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Abstract A path in an edge colored graph is said to be a rainbow path if
no two edges on the path share the same color. An edge colored graph G is
rainbow connected if there exists a u — v rainbow path for any two vertices
2 and v in G. The rainbow connection number of a graph G, denoted by
r¢(G), is the smallest number of colors that are needed in order to make
G rainbow connected. For any two vertices u and v of G, a rainbow u — v
geodesic in G is a rainbow u — v path of length d(u,v), where d(u,v) is
the distance between u and v. The graph G is strongly rainbow connected
if there exists a rainbow u — v geodesic for any two vertices u and v in
G. The strong rainbow connection number of G, denoted by src(G), is
the smallest number of colors that are needed in order to make G strongly
rainbow connected.

In this paper, we determine the precise (strong) rainbow connection
numbers of ladders and Mébius ladders. Let p be an odd prime, we show
the (strong) rainbow connection numbers of Cayley graphs on the dihedral
group Dy, of order 2p and the cyclic group Z3, of order 2p. In particular,
an open problem posed by Li et al. in [8] is solved.

Keywords: ladder, Mébius ladder, Cayley graph, (strong) rainbow con-
nection number '

1 Introduction

All graphs considered in this paper are simple, finite and undirected.
We refer to (2] for the graph-theoretic terms not described here. Connec-
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tivity is perhaps the most fundamental graph-theoretic property. There
are many ways to strengthen the connectivity property, such as requiring
hamiltonicity, k-connectivity, imposing bounds on the diameter, requir-
ing the existence of edge-disjoint spanning trees, and so on. The rainbow
connection number firstly introduced by Chartrand et al.[6] is also an in-
teresting way to quantitavely strengthen the connectivity requirement.

Let G be a nontrivial connected graph with an edge colouring ¢ :
E(G) — {1,2,...,k},k € N, where the adjacent edges may be coloured
the same. A path is said to be a rainbow path if no two edges on the path
share the same color. An edge colored graph G is rainbow connected if
there exists a rainbow path between every pair of vertices. The rainbow
connection number of a graph G, denoted by r¢(G), is the smallest number
of colors that are needed in order to make G rainbow connected. If H
is a connected spanning subgraph of a graph G, it is easy to verify that
r¢(G) < rc(H). We note also the trivial fact that if C,, is a cycle with n > 4
vertices, then r¢(Cy) = sre(C,,) = [%] For any two vertices v and v of G,
a rainbow u — v geodesic in G is a rainbow u — v path of length d(u,v),
where d(u,v) is the distance between u and v. The graph G is strongly
rainbow connected if there exists a rainbow u — v geodesic for any two ver-
tices w and v in G. The strong rainbow connection number of G, denoted
by src(G), is the smallest number of colors that are needed in order to
make G strongly rainbow connected. An easy observation is that if G is
a nontrivial connected graph, we have diam(G) < r¢(G) < srce(G) < m,
where diam(G) denotes the diameter of G and m is the size of G.

Recently there has been great interest in this concept and a lot of result-
s have been published. Chakraborty et al. in [4] showed that computing
re(G) is NP-Hard. Therefore, there have been various investigations to-
wards finding good upper hounds for rainbow connection numbers in terms
of other graph parameters such as connectivity, minimum degree, radius
ete.([1, 3, 7, 12]) and for many special graph classes such as integral graph-
s, Cayley graphs, line graphs etc.([5, 8, 9]). The reader can see (10] for a
survey on this topic.

In this paper, we consider the (strong) rainbow connection numbers
of ladders and Mobius ladders. For an integer h > 3, the ladder L, of
order 2k is a cuhic graph constructed by taking two copies of the cycle Cy,
on disjoint vertex sets (ui,us,- - -, un) and (v1,va,- - -,vs), then joins the
corresponding vertices u;v; for 1 < < h. The Mdbius ladder M}, of order
2h is obtained from the ladder by deleting the edges uju, and vyv, and
then inserting edges ujvp, and upvy. Our main result is stated as follows.

