On the Bounds for Sizes of Least Common Multiples of Several pairs of graphs

M.I.Jinnah *, Shayida R**

- *Formerly Professor, Department of Mathematics, Kerala University, Thiruvananthapuram.
- ** Associate Professor, Department of Mathematics, Farook College, Kozhikode.

Abstract

G. Chartrand. et. al [3] define a graph G without isolated vertices to be a least common multiple of two graphs G_1 and G_2 , if G is a graph of minimum size such that G is G_1 decomposable and G_2 decomposable. A bi-star $B_{m,n}$ is a caterpillar with spine length one. In this paper, we discuss a good lower bound for $lcm(B_{m,n}, G)$ where G is a simple graph. We also investigate $lcm(B_{m,n}, rK_2)$ and a good lower bound and an appropriate upper bound for $lcm(B_{m,n}, P_{r+1})$ for all $m \geq 1$, $n \geq 1$ and $r \geq 1$.

1 Introduction

In this paper we only consider simple graphs. A graph G is decomposable into the sub graphs $G_1, G_2, G_3, \dots, G_n$ of G if no G_i for $(i = 1, 2, 3, \dots, n)$ has isolated vertices and the edge set E(G) of G can be partitioned into the sub sets $E(G_1), E(G_2), \dots$,

2 Notations

The order of a graph G is p(G) and the size of the graph is q(G). Vertex set and edge set of the graph G is denoted by V(G) and E(G) respectively. A star on n+1 vertices is denoted by $K_{1.n}$. A path, a cycle, and a complete graph on n vertices are denoted by P_n , C_n and K_n respectively. The minimum and maximum degree of the vertices of a graph G is denoted by $\delta(G)$ and $\triangle(G)$ respectively. In any graph G, if $\delta(G) = \triangle(G) = r(\text{say})$, that is deg(v) = r for every vertex v of G, then the graph G is r - regular. A spanning cycle of a graph is called a Hamilton cycle. A graph is Hamiltonian if it contains a Hamilton cycle. A Hamiltonian graph G is regular Hamilton if all the vertices of G have equal degree. If a graph G consists of $r(\geq 2)$ disjoint copies of a graph K_2 , then we write $G = rK_2$. If the non pendant vertices of a Bi-star have degrees m+1 and n+1, we denote this bi-star by $B_{m,n}$. The set of all least common multiples of two graphs G_1 and G_2 is denoted by $LCM(G_1,G_2)$ and the size of any such graph is denoted by $lcm(G_1, G_2)$. $V_r = \{v \in V(G) : v \in V(G)$ deg(v) = r and $W_r = V_r \cap W$ where $W \subset V(G)$.

3 Preliminary Results

Theorem 3.1. [3, pp.96]. For any two graphs G_1 and G_2 , $lcm(G_1, G_2) \ge lcm(q(G_1), q(G_2))$.

Theorem 3.2. [6, pp.186]. Let G_1 and G_2 be two bipartite graphs then $lcm(G_1, G_2) \leq q(G_1).q(G_2)$.

Corollary 3.3. [6, pp.186]. Let G_1 and G_2 be two bipartite graphs. If $q(G_1)$ and $q(G_2)$ are relatively prime, then $lcm(G_1, G_2) = q(G_1).q(G_2)$.

Theorem 3.4. [7] A graph G of size s(m+n+1) with $m \ge 1$, $n \ge 1$ and $s \ge 3$ is $B_{m,n}$ decomposable, if it satisfies the following conditions.

(i) A set of vertices $W \subset V(G)$ with |W| = s and $\langle W \rangle = C_s$. (ii) The number of edges incident with each vertex $v \in W$ is m + n + 2.

Corollary 3.5. [7] A graph G of size s(m+n+1) with $m \geq 1$, $n \geq 1$ and $s \geq 3$ is $B_{m,n}$ decomposable, if it satisfies the following conditions.

(i) $W \subset V(G)$ with |W| = s and $\langle W \rangle$ is 2r- regular Hamilton decomposable, where $m + n + 1 \ge r$.

(ii) The number of edges incident with each vertex $v \in W$ is m+n+1+r.

Theorem 3.6. [7] A graph G of size s(m+n+1) with $m \ge 1$, $n \ge 1$ and $s \ge 3$ is $B_{m,n}$ decomposable, if it satisfies the following conditions.

- (i) $W \subset V(G)$ with |W| = 2s and $\langle W \rangle = C_{2s} = v_1, u_1, v_2, u_2, v_3, \dots, v_s, u_s, v_1$.
- (ii) For each i, $deg(v_i) = m + 2$, and $deg(u_i) = n + 1$

(iii) For each i, the vertices v_i and u_i has no common neighbor in G.

