3: $V(H) = \{u_{h-s}, \dots, u_{h-1}, u_h, u_1, \dots, u_t; v_{h-s}, \dots, v_{h-1}, v_h, v_1, \dots, v_t\}, \text{ where } s+t=\frac{h-1}{2}, s\geq 0, t\geq 2.$

Suppose that $x=u_i\in H,\ y=v_j\in H,\ i,j\in\{1,2,\ldots t,h-s,\ldots,h\}$. If $i,j\in\{h-s,\ldots,h\}$, the rainbow u_i-v_j geodesic is the same as that in case 2; if $i,j\in\{1,2,\ldots,t\}$, the rainbow u_i-v_j geodesic is the same as that in case 1; if $i\in\{1,2,\ldots,t\}$ and $j\in\{h-s,\ldots,h\}$, the path $v_j,v_{j+1},\ldots,v_h,v_1,\ldots,v_i,u_i$ is a rainbow v_j-u_i geodesic; if $i\in\{h-s,\ldots,h\}$ and $j\in\{1,2,\ldots,t\}$, the path $u_i,u_{i+1},\ldots,u_h,u_1,\ldots,u_j,v_j$ is a rainbow u_i-v_j geodesic;

Case 4: $V(H) = \{u_{\frac{h+1+2s}{2}}, \dots, u_{\frac{h+1}{2}}, \dots, u_{\frac{h+1-2t}{2}}; v_{\frac{h+1+2s}{2}}, \dots, v_{\frac{h+1}{2}}, \dots, v_{\frac{h+1-2t}{2}}\}$, where $s + t = \frac{h-1}{2}, s \ge 1, t \ge 0$.

Suppose that $x=u_i\in H,\,y=v_j\in H,\,i,j\in\{\frac{h+1-2t}{2},\ldots,\frac{h+1+2s}{2}\}$. Assume $i,j\in\{\frac{h+3}{2},\ldots,\frac{h+1+2s}{2}\}$, the rainbow u_i-v_j geodesic is the same as that in case 2; assume $i,j\in\{\frac{h+1-2t}{2},\ldots,\frac{h+1}{2}\}$, the rainbow u_i-v_j geodesic is the same as that in case 1; assume $i\in\{\frac{h+3}{2},\ldots,\frac{h+1+2s}{2}\}$ and $j\in\{\frac{h+1-2t}{2},\ldots,\frac{h+1}{2}\}$, the path $v_j,v_{j+1},\ldots,v_{\frac{h+1}{2}},v_{\frac{h+3}{2}},\ldots,v_i,u_i$ is a rainbow v_j-u_i geodesic; assume $i\in\{\frac{h+1-2t}{2},\ldots,\frac{h+1}{2}\}$ and $j\in\{\frac{h+3}{2},\ldots,\frac{h+1+2s}{2}\}$, the path $u_i,u_{i+1},\ldots,u_{\frac{h+1}{2}},u_{\frac{h+3}{2}},\ldots,u_j,v_j$ is a rainbow u_i-v_j geodesic.

Therefore, $rc(G) \leq src(G) \leq \frac{h+1}{2}$. Combining (1) and (2), we come to the conclusion that $rc(G) = src(G) = \frac{h+1}{2}$.

(ii) Case 1: h is even. Let h = 2t, then 2h = 4t (see Figure 2). Define a colouring C of the graph G by

$$C(e) = \begin{cases} i & \text{if } e = u_i u_{i+1}, \, v_i v_{i+1} \text{ and } u_i v_i & \text{for } 1 \leq i \leq t, \\ i - t & \text{if } e = u_i u_{i+1}, \, v_i v_{i+1} \text{ and } u_i v_i & \text{for } t+1 \leq i \leq 2t-1, \\ t & \text{if } e = u_{2t} v_1, \, v_{2t} u_1 \text{ and } u_{2t} v_{2t}. \end{cases}$$