Theorem 1.1. For an integer h > 3.
(i) Let G = Ly, be the ladder, then rc(G) = src(G) = [241].
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(ii) Let G = M, be the Mébius ladder, then rc(G) = src(G) = [£].

In fact, ladders and Mobius ladders are connected Cayley graphs. Let
I’ be a finite group, and S an inverse closed subset of I' satisfying 1 € S,
the Cayley graph G = Cay(T', S) of I' with respect to S is defined by

V(G) =T,
E(G) = {{g,h}lg"'h € S}.

Then Cay(G, S) is a well-defined simple regular graph of valency |S|. It is
well-known that Cay(T', S) is connected if and only if S is a generating set
of T'. Throughout the remainder of this paper, we denote S := SU S,
where -1 = {s~1,s € S}.

Interconnection networks are often modeled by highly symmetric Cay-
ley graphs. The rainbow connection number of a graph can be applied to
measure the safety of a network. Thus the object of the rainbow connection
number of Cayley graphs should be meaningful. In (8], the upper and low-
er bounds for the (strong) rainbow connection numbers of Cayley graphs
on abelian groups were investigated. They also posed an open problem as
follows.

Open problem : Given an abelian group I' and a minimal generating
set S C T'\{1} of T, when some element s € S has an odd order, is it true
that
r¢(Cay(T, §)) = src(Cay(T, 5)) = Z[L;-']?
SES

We answer the problem in terms of the following theoremn.

Theorem 1.2. Let G = Cay(T', S) be a connected graph, whereT is a finite
group of order 2p and p is an odd prime.

(i) If S is a minimal generating set of ' such that |S| = 2, then re(G) =
sre(G) = p.

(i) If S is a minimal generating set of T' such that |S| = 3 , then
re(G) = sre(G) = B

In addition, if " is a group of order 4, we give the precise value of the
(strong) rainbow connection numbers of Cay(T, §). Therefore, the (strong)
rainbow connection numbers of Cayley graphs of order 2p (p is a prime)
are completely discussed in this paper. As is customary, unless stated
otherwise, it will be assurned that i, j are nonnegative integers and p is an
odd prime in the following sections.
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2 Proof of Theorem 1.1

The Cartesian product of graphs G and H is the graph GOH whose
vertex set is V(G) x V(H) and whose edge set is the set of all pairs
(u1,v1)(ug,v2) such that either ujus € E(G) and vy = vg, or vivp € E(H)
and u; = uz. Now we recall a result from [11].

Lemma 2.1. Let G* = G;0G20...0Gk(k > 2), where each G;(1 < i <
k) is connected, then we have

k
re(G*) < Zrc(G,-).

i=1

Moreover, if diam(G;) = rc(G;) for each G, then the equality holds.

Proof of Theorem 1.1. (i) If & is an even integer, then it is easy to
obtain that diam(G) = % + 1. Since G = CL0OK>,7¢(Ch) = diam(Cp) = 2,
and rc(K3) = diam(K2) = 1 we have r¢(G) = diam(G) = -'zi-}-l by Lemma
2.1. Define a colouring C showed in {11, Theorem 4.4] by

i ife=wuui41 ande=vv;4y forl <i< %,
Cle)=¢ i— % if e = u;u;41 and e = v;v;4 for —‘2"— <i
"—‘2*3 ife=wv; forl<i<h.
An easy observation is that the coloring makes G strongly rainbow con-
nected. Therefore, rc(G) = s7¢(G) = % + 1. Now we only need to show
that r¢(G) = sre(G) = 241, where h is an odd mteger(see Flgure 1).
(1) For 1 <14,j < h, it is not hard to see that d(ui, uj) < 851, d(vi,v5) <

2=1 and d(u;,v;) < " o et Hence the diameter of G’ is —‘L Then
we obtain sre(G) > rc(G) > dzam(G)

(2) Define a colouring C of the graph G by

) ife=wuuip; ande=vv;yy for1 <i< —+—
Cle)=< i— L if e = u;u;y1, € = v;v54) and e = u;v; for i— <i<h,
hgl ife=wuw; for1<i< h“

Next we will show C is a strong rainbow -'%—‘-colouring of G, that is, G
contains a rainbow x — y geodesic for every two vertices z and y of G.