Lemma 3.7. [4, pp.181]. A graph of size at least two which has an edge adjacent to all other edges has no disconnected divisor.

Theorem 3.8. [1, pp.222]. For every graph G and every t > 1, $tK_2|G$ if and only if t|e(G) and $\chi'(G) \leq \frac{e(G)}{t}$.

4 Bounds for Least Common Multiples of Bi-star Versus a Simple Graph

Any two graphs has a least common multiple follows directly from the following result of Wilson [2], "For every graph F without isolated vertices and having size q, there exists a positive integer N such that if (i) $n \geq N$, (ii) $q | \frac{n(n-1)}{2}$ and (iii) d | (n-1), where $d = \gcd(deg(v): v \in V(F))$, then K_n is F- decomposable". In general, upper bound obtained by the above result would be extremely large and no good general upper bound for $lcm(G_1, G_2)$ is known. Here we investigate a good lower bound for $lcm(B_{m,n}, G)$, where G is any simple graph.

Theorem 4.1. For all integers $m \ge 1$, $n \ge 1$ and (m+n+1) $= k_1 d$, $lcm(B_{m,n}, G) \ge \lceil \frac{m+1}{\Delta(G)k_1} \rceil \frac{q(G)}{d} (m+n+1)$ where d = (q(G), m+n+1).

Proof. By Theorem 3.1, $lcm(B_{m,n},G) = s\frac{q(G)(m+n+1)}{d}$ where s is a positive integer. Let H be a graph of minimum size $s\frac{q(G)(m+n+1)}{d}$ such that H is $B_{m,n}$ and G decomposable then H can be decomposed into $s\frac{(m+n+1)}{d}$ copies of G. But each of these G contributes a degree at most $\Delta(G)$ to each of the vertices of H. Thus we have $s\frac{(m+n+1)}{d}\Delta(G) \geq \Delta(H)$.

Since H is $B_{m,n}$ decomposable, $\triangle(H) \ge m+1$. So we have $s \frac{(m+n+1)}{d} \triangle(G) \ge m+1 \Rightarrow s \ge \frac{d(m+1)}{\triangle(G)(m+n+1)} = \frac{d(m+1)}{\triangle(G)k_1d} = \frac{(m+1)}{\triangle(G)k_1} \Rightarrow s \ge \lceil \frac{m+1}{\triangle(G)k_1} \rceil$.

Hence
$$lcm(B_{m,n},G) \ge \lceil \frac{m+1}{\Delta(G)k_1} \rceil \frac{q(G)}{d} (m+n+1)$$
.

Theorem 4.2. For any graph G with $\triangle(G) = 2$ and (m+n+1) $= k_1 d$, then $lcm(B_{m,n}, G) \ge \lceil \frac{d+1}{4} \rceil \frac{q(G)}{d} (m+n+1)$ where d = (q(G), m+n+1).

Proof. Without loss of generality we may choose $m \geq n$, since $B_{m,n}$ is isomorphic to $B_{n,m}$. Also $m \geq n \Rightarrow 2m+1 \geq m+n+1 \Rightarrow m \geq \frac{k_1d-1}{2} \Rightarrow m+1 \geq \frac{k_1d+1}{2} = \frac{k_1d+k_1}{2} + \frac{1-k_1}{2} \Rightarrow \frac{m+1}{2k_1} \geq \frac{d+1}{4} + \frac{1-k_1}{4k_1} \Rightarrow \left\lceil \frac{m+1}{2k_1} \right\rceil \geq \left\lceil \frac{d+1}{4} \right\rceil$, since $\left\lceil \frac{1-k_1}{4k_1} \right\rceil < \frac{1}{4}$. Hence by Theorem 4.1, $lcm(B_{m,n},G) \geq \left\lceil \frac{m+1}{\Delta(G)k_1} \right\rceil \frac{q(G)}{d}(m+n+1) = \left\lceil \frac{m+1}{2k_1} \right\rceil \frac{q(G)}{d}(m+n+1) \geq \left\lceil \frac{d+1}{4} \right\rceil \frac{q(G)(m+n+1)}{d}$.

Corollary 4.3. Let $(\frac{2m}{k_1} - d) + \frac{2}{k_1} \le x \le (\frac{2m}{k_1} - d) + 4$ be an integer such that $d + x \equiv 0 \pmod{4}$, where d = (q(G), m + n + 1) and $(m + n + 1) = k_1 d$, then for any graph G with $\triangle(G) = 2$, $lcm(B_{m,n}, G) \ge \frac{d+x}{4} \frac{q(G)}{d} (m + n + 1)$.