Next we will prove that C is a strong rainbow t-colouring of G, that is, G contains a rainbow x-y geodesic for any two vertices x and y of G. Let $C_{u_i} = (u_i, u_{i+1}, \ldots, u_{2t}, v_1, v_2, \ldots, v_i, u_i)$ and $C_{v_i} = (v_i, v_{i+1}, \ldots, v_{2t}, u_1, u_2, \ldots, u_i, v_i)$ be (2t+1)-cycles. For any $u_i \in U = \{u_1, u_2, \ldots, u_{2t}\}$, if $w \in V(C_{u_i})\setminus\{u_i\}$, the shorter segment between u_i and w on C_{u_i} is a rainbow $u_i - w$ geodesic in G; if $w = u_j \in V(G)\setminus V(C_{u_i})$, the rainbow $u_i - w$ geodesic in G contained in C_w ; if $w = v_j \in V(G)\setminus V(C_{u_i})$, the shorter segment between u_i and w on C_w is a rainbow $u_i - w$ geodesic in G. Hence there exists a rainbow geodesic connecting u_i and any other vertex in G. With a similar argument to that of u_i , the above result also holds for any $v_i \in V = \{v_1, v_2, \ldots, v_{2t}\}$. Thus G contains a rainbow x - y geodesic for any two vertices x and y of G, that is, $rc(G) \leq src(G) \leq t$.

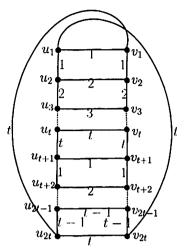


Figure 2: $G = M_h$, where h = 2t.

Since diam(G)= t, it follows that rc(G) = src(G) = t.

Case 2: h is odd. Let h = 2t + 1, then 2h = 4t + 2.

Define a colouring C of the graph G by

$$C(e) = \left\{ \begin{array}{ll} i & \text{if } e = u_i u_{i+1} \;, \; v_i v_{i+1} \; \text{and} \; u_i v_i & \text{for} \; 1 \leq i \leq t+1, \\ i - t - 1 & \text{if } e = u_i u_{i+1}, \; v_i v_{i+1} \; \text{and} \; u_i v_i & \text{for} \; t+2 \leq i \leq 2t, \\ t & \text{if} \; e = u_{2t+1} v_1, \; v_{2t+1} u_1 \; \text{and} \; u_{2t+1} v_{2t+1}. \end{array} \right.$$

Let $C_{u_i} = (u_i, u_{i+1}, \dots, u_{2t+1}, v_1, v_2, \dots, v_i, u_i)$ and $C_{v_i} = (v_i, v_{i+1}, \dots, v_{2t+1}, u_1, u_2, \dots, u_i, v_i)$ be (2t+2)-cycles. Applying the same method of Case 1, for any two vertices x and y of G, there is a rainbow x-y geodesic in C_{u_i} or C_{v_i} . Hence $rc(G) \leq src(G) \leq t+1$. Since diam(G)= t+1, it follows that rc(G) = src(G) = t+1.

Combining Case 1 and Case 2, we have $rc(G) = src(G) = \lceil \frac{h}{2} \rceil$. This completes the proof of the theorem.

3 Proof of Theorem 1.2

The cyclic group Z_n is the group of order n with generator c that satisfies $c^n = 1$. Let Γ be a finite group. If $a \in \Gamma$, the subgroup $\langle a \rangle$ is called the cyclic subgroup generated by a. We denote the number of elements of $\langle a \rangle$ by |a|. The dihedral group D_{2n} is the group of order 2n with generators

a and b that satisfy $a^n = b^2 = 1$ and $b^{-1}ab = a^{-1}$. Now we show three useful and easy lemmas that are needed in order to establish the proof of Theorem 1.2.

Lemma 3.1. If p is an odd prime, then every group Γ of order 2p is isomorphic to either the cyclic group Z_{2p} or the dihedral group D_{2p} .

Lemma 3.2. Let Γ be a finite group. Then Γ is isomorphic to the dihedral group if and only if Γ is generated by two elements of order 2.

If S is a minimal generating set of D_{2p} , then either $\tilde{S} = \{ba^i, ba^j\}$, where $0 \le i \ne j \le p-1$; or $\tilde{S} = \{a^i, a^{p-i}, ba^j\}$, where $1 \le i \le p-1$ and $0 \le j \le p-1$. If S is a minimal generating set of $Z_{2p} = \langle c \rangle$, then either $\tilde{S} = \{c^i, c^{2p-i}\}$, where (i, 2p) = 1 and $1 \le i \le 2p-1$; or $\tilde{S} = \{c^p, c^j, c^{2p-j}\}$, where (j, 2p) = 2 and $2 \le j \le 2p-2$. The following lemma is immediate.

