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Abstract

G. Chartrand. et. al [3] define a graph G
without isolated vertices to be a least common multiple
of two graphs G and G, if G is a graph of minimum size
such that G is G; decomposable and G»
decomposable. A bi-star By, » is a caterpillar with spine
length one. In this paper, we discuss a good lower bound
for lem(Bm », G) where G is a simple graph. We also
investigate lcm (B, rK2) and a good lower bound and
an appropriate upper bound for lem(Bpm n, Pr41) for all
m>1,n>1landr>1.

1 Introduction
In this paper we only consider simple graphs. A graph G is
decomposable into the sub graphs Gi, G, Gs,- -+ ,G, of G if no

G; for (1= 1,2,3,---,n) has isolated vertices and the edge set
E(G) of G can be partitioned into the sub sets E(G,), E(G2), - -,
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E(G,). If G; & H for each i, then G is H-decomposable.
This concept was studied and this notation was introduced by
Harary, Robinson and Wormald [5]. In [2] G. Chartrand proved
that two graphs can have an arbitrarily large number of least
common multiples, and all graphs G for which G and P; (and
G, 2K5,) have a unique least common multiple are characterized.
In this paper, we discuss the Bounds for Sizes of Least Common
Multiples of Several pairs of graphs.

2 Notations

The order of a graph G is p(G) and the size of the graph
is g(G). Vertex set and edge set of the graph G is denoted by
V(G) and E(G) respectively. A star on n+1 vertices is denoted
by Ki,. A path, a cycle, and a complete graph on n vertices
are denoted by P, , C, and K, respectively. The minimum and
maximum degree of the vertices of a graph G is denoted by §(G)
and A(G) respectively. In any graph G, if §(G)=A(G) =r(say),
that is deg(v) = r for every vertex v of G, then the graph G is
T - regular. A spanning cycle of a graph is called a Hamilton
cycle. A graph is Hamiltonian if it contains a Hamilton cycle.
A Hamiltonian graph G is regular Hamilton if all the vertices
of G have equal degree. If a graph G consists of 7(> 2) disjoint
copies of a graph K, then we write G = rK,. If the non pendant
vertices of a Bi-star have degrees m + 1 and n + 1, we denote
this bi-star by B,,,. The set of all least common multiples of
two graphs G; and G, is denoted by LCM(G;,G3) and the size
of any such graph is denoted by lem(Gy,Gs). V; = {v € V(G):
deg(v) =7} and W, =V, N W where W C V(G).

3 Preliminary Results

Theorem 3.1. [3, pp.96]. For any two graphs G; and G,
lem(G1, G2) > lem(q(G1), ¢(Ga))-
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Theorem 3.2. [6, pp.186]. Let Gy and G2 be two bipartite
graphs then lem(G1, G2) < q(G1).9(Gs).

- Corollary 3.3. [6, pp.186). Let Gy and G2 be two bipartite
graphs.  If ¢(G1) and q(Gz2) are relatively prime, then
lem(G1, G2)=¢(G1)-q(G2).

Theorem 3.4. (7] A graph G of size s(m+n+1) withm > 1,
n > 1 ands > 3 is By, , decomposable, if it satisfies the following
conditions.

(1) A set of vertices W C V(G) with |W| = s and (W) = Cs.
(1) The number of edges incident with each vertex v € W is
m+4n+ 2.

Corollary 3.5. [7] A graph G of size s(m +n+1) withm > 1,
n > 1 and s > 3 is By, , decomposable, if it satisfies the following
conditions.

(1) W C V(G) with |W| = s and (W) is 2r- regular Hamilton
decomposable, where m+n+12>r.

(i1) The number of edges incident with each vertez v € W is
m+n+1l+4r.

Theorem 3.6. (7] A graph G of size s(m + n + 1) with m >
1, n > 1 and s > 3 is By, decomposable, if it satisfies the
following conditions.

(3) W C V(G) with |W| = 2s and (W) = Cas = vq,u1, V2, U2, U3,
©rty Usy Uy V1.