Proof. We note that, the closed interval $\left[\frac{2m}{k_1} + \frac{2}{k_1}, \frac{2m}{k_1} + 4\right]$ contains a unique integer $\equiv 0 \pmod{4}$. The integer we denote by d + x. Since $\left(\frac{2m}{k_1} - d\right) + \frac{2}{k_1} \le x \le \left(\frac{2m}{k_1} - d\right) + 4 \Rightarrow \frac{2m}{k_1} + \frac{2}{k_1} \le d + x \le \frac{2m}{k_1} + 4$ ⇒ $\frac{2(m+1)}{k_1} \le d + x \le \frac{2m+2}{k_1} + 4 - \frac{2}{k_1} \Rightarrow \frac{(m+1)}{2k_1} \le \frac{d+x}{4} \le \frac{m+1}{2k_1} + 1 - \frac{1}{2k_1}$ ⇒ $\left\lceil \frac{m+1}{2k_1} \right\rceil = \frac{d+x}{4}$, since x is an integer such that $d+x \equiv 0 \pmod{4}$. Hence by Theorem 4.1, $lcm(B_{m,n}, G) \ge \frac{d+x}{4} \frac{q(G)}{d} (m+n+1)$. □

Theorem 4.4. If G is bipartite, then $lcm(B_{m,n}, G) \leq q(G)(m+n+1)$.

Proof. The theorem follows from Theorem 3.2, since $B_{m,n}$ is bipartite.

Theorem 4.5. If G is bipartite and gcd(q(G), m + n + 1) = 1, then $lcm(B_{m,n}, G) = q(G)(m + n + 1)$.

Proof. Result follows directly by Corollary 3.3. □

5 Bounds for Least Common Multiple of Paths Versus Bi-stars

In this section, we discuss a good lower bound and an appropriate upper bound for $lcm(B_{m,n}, P_{r+1})$ for all integers

 $m \ge 1$, $n \ge 1$ and $r \ge 1$. By Corollary 4.3 we have the following results.

Theorem 5.1. Let $(\frac{2m}{k_1} - d) + \frac{2}{k_1} \le x \le (\frac{2m}{k_1} - d) + 4$ be an integer such that $d + x \equiv 0 \pmod{4}$, where $d = \gcd(m + n + 1, r)$ and $(m + n + 1) = k_1 d$, then $lcm(B_{m,n}, P_{r+1}) \ge \frac{d+x}{4} \frac{r(m+n+1)}{d}$.

Proposition 5.2. Let r and m + n + 1 be even integers with $r \geq 2$, $m \geq 1$ and $n \geq 1$. Then there exists a graph of size $\frac{r(m+n+1)}{2}$ which is both $B_{m,n}$ and P_{r+1} decomposable.

Proof. Every simple connected graph of even size is P_3 decomposable. So $B_{m,n}$ is P_3 decomposable.

Thus the statement is true if r=2.

If $r \geq 4$, then our aim is to construct a graph G of size $\frac{r(m+n+1)}{2}$ such that G is $B_{m,n}$ and P_{r+1} decomposable.

Let $W=\{v_1,u_1,v_2,u_2,\cdots v_{\frac{r}{2}},u_{\frac{r}{2}}\}$ be a set of r vertices. Given m+n+1 is even, so one of them say m is even and n is odd. We add new vertices $a_{i,l}$ and $b_{j,l}$ for $i=1,2,3,\cdots,\frac{m}{2}-1;$ $j=1,2,3,\cdots,\frac{n-1}{2};$ $l=1,2,3,\cdots,\frac{r}{2},\frac{r}{2}+1$. Then for each i, construct a path P^i of length r as $a_{i,1},v_1,a_{i,2},v_2,\cdots a_{i,\frac{r}{2}},v_{\frac{r}{2}},a_{i,\frac{r}{2}+1}$ and for each j, form another path Q^j of length r as $b_{j,1},u_1,b_{j,2},u_2$,

form a path P^1 of length r as $a_1, v_1, u_1, v_2, u_2, \cdots, v_{\frac{r}{2}}, u_{\frac{r}{2}}$ and form another path P^2 of length r as $a_1, v_1, u_1, v_2, u_2, \cdots, v_{\frac{r}{2}}, u_{\frac{r}{2}}$ and form another path P^2 of length r as $a_1, v_2, a_2, v_3, a_3, \cdots, a_{\frac{r}{2}}, v_1, u_{\frac{r}{2}}$.

Let $G = P^1 \cup P^2 \cup \bigcup_{i=1}^{\frac{m}{2}-1} P^i \cup \bigcup_{j=1}^{\frac{n-1}{2}} Q^j$. Size of G is $(2 + \frac{m}{2} - 1 + \frac{n-1}{2})r = \frac{r(m+n+1)}{2}$.