Lemma 3.3. (i) Let $G_1 = \text{Cay}(D_{2p}, \bar{S_1})$ and $G_2 = \text{Cay}(D_{2p}, \bar{S_2})$. For $\bar{S_1} = \{a, a^{p-1}, b\} \neq \bar{S_2} = \{a^i, a^{p-i}, ba^j\}$, we have $G_1 \cong G_2$.

(ii) Let $G_1 = \text{Cay}(Z_{2p}, \bar{S_1})$ and $G_2 = \text{Cay}(Z_{2p}, \bar{S_2})$. For $\bar{S_1} = \{c^p, c^2, c^{2p-2}\} \neq \bar{S_2} = \{c^p, c^j, c^{2p-j}\}$, we have $G_1 \cong G_2$.

With the above lemmas established, we are now in a position to prove Theorem 1.2.

Proof of Theorem 1.2. Applying the above results, if S is a minimal generating set of Γ , then $|\bar{S}| = 2$ or 3.

- (i) Since $\Gamma = \langle \bar{S} \rangle$, we must have G is a cycle. Therefore, rc(G) = src(G) = p.
- (ii) If $\Gamma \cong D_{2p}$, we only need to show that $rc(G) = src(G) = \frac{p+1}{2}$ by Lemma 3.3, where $G = \text{Cay}(D_{2p}, \bar{S})$ and $\bar{S} = \{a, a^{p-1}, b\}$. We shall consider the following bijection.

$$\theta: L_p \to G$$

such that $\theta(u_i)=a^{i-1}$ and $\theta(v_i)=ba^{p-i+1}$. Let $u,v\in V(L_p)$ be any two adjacent vertices. If $u=u_i$ and $v=u_{i+1}$, then $\theta(u)^{-1}\theta(v)=a\in \bar{S}$; If $u=v_i$ and $v=v_{i+1}$, then $\theta(u)^{-1}\theta(v)=a^{i-1-p}b^{-1}ba^{p-i+2}=a^{p-1}\in \bar{S}$; If $u=u_i$ and $v=v_i$, then $\theta(u)^{-1}\theta(v)=a^{1-i}ba^{p-i+1}=ba^{2p}=b\in \bar{S}$. Thus $\theta(u)\sim \theta(v)$, that is, θ is an isomorphism between L_p and G. We have $rc(G)=src(G)=\frac{p+1}{2}$ by applying Theorem 1.1.

If $\Gamma \cong Z_{2p}$, we also obtain $G \cong L_p$ by the similar method. Hence $rc(G) = src(G) = \frac{p+1}{2}$. This completes the proof of the theorem.

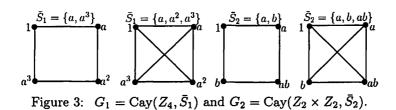
Remark. Let $G = \text{Cay}(Z_{2p}, \bar{S})$ be a connected graph. If $S = \{c^p, c^j\}$ is a minimal generating set of Z_{2p} , where $|c^j| = p$ and $2 \le j \le 2p - 2$,

then $rc(G) = src(G) = \frac{p+1}{2}$ by Theorem 1.2. If the above open problem is true, we must have $rc(G) = src(G) = \frac{p+1}{2} + 1$, a contradiction. Hence the problem is not true for some special cases.

We conclude this section with the following lemma.

Lemma 3.4. Let $G_1 = \text{Cay}(Z_4, \bar{S}_1)$ and $G_2 = \text{Cay}(Z_2 \times Z_2, \bar{S}_2)$.

- (i) If S_1 is a minimal generating set of Z_4 , then $rc(G_1) = src(G_1) = 2$. Otherwise, $rc(G_1) = src(G_1) = 1$.
- (ii) If S_2 is a minimal generating set of $Z_2 \times Z_2$, then $rc(G_2) = src(G_2) = 2$. Otherwise, $rc(G_2) = src(G_2) = 1$.