First, observe that if z,y € U = {uj,ua,...,up} or z,y € V =
{v1,v2,...,vs}, there exists a rainbow z — y geodesic contained in the
cycle C) = (uy,ug,...,un,u1) or Ca = (vy,v2,...,0p,v1). It remains to
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Figure 1: G = Ly, where h = 1(mod 2).

prove that if z € U and y € V, or z € V and y € U, then G contains a
rainbow z — y geodesic. Without loss of generality, we assume that z € U
and y € V. Since d(z,y) < ﬁzﬂ, z and y must be contained in a connected
induced subgraph H of G, which satisfies:

(a) [V(H)| = h+1;

(b) V(H) = {ui,'l)i |u,~ elUv;eV,1<i< h.}
It is clear that H contains a z — y geodesic in G and H must be one of the
following four cases:

Case 1: V(H) = {ul,u2,...,u_;._;_x_;vl,vg,...,v;._g._:}.
Supposethat:v=u,-€H,y=v,-GH,lSi,js-"—'{—l. If j <1, the

path vj,v;41,...,vi,u; is a rainbow v; — u; geodesic; if ¢ < j, the path
Ui, Uit1, .- -, Uj, V5 IS & rainbow u; — v; geodesic.

Case 2: V(H) = {ul;;_g,ub#,...,Uh,uh+1;Uh_2£,UL;_§,...,Uh,’t)h+1},
where upy1 = up and V41 = V1.

Suppose that z = u; € H, y = v; € H, %té <1,j < h+1. Assume
J < i, the path v;,v;41,...,9;,u; is a rainbow v; — u; geodesic; assume
i < 7, the path u;,uit1,...,u;,v; is a rainbow u; — v; geodesic.
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Case 3: V(H) {uh-—s7"'1uh-‘1)uhaul!"',ut;vh—sw")vh—]!vh)vlv
S U) wheres+t.-— s>0,t>2.

Suppose that z = u; € H,y =v; € H, 4,5 € {1,2,...t,h—s,...,h}.
Ifi,j € {h —s,...,h}, the rainbow u; — v; geodesic is the same as that
in case 2; if 4,5 € {1,2,...,t}, the rainbow u; — v; geodesic is the same
as that in cese I; if ¢ € {1,2,...,t} and j € {h — s,...,h}, the path
VjyUjtly- -y VhyVl,. .., Vi, Ui iS & rainbow v; — u; geodesic; if ¢ € {h —

.,h} and j € {1,2,...,t}, the path Uiy Uigly ey Uny ULy . ovy Uy, U5 IS @
rainbow u; — v; geodesic;

Case 4: V(H) = {ux Li2s .-y Ubdly oo, URtLo2t [ Uhstleas,. .o, Uk
yUnsioze }, wheres+t-—"" s>1,t>0.

Suppose that z = u; € H,y = v; € H,4,j € {At}=2  hilile} As

sume i,j € {J— ..., 221225} the rainbow u; — v; geodesic is the same as
that in case 2; assumei,j € {"1;2 .. "“"1} the rainbow u; —v; geodesic
is the same as that in case I; assume i € {-—"'— .., 2tlE29} and 5 €
{""‘1 =2t . —1’-—} the path v;,vj41,...,Vas1, Unsa,..., v, u; is a rainbow
v —u; geodesm, assume i € {ﬁi’—lz—z,,%ﬂ} and j € {&43,..., hdli2ey
the path u;, uiq1,... sUktl, Uhts, ..., Uj, U IS a rainbow u; — v; geodesic.

Therefore, r¢(G) < sre(G) < %’—1 Combining (1) and (2), we come to
the conclusion that rc(G) = sre(G) = 2L

(ii) Case 1: hiseven. Let h = 2t, then 2h = 4t (see Figure 2).
Define a colouring C of the graph G by

i ife= UiUi41y ViVig1 and UV for 1 S i S t,
C(e) = i—t if e=wuuis, v;vi1 and wu;  fort+1<i<2t— 1,
t if e = uguv1, voruy and ugvy,.