By construction itself G is P_{r+1} decomposable. According to our construction, $\langle V(G) \setminus W \rangle$ is an empty graph. Degree of $v_k = 4 + (\frac{m}{2} - 1)2 = m + 2$ and degree of $u_k = 2 + (\frac{n-1}{2})2 = n + 1$ for $k = 1, 2, 3, \dots \frac{r}{2}$. In G it can be seen that, each vertex $v_k \in W$ is adjacent to exactly m vertices $\not\in W$ and each vertex $u_k \in W$ is adjacent to exactly n - 1 vertices $\not\in W$ and $\langle W \rangle$ is a cycle C_r : $v_1, u_1, v_2, u_2, \dots v_{\frac{r}{2}}, u_{\frac{r}{2}}, v_1$.

Also for each $k, 1 \le k \le \frac{r}{2}$, the adjacent vertices v_k , u_k have no common neighbor in G. So G satisfies all the conditions of Theorem 3.6. Hence the graph G is $B_{m,n}$ decomposable. \square

Illustration 1.

Figure 1:

The graph in Figure 1 is an example of a graph with size 70 which is P_{11} decomposable and $B_{8,5}$ decomposable.

Proposition 5.3. Let r and t be integers with r > 2 and $t \ge \lceil \frac{r}{2} \rceil$, then there exists a P_{r+1} decomposable graph G of size tr such that $|W_r| = t$ and the subgraph induced by $V(G) \setminus W_r$ is an empty graph.

Proof. Let $W = v_1, v_2, v_3, \dots, v_t$ be a set of t vertices. We consider two cases r is even and odd separately. We construct the required graph G in such a way that every edge in G, has exactly one end point in W and $\langle V(G) \setminus W \rangle$ is an empty graph. Case 1: When r > 2 is even.

By adding new vertices $a_{i,j}$ for $i=1,2,3,\cdots,t$ and $j=1,2,3,\cdots,\frac{r}{2}+1$ then for each i, construct a path P^i of length r as $a_{i,1}, v_i, a_{i,2}, v_{i+1}, a_{i,3}, v_{i+2}, a_{i,4}, \cdots, a_{i,\frac{r}{2}}, v_{i+\frac{r}{2}-1}, a_{i,\frac{r}{2}+1}$ and the addition in subscript is taken modulo t.

Let $G = \bigcup_{i=1}^t P^i$. For constructing a path we had taken $\frac{r}{2}$ vertices from W cyclically in a given order. So for constructing t paths we include a vertex exactly $\frac{r}{2}$ times from W. Thus the number of paths passing through each vertex v_i is $\frac{r}{2}$ and in G, no vertex v_i is a pendant vertex of a path. Hence for each i,

 $1 \le i \le t$, degree of each vertex $v_i \in W$ in G is r.

Case 2: When r is is odd.

By adding new vertices $b_{i,k}$ for $i = 1, 2, 3, \dots, t$ and $k = 1, 2, 3, \dots, \frac{r+1}{2}$, then for each i, construct a path Q^i of length r as $b_{i,1}$, v_i , $b_{i,2}$, v_{i+1} , $b_{i,3}$, v_{i+2} , $b_{i,4}$, \cdots , $b_{i,\frac{r+1}{2}}$, $v_{i+\frac{r-1}{2}}$.

Let $G = \bigcup_{i=1}^t Q^i$. For constructing a path we had taken $\frac{r+1}{2}$ vertices from W cyclically in a given order. So for constructing t paths we include a vertex exactly $\frac{r+1}{2}$ times from W.

In G it can be seen that, each vertex v_i is a pendant vertex of exactly one path. Thus the number of paths passing through each vertex v_i is $\frac{r-1}{2}$ and exactly one path ends on each vertex v_i . So for each i, $1 \le i \le t$, degree of each vertex $v_i \in W$ in $G = \frac{r-1}{2} \ 2 + 1 = r$. In both case, G is P_{r+1} decomposable. Also size of G is tr and $|W| = |W_r| = t$.

Illustration 2.

Figure 2:

The graph G_2 in Figure 2 is an example of P_9 decomposable graph of size 72. The graph G_3 in Figure 2 is an example of G_3 is a P_8 decomposable graph of size 63.

Proposition 5.4. For every positive integer r, there exists a graph of size r(m + n + 1) which is both $B_{m,n}$ and P_{r+1} decomposable.

Proof. $B_{m,n}$ and P_{r+1} are bi-parttite graphs. So the result follows directly by Theorem 3.1 and Theorem 3.2.

Proposition 5.5. Let d = gcd(r, m + n + 1) be an odd integer, then for all $r \ge 1$ there exists a graph of size $\frac{d+1}{2} \frac{r(m+n+1)}{d}$ which is both $B_{m,n}$ and P_{r+1} decomposable.

Proof. If d=1, then $\frac{d+1}{2}\frac{r(m+n+1)}{d}=r(m+n+1)$. So the result is true by Proposition 5.4.