Proof. Let $Z_4=\langle a\rangle$ and $Z_2\times Z_2=\{1,a,b,ab\}$. In [8], It was shown that if S is a minimal generating set of an abelian group Γ and every element $s\in \bar{S}$ has an even order, then $rc(\operatorname{Cay}(\Gamma,\bar{S}))=src(\operatorname{Cay}(\Gamma,\bar{S}))=\sum_{s\in S}\frac{|s|}{2}$. If $S_1(S_2)$ is a minimal generating set of $Z_4(Z_2\times Z_2)$, then $rc(G_1)=src(G_1)=rc(G_2)=src(G_2)=2$. Otherwise, we have $\bar{S}_1=\{a,a^2,a^3\}$ and $\bar{S}_2=\{a,b,ab\}$. Hence $G_1\cong G_2\cong K_4$ are cliques. It follows that $rc(G_1)=src(G_1)=rc(G_2)=src(G_2)=1$ (see Figure 3).

Let $G = \operatorname{Cay}(\Gamma, \bar{S})$ be a connected graph of order 2p. If \bar{S} contains a minimal generating set S^* of Γ such that $|\bar{S}^*| = 3$, then $rc(G) \leq rc(\operatorname{Cay}(\Gamma, \bar{S}^*)) = \frac{p+1}{2}$ by Theorem 1.2. Otherwise, \bar{S} must contain a minimal generating set S^{**} of Γ such that $|\bar{S}^{**}| = 2$, then $rc(G) \leq rc(\operatorname{Cay}(\Gamma, \bar{S}^*)) = p$ by Theorem 1.2. Applying Lemma 3.1, every group Γ of order 2p is isomorphic to either the cyclic group Z_{2p} or the dihedral group D_{2p} . Since every group Γ of order p^2 (p is a prime) is abelian, the group of order 4 is isomorphic to either Z_4 or $Z_2 \times Z_2$. Combining Theorem 1.2 and Lemma 3.4, the (strong) rainbow connection numbers of Cayley graphs of order 2p (p is a prime) are completely investigated.

Acknowledgement. The authors are very grateful to the referee for helpful comments and suggestions.

References

- [1] M. Basavaraju, L.S. Chandran, D. Rajendraprasad, A. Ramaswamy, Rainbow connection number and radius, Graphs Combin. to appear.
- [2] J.A. Bondy, U.S.R. Murty, Graph Theory, GTM 244, Springer, 2008.
- [3] Y. Caro, A. Lev, Y. Roditty, Z. Tuza, R. Yuster, On rainbow connection, Electron. J. Combin. 15, R57 (2008).
- [4] S. Chakraborty, E. Fischer, A. Matsliah, R. Yuster, Hardness and algorithms for rainbow connection, J. Comb. Optim. 21(3), 330-347, (2011).
- [5] L.S. Chandran, A. Das, D. Rajendraprasad, N.M. Varma, Rainbow connection number and connected dominating sets, J. Graph Theory. 71(2), 206-218 (2012).
- [6] G. Chartrand, G.L. Johns, K.A. McKeon, P. Zhang, Rainbow connection in graphs, Math. Bohem. 133, 85-98 (2008).
- [7] M. Krivelevich, R. Yuster, The rainbow connection of a graph is (at most) reciprocal to its minimum degree, J. Graph Theory. 63(3), 185-191 (2009).
- [8] H. Li, X. Li, S. Liu, The (strong) rainbow connection numbers of Cayley graphs on Abelian groups, Comput. Math. Appl. 62(11), 4082-4088 (2011).
- [9] X. Li, Y. Sun, Rainbow connection numbers of line graphs, Ars Combin. 100, 449-463 (2011)
- [10] X. Li, Y. Sun, Rainbow Connections of Graphs, SpringerBriefs in Math. Springer, New York, 2012.
- [11] X. Li, Y. Sun, Characterize graphs with rainbow connection number and rainbow connection numbers of some graph operations, Discrete Math. to appear.
- [12] I. Schiermeyer, Rainbow connection in graphs with minimum degree three, IWOCA 2009, LNCS 5874, 432-437 (2009).