Next we will prove that C is a strong rainbow t-colouring of G, that
is, G contains a rainbow z—y geodesic for any two vertices = and y of G. Let
Cu. = (Ui Uig1, .- <y U2¢, VU1, V2, ... , Vi, u;) and C,, = (i, Vig1, ..., V2, u1, ug,

- ui,v;) be (2t + 1)—cycles. For any u; € U = {uy,uy,.. Sy uge ), if
w € V(Cy;)\{u:}, the shorter segment hetween u; and w on C,, is a
rambow u; — w geodesic in G; if w = u; € V(G)\V(C,,), the rainbow
u; — w geodesic in G contained in Cy; if w = v; € V(G)\V(Cy,), the
shorter segment between u; and w on C,, is a rainbow u; — w geodesic
in G. Hence there exists a rainbow geodesic connecting u; and any other
vertex in G. With a similar argument to that of u;, the above result also
holds for any v; € V = {v,vs,...,va}. Thus G contains a rainbow z — y
geodesic for any two vertices z and y of G, that is, r¢(G) < sre(G) < t.
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Figure 2: G = M}, where h = 2t.

Since diam(G)= t, it follows that r¢(G) = sre(G) = t.
Case 2: his odd. Let h = 2t + 1, then 2h = 4t + 2.
Define a colouring C of the graph G hy

i if e =wu;uipy , vivi41 and u;v;  for 1 <i<iE+1,
Cley=<( i—t—1 ife=ujuiqs1, vivit1 and v;u;  fort+2<i <2,
t if e = ugy41v1, vor41u1 and uzep1v2e41-

Let Cu, = (UiyUig1y .-, U2et1, V1,2, - ,vi,ui) and C,, = (vi,vi+1, ceey
Vge41, U1, U, - - -, U, Vi) be (2t + 2)—cycles. Applying the same method of
Case 1, for any two vertices  and y of G, there is a rainbow x — y geodesic
in Cy, or C,,. Hence r¢(G) < sre(G) < t+ 1. Since diam(G)= t+1, it
follows that r¢(G) = sre(G) =t + 1.

Combining Case 1 and Case 2, we have r¢(G) = sre(G) = [%'l This
completes the proof of the theorem. O

3 Proof of Theorem 1.2

The cyclic group Z,, is the group of order n with generator ¢ that satisfies
¢® = 1. Let T be a finite group. If a € T, the subgroup (a} is called the
cyclic subgroup generated by a. We denote the number of elements of (a)
by |a|. The dihedral group Dj, is the group of order 2n with generators
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a and b that satisfy a® = %2 = 1 and b~lab = a~!. Now we show three
useful and easy lemmas that are needed in order to establish the proof of
Theoremn 1.2.

Lemma 3.1. If p is an odd prime, then every group I' of order 2p is
isomorphic to either the cyclic group Za, or the dihedral group Dsp.

Lemma 3.2. LetT be a finite group. ThenT is isomorphic to the dihedral
group if and only if T is generated by two elements of order 2.

If S is a minimal generating set of Dy, then either § = {ba‘,ba’},
where 0 <i# j <p—1;0or § = {a’,aP %, ba’}, where 1 < i < p—1 and
0<j<p-1 If Sisaminimal generating set of Z;, = {(c), then either
S = {c',c?~}, where (i,2p) =1 and 1 <i < 2p—1;0r § = {?, &, e~ 7},
where (j,2p) = 2 and 2 < j < 2p — 2. The following lemma is immediate.

Lemma 3.3. (i) Let G; = Cay(Dgp, $)) and G, = Cay(Dop, S2). For
Si = {a,aP"1,b} # S, = {a’,a?",ba?}, we have Gy = G,.

(ii) Let G, = Cay(ng,Sl) and Gy = Cay(Z,p, S;). For S) = {cP,c?,
P2} £ Sy = {cP, 7¢I}, we have G = Go.