If d>1, then construct a graph G of size $\frac{d+1}{2}\frac{r(m+n+1)}{d}$ in the following way. Let $W=\{v_1,v_2,\cdots,v_{\frac{d+1}{2}\frac{r}{d}}\}$ be a set of $\frac{d+1}{2}\frac{r}{d}$ vertices.

By division algorithm, let m+n+1 = ar+b, a and b are integers with $a \ge 0$, $0 \le b < r$. Clearly $b \equiv 0 \pmod{d}$.

By adding new vertices $(a_{i,j})_s$, for $i=1,2,3,\cdots \frac{d+1}{2}\frac{r}{d}$, $j=1,2,3,\cdots,\lceil \frac{r}{2}\rceil$ and s=1,2,3,...,a, then by fixing a value for s, construct $\frac{d+1}{2}\frac{r}{d}$ paths P_{r+1} of length r as in Proposition 5.3. Let this graph be H_s and degree of each vertex v_i in $H_s=r$.

Applying these process a times by taking s = 1, 2, 3, ..., a, we get $a^{\frac{d+1}{2}\frac{r}{d}}$ paths P_{r+1} of length r.

Let this graph be H, then $H = \bigcup_{s=1}^{a} H_s$. Clearly H is P_{r+1} decomposable and size of H is $ar \frac{d+1}{2} \frac{r}{d}$.

In H, degree of each vertex in $v_i \in \overline{W}$ is ar and the subgraph induced by $V(H) \setminus W$ is an empty graph.

We can form $\lceil \frac{d+1}{4} \frac{r}{d} \rceil - 1$ edge disjoint spanning cycles of the complete graph on the $\frac{d+1}{2} \frac{r}{d}$ vertices of W (which are also referred to as spanning cycles of W for simplicity).

Select one spanning cycles of W and then for each $k, 1 \leq k \leq \frac{d+1}{2}$, construct a path P^k as $c_{k,1}, v_{(k-1)\frac{r}{d}+1}, v_{(k-1)\frac{r}{d}+2}, v_{(k-1)\frac{r}{d}+3}, \cdots, v_{k\frac{r}{d}+1}, c_{k,2}, v_{k\frac{r}{d}+2}, c_{k,3}, \cdots, v_{(k-1)\frac{r}{d}+\frac{d+1}{2}\frac{r}{d}}, c_{k,\frac{d-1}{2}\frac{r}{d}+1}$, by adding new vertices $c_{k,t}$ for $1 \leq t \leq \frac{d-1}{2}\frac{r}{d}+1$, where the addition in subscript is taken modulo $\frac{d+1}{2}\frac{r}{d}$.

Length of each path $P^k = \frac{r}{d} + 2\frac{d-1}{2}\frac{r}{d} = r$. Let this graph be F_1 , then $F_1 = \bigcup_{k=1}^{\frac{d+1}{2}} P^k$. The number of vertices v_i occurs in a path P^k is $\frac{r}{d} + \frac{d-1}{2}\frac{r}{d} = \frac{d+1}{2}\frac{r}{d}$ and v_i is not a pendant vertex of P^k for any k. So the number of paths passing through each vertex v_i is $\frac{d+1}{2}$. Thus the degree of each vertex $v_i \in W$ in F_1 is d+1.

A similar construction with respect to another edge disjoint spanning cycles of W leads to a similar graph.

It is possible to select $\frac{b}{d}$ spanning cycles of W, since $\frac{d+1}{2}\frac{r}{d} > 2\frac{b}{d} \geq 2\frac{b}{d} + 1$. So by selecting $\frac{b}{d}$ spanning cycles of W, we construct a P_{r+1} decomposable graph say $F = \bigcup_{x=1}^{\frac{b}{d}} F_x$ of size $r\frac{d+1}{2}\frac{b}{d}$, where F_x is the graph similar to F_1 .

In F, degree of each vertex $v_i \in W$ is $\frac{b}{d}(d+1)$. Let $G = H \cup F$. Size of G is $(a\frac{d+1}{2}\frac{r}{d} + \frac{d+1}{2}\frac{b}{d})r = \frac{d+1}{2}\frac{r}{d}[ar+b] = \frac{d+1}{2}\frac{r(m+n+1)}{d}$.

By construction itself G is P_{r+1} decomposable.

In H, it can be seen that, each vertex $v_i \in W$ is adjacent to exactly ar vertices $\not\in W$. In F it can be seen that, each vertex $v_i \in W$ is adjacent to exactly $(d-1)\frac{b}{d}$ vertices $\not\in W$ and $C_{\frac{d+1}{2}\frac{r}{d}}$ is a sub graph of F. So in G, it can be seen that, each vertex $v_i \in W$ is adjacent to exactly $ar + (d-1)\frac{b}{d}$ vertices $\not\in W$ and $deg(v_i) = ar + (d+1)\frac{b}{d}$.