(i) For each i, deg(v;) = m+ 2, and deg(u;) =n + 1

(#42) For each i, the vertices v; and u; has no common neighbor

in G.

Lemma 3.7. [4, pp.181]. A graph of size at least two which has
an edge adjacent to all other edges has no disconnected divisor.

Theorem 3.8. (1, pp.222]. For every graph G and every ¢t > 1,
tK,|G if and only if tle(G) and X' (G) < ﬁfﬂ
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4 Bounds for Least Common
Multiples of Bi-star Versus a
Simple Graph

Any two graphs has a least common multiple follows directly
from the following result of Wilson [2], “ For every graph F
without isolated vertices and having size ¢, there exists a positive
integer N such that if (i) n > N, (ii)qlﬂ"z—'—l) and (iii) d|(n — 1),
where d =gcd(deg(v): v € V(F)), then K, is
F- decomposable ”. In general, upper bound obtained by the
above result would be extremely large and no good general
upper bound for lem(G,Gs) is known. Here we investigate
a good lower bound for lem(Bmn, G), where G is any simple
graph.

Theorem 4.1. For all integersm > 1, n>1 and (m+n+ 1)
= kid, lem(Bmn, G) > fATC;}Cl]ﬂ?(m +n+ 1) where d =
(¢(G),m +n+1).

Proof. By Theorem 3.1, lem(Bmn, G) = ‘s‘—gl(-’—“—"'"—“*'12 where s is

a positive integer. Let H be a graph of minimum size s—GM
such that H is B, , and G decomposable then H can be
decomposed into SM copies of G. But each of these G
contributes a degree at most A(G) to each of the vertices of H.
Thus we have s A(G) > A(H).

Since H is By, decomposable, A(H) > m + 1. So we have

m4n+l dim+1)  _ d(m+1) _ (m+1)
Sg—lA(G) 2m+l=s2 A(G)(m+ntl) —A(Tg)kld ATc)kl =

> [ 2w |
Hence lem(By 5, G) > [Z’E‘T*)}c—l-]q—(dg-)(m +n+1). O

Theorem 4.2. For any graph G with A(G) = 2 and (m+n+1)
= kid, then lem(Bmn,G) > [%‘l]ﬂagz(m +n+ 1) whered =
(¢(G)ym+n+1).
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Proof. Without loss of generality we may choose m > n, since
B, » is isomorphic to B, . Alsom > n = 2m+1 >

m+n+l=m>8El o mi] > adls hdth 4 1ok o

> &l 4 Lk o [24] >[4, since '1—41—'? < &. Hence
by Theorem 4.1, lem(Bmn, G) 2 [Amcﬂ;)i ]—(-gl(m +n+1) =

[%ﬁ]@(m+n+1) > [d1]dQmintl) -

Corollary 4.3. Let (32 —d)+,c <z< (3 —d)+4bean
integer such that d + z —O(mod4) where d = ( (G),m+n+1)
and (m + n + 1) = kid, then for any graph G with A(G) = 2,
lem(Bmn, G) > d*—’ﬂg(m +n+1).

Proof. We note that, the closed interval [3™ 42 ,f , ¥ +4] contains
a unique 1nteger = 0(mod 4) The integer we denote by d + z.

Since (22 —d)+Z2 <z < (3B-d)+4=> 2+2 <d+z <imyq
> 2l i< mitig 2o —’iﬂ < —'"— < "‘“+1-m

= ["Q'T"'ll] == d":—”, since z is an mteger such that d+z =0(mod 4).

Hence by Theorem 4.1, lem(Bmn, G) 2 i?ﬁd@(m +n+1). O
<

Theorem 4.4. If G is bipartite, then lem(Bmn,G)
gd(G)m+mn+1).

Proof. The theorem follows from Theorem 3.2, since B, is
bipartite. O

Theorem 4.5. If G is bipartite and gcd(g(G),m+n+1) =1,
then lem(Bmn, G) = ¢(G)(m +n + 1).

Proof. Result follows directly by Corollary 3.3. O

5 Bounds for Least Common
Multiple of Paths Versus Bi-stars

In this section, we discuss a good lower bound and an
appropriate upper