With the above lemmas established, we are now in a position to prove
Theorem 1.2.

Proof of Theorem 1.2. Applying the above results, if S is a minimal
generating set of I, then |S| = 2 or 3.

(i) Since T' = (S), we must have G is a cycle. Therefore, re(G) =
sre(G) =

(ii) If I' = Dy, we only need to show that r¢(G) = sre(G) = 2t
by Lemma 3.3, where G = Cay(D3p,5) and S = {a,a?~!,b}. We shall
consider the following bijection.

0:L,-»G

such that 6(u;) = a*~! and 8(v;) = baP~**!. Let u,v € V(Lp) be any two
adjacent vertices. If v = u; and v = w;;1, then 8(u)~ 1O(v) =a€S;If
u = v; and v = v;41, then 8(u)710(v) = a*~1-Ph~1paP—i+2 = gP-1 ¢ §; If
u = u; and v = v;, then 8(u)"10(v) = al~baP~*t! = pa?? = h € §. Thus
0(u) ~ 6(v), that ]S, @ is an isomorphism between L, and G. We have
re(G) = sre(G) = L by applying Theoremn 1.1.

If ' = Zy,, we also obtain G = L, by the similar method. Hence
r¢(G) = sre(G) = L This completes the proof of the theorem. O

Remark. Let G = Cay(Z,,,S) be a connected graph. If § = {c?,c/}
is a minimal generating set of Zap, where |¢/| = pand 2 < j < 2p — 2,
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then r¢(G) = sre(G) = 25 by Theorem 1.2. If the above open problem is
true, we must have r¢(G) = sre(G) = ’”2'—1 + 1, a contradiction. Hence the
problem is not true for some special cases.

We conclude this section with the following lemma.
Lemma 3.4. Let G, = Cay(Z,,51) and G, = Cay(Z; x Z3,5,).

(i) If Sy is a minimal generating set of Z4, then re(G1) = sre(G1) = 2.
Otherwise, rc(G1) = sre(Gh) = 1.

(it) If Sz is a minimal generating set of Zox Z,, then re(Ga) = sre(Gz) =
2. Otherwise, rc¢(G2) = sre(Ga) = 1.

. 51 = {a,d%} %‘ = {a,0?,0® - 5 = {a,b : 15'7 = {a,b,al}a

(13 ;2 031

a? b J/ ab

Figure 3: G; = Cay(Z4,5:) and Gz = Cay(Z2 x Z3,52).

Proof. Let Z, = (a) and Zox Z5 = {1,a,b,ab}. In [8], It was shown that if S
is a minimal generating set of an abelian group I and every element s € S
has an even order, then rc(Cay(T',S)) = src(Cay(l,5)) = ¥ ,es ]5[ If
S$1(S2) is a minimal generating set of Z4(Z2 x Z3), then 7¢(G1) = src(G1) =
r¢(G2) = sre(Gp) = 2. Otherwise, we have S; = {a,a%,a%} and S,
{a,b,ab}. Hence Gy = Gy = K, are cliques. It follows that rc(G))
sre(Gy) = re(Ga) = sre(Ga) = 1(see Figure 3).

o

Let G = Cay(T",S) be a connected graph of order 2p. If S contain-
s a minimal generatmg set S* of T' such that ]S‘| 3, then r¢(G) <
re(Cay(T', 5*)) = 2:L by Theorem 1.2. Otherwise, S must contain a mini-
mal generating set S*' of I such that |$**| = 2, then r¢(G) < re(Cay (T, 5*))
= p by Theorem 1.2. Applying Lemma 3.1, every group I' of order 2p is
isomorphic to either the cyclic group Zz, or the dihedral group Djp. Since
every group I of order p? (p is a prime) is abelian, the group of order 4 is
isomorphic to either Z; or Z; x Z. Combining Theorem 1.2 and Lemma
3.4, the (strong) rainbow connection numbers of Cayley graphs of order 2p
(p is a prime) are completely investigated.
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