Clearly, $\langle W \rangle$ is a $\frac{2b}{d}$ regular Hamilton decomposable graph. Hence G is $B_{m,n}$ decomposable by Corollary 3.5.

Illustration 3.

In figure 3, r = 15, m + n + 1 = 20, d = 5 and $\frac{d+1}{2}\frac{r}{d} = 9$. The graph G_4 is an example of P_{16} and $B_{m,n}$ decomposable. That is G_4 is $B_{m,n} = \{B_{10,9}, B_{11,8}, B_{12,7}, B_{13,6}, B_{14,5}, B_{15,4}, B_{16,3}, B_{17,2}, B_{18,1}\}$ decomposable.

Figure 3:

Theorem 5.6. Let
$$d = (m + n + 1, r)$$
, then for all $r \ge 1$, $lcm(B_{m,n}, P_{r+1}) \le \begin{cases} \frac{r(m+n+1)}{2}, & \text{if } d \text{ is even} \\ \frac{d+1}{2} \frac{r}{d} (m+n+1), & \text{if } d \text{ is odd} \end{cases}$.

Proof. If d is even, then r should be even. So by Proposition 5.2, there exists a graph of size $\frac{r(m+n+1)}{2}$ which is both $B_{m,n}$ and P_{r+1} decomposable. If d is odd, then by Proposition 5.5, there exists a graph of size $\frac{d+1}{2}\frac{r(m+n+1)}{d}$ which is both $B_{m,n}$ and P_{r+1} decomposable. These complete the proof of the theorem.

Corollary 5.7. Let $(\frac{2m}{k_1} - d) + \frac{2}{k_1} \le x \le (\frac{2m}{k_1} - d) + 4$ be an integer such that $d + x \equiv 0 \pmod{4}$, where $d = \gcd(m + n + 1, r)$ and $(m + n + 1) = k_1 d$, then for all positive integers m, n and r, $\frac{d+x}{4} \frac{r(m+n+1)}{d} \le lcm(B_{m,n}, P_{r+1}) \le \begin{cases} \frac{r}{2}(m+n+1), & \text{if } d \text{ is even;} \\ \frac{d+1}{2} \frac{r}{d}(m+n+1), & \text{if } d \text{ is odd.} \end{cases}$

Proof. It follows directly by Corollary 5.1 and Theorem 5.6. □

6 Least Common Multiple of $B_{m,n}$ and rK_2 .

In this section the size of a least common multiple of $B_{m,n}$ and rK_2 is determined.

Lemma 6.1. $B_{m,n}$ is rK_2 decomposable if and only if r=1.

Proof. Clearly the condition is necessary. The sufficient part follows directly from Lemma 3.7, since the central edge of $B_{m,n}$ is adjacent to all the other edges of $B_{m,n}$

Theorem 6.2. $lcm(B_{m,n}, rK_2) = r(m+n+1)$, if $r \leq 2$.

Proof. Clearly $lcm(B_{m,n}, K_2) = (m+n+1)$. If r=2, then by Lemma 6.1, $lcm(B_{m,n}, 2K_2) > (m+n+1)$. Also by Theorem 4.4, $lcm(B_{m,n}, 2K_2) \le 2(m+n+1)$. Hence $lcm(B_{m,n}, 2K_2) = 2(m+n+1)$.

Figure 4:

Every least common multiple of two connected graphs is connected but least common multiple of a connected and a disconnected graph need not be connected. For example consider the graphs $B_{2,1}$ and $2K_2$.

By Theorem 3.2, $lcm(B_{2,1}, 2K_2)=8$. Clearly G_5 , G_6 , G_7 and G_8 are both $B_{2,1}$ and $2K_2$ decomposable graphs of size 8. So G_5 , G_6 , G_7 and G_8 are belongs to $LCM(B_{2,1}, 2K_2)$ and all are

connected except G_5 .

Now we turn our attention to $lcm(B_{m,n}, rK_2)$ for r > 2. We use the characterization of rK_2 decomposition of a graph G for finding a least common multiple of $B_{m,n}$ and rK_2 . For this purpose it is necessary to find the edge chromatic number of $B_{m,n}$. The edge chromatic number $\chi'(B_{m,n}) = \Delta(B_{m,n}) = m+1$, since $m \geq n$. So $\chi'(rB_{m,n}) = m+1$.

Theorem 6.3. For any integer $t \geq 1$, $tB_{m,n}$ is rK_2 decomposable, if $t \equiv 0 \pmod{r}$.

Proof.
$$\chi'(tB_{m,n}) = m+1 < m+n+1 \le \frac{t(m+n+1)}{r} = \frac{e(tB_{m,n})}{r}$$
. So the theorem follows directly from Theorem 3.8.

Remark 6.4. The converse of the above theorem need not be true.

Theorem 6.5. Let d = gcd(m + n + 1, r). Then $tB_{m,n}$ is rK_2 decomposable if and only if t can be expressed in the form $t = \frac{kr}{d}$ where k is an integer with $k \geq \frac{d(m+1)}{m+n+1}$.

Proof. Suppose that $t = \frac{kr}{d}$ where k is an integer with $k \ge \frac{d(m+1)}{m+n+1}$. Also $e(tB_{m,n}) = t(m+n+1) = \frac{kr}{d}(m+n+1) \Rightarrow e(tB_{m,n}) \equiv 0 \pmod{r}$.

$$\chi'(tB_{m,n}) = m+1 \le \frac{k(m+n+1)}{d} = \frac{kr(m+n+1)}{dr} = \frac{t(m+n+1)}{r} = \frac{e(tB_{m,n})}{r}.$$

Hence $tB_{m,n}$ is rK_2 decomposable by Theorem 3.8. Conversely, if $tB_{m,n}$ is rK_2 decomposable, then we have, r|t(m+n+1).

 $r|t(m+n+1)\Rightarrow \frac{r}{d}|t^{\frac{m+n+1}{d}}\Rightarrow t\equiv 0 \pmod{\frac{r}{d}}, \text{ since } \gcd(\frac{m+n+1}{d},\frac{r}{d})=1.$ That is $t=k^{\frac{r}{d}}$, for some positive integer k.

$$rK_2|tB_{m,n} \Rightarrow \chi'(tB_{m,n}) \leq \frac{e(tB_{m,n})}{r} \Rightarrow (m+1) \leq t\frac{m+n+1}{r} \Rightarrow m+1 \leq k\frac{r}{d}\frac{m+n+1}{r} \Rightarrow k \geq \frac{d(m+1)}{m+n+1}.$$

Remark 6.6. $2(m+1) = m+m+2 \ge m+n+1+1 \Rightarrow \frac{m+1}{m+n+1} \ge \frac{1}{2} + \frac{1}{2(m+n+1)} \Rightarrow \frac{d(m+1)}{m+n+1} \ge \frac{d}{2} + \frac{d}{2(m+n+1)}$.

So if k satisfies the condition $k \geq \frac{d(m+1)}{m+n+1}$, then $k > \frac{d}{2} \Rightarrow k \geq \lceil \frac{d+1}{2} \rceil$.

Remark 6.7. If $k < \frac{d(m+1)}{m+n+1}$, then $\frac{k}{d} < \frac{(m+1)}{m+n+1} < 1 \Rightarrow k < d$. There fore if $t \geq r$ and t satisfies the condition $t = \frac{kr}{d}$, then k satisfies the condition $k \geq \frac{d(m+1)}{m+n+1}$.

Theorem 6.8. Let d = gcd(m + n + 1, r), then $lcm(B_{m,n}, rK_2) \ge \lceil \frac{d(m+1)}{m+n+1} \rceil \frac{r}{d}(m+n+1)$.

Proof. By Theorem 4.1, we have $lcm(B_{m,n}, rK_2) \ge \lceil \frac{m+1}{k_1 \triangle r K_2} \rceil \frac{r(m+n+1)}{d}$, where $m+n+1=k_1d$. By putting the values of $k_1 = \frac{m+n+1}{d}$ and $\triangle r K_2 = 1$, we get $lcm(B_{m,n}, rK_2) \ge \lceil \frac{d(m+1)}{(m+n+1)} \rceil \frac{r}{d} (m+n+1)$.

Theorem 6.9. Let d = gcd(m+n+1,r), then $lcm(B_{m,n}, rK_2) = k\frac{r}{d}(m+n+1)$, where $k = \lceil \frac{d(m+1)}{m+n+1} \rceil$

Proof. By Theorem 6.5, $tB_{m,n}$ where $t = \frac{kr}{d}$ with $k = \lceil \frac{d(m+1)}{m+n+1} \rceil$ is rK_2 decomposable. So $lcm(B_{m,n}, rK_2) \leq k\frac{r}{d}(m+n+1)$. By Theorem 6.8, $lcm(B_{m,n}, rK_2) \geq k\frac{r}{d}(m+n+1)$. Hence $lcm(B_{m,n}, rK_2) = k\frac{r}{d}(m+n+1)$, where $k = \lceil \frac{d(m+1)}{m+n+1} \rceil$.

Remark 6.10. Let d = gcd(m+n+1,r), then the disconnected graph $\lceil \frac{d(m+1)}{m+n+1} \rceil \frac{r}{d}(m+n+1)B_{m,n} \in LCM(B_{m,n},rK_2)$.

7 Least Common Multiple of any Graph G and rK_2 .

In this section the size of a least common multiple of of any graph G and rK_2 is determined.

Theorem 7.1. For any graph G without isolated vertices and an integer $r \geq 1$, with $d = \gcd(q(G), r)$, then $lcm(G, rK_2) \geq \lceil \frac{d\Delta(G)}{q(G)} \rceil \frac{r}{d} q(G)$.

Proof. Same as Theorem 4.1.

Theorem 7.2. For any graph G without isolated vertices and an integer $r \geq 1$, with $d = \gcd(q(G), r)$, then tG is rK_2 decomposable if and only if t can be expressed in the form $t = \frac{kr}{d}$ where k is an integer with $k \geq \frac{d\chi'(G)}{q(G)}$.

Proof. Suppose that $t = \frac{kr}{d}$ where k is an integer with $k \ge \frac{d\chi'(G)}{q(G)}$. $e(tG) = tq(G) = \frac{kr}{d}q(G) \Rightarrow e(tG) \equiv 0 \pmod{r}$. $\chi'(tG) = \chi'(G) \le \frac{kq(G)}{d} = \frac{krq(G)}{dr} = \frac{tq(G)}{r} = \frac{e(tG)}{r}$. Hence tG is rK_2 decomposable by Theorem 3.8. Conversely, if tG is rK_2 decomposable, then $r|tq(G) \Rightarrow \frac{r}{d}|\frac{tq(G)}{d} \Rightarrow$

 $t \equiv 0 \pmod{\frac{r}{d}}$, since $gcd(\frac{q(G)}{d}, \frac{r}{d}) = 1$. That is $t = k\frac{r}{d}$, for some positive integer k. By Theorem 3.8, $rK_2|tG \Rightarrow \chi'(tG) \leq \frac{e(tG)}{r} \Rightarrow \chi'(G) \leq t\frac{q(G)}{r} \Rightarrow \chi'(G) \leq k\frac{r}{d}\frac{q(G)}{r} \Rightarrow k \geq \frac{d\chi'(G)}{q(G)}$.

Theorem 7.3. For any graph G without isolated vertices and an integer $r \geq 1$, with $d = \gcd(q(G), r)$, then $lcm(G, rK_2) = k\frac{r}{d}q(G)$, where $k = \lceil \frac{d\chi'(G)}{q(G)} \rceil$

Proof. By Theorem 7.2, tG is rK_2 decomposable, where $t = \frac{kr}{d}$ with $k = \lceil \frac{d\chi'(G)}{q(G)} \rceil$. So $lcm(G, rK_2) \leq \lceil \frac{d\chi'(G)}{q(G)} \rceil \frac{r}{d}q(G)$. Now consider any $H \in LCM$ (G, rK_2) . Since we are considering only rK_2 , we may assume the copies of G in H are vertex disjoint. Then it shows that $q(H) \geq \lceil \frac{d\chi'(G)}{q(G)} \rceil \frac{r}{d}q(G)$, by Theorem 7.2. Hence $lcm(G, rK_2) = k \frac{r}{d}q(G)$, where $k = \lceil \frac{d\chi'(G)}{q(G)} \rceil$.

Remark 7.4. If G is biparttite, then $lcm(G, rK_2) = \lceil \frac{d\triangle(G)}{q(G)} \rceil \frac{r}{d}q(G)$.

References

[1] N.Alon, A note on the decomposition of graphs into matchings, Acta. Math. Hung. 42(3-4)(1983),221-223.

- [2] G. Chartrand, On Graphs with a Unique least common multiple, ARS Combinatoria Vol. 46(1997), pp. 177-190.
- [3] G. Chartrand, L.Holley, G. Kubicki and M. Schultz, Greatest common divisors and least common multiples of graphs, Periodica Mathematica Hungarica Vol. 27 (2),(1993), pp. 95-104.
- [4] G. Chartrand, F. Saba and C. M. Mynhardt, Prime Graphs, Prime Connected Graphs and Prime Divisors of Graphs, Utilitas Mathematica Vol. 46(1994), pp.179-191.
- [5] F. Harary, R. W. Robinson and N. C. Wormald, Isomorphic factorizationI: complete graphs, Trans. Amer. Math. Soc., 242(1978), pp. 243-260.
- [6] O. Favaron, C. M. Mynhardt, On the sizes of least common multiples of several pairs of graphs, ARS Combinatoria Vol.XLIII(1996), pp 181-190.
- [7] R. Shayida, On $B_{m,n}$ decomposition of graphs, ICGSA at Kerala University, on 11-08-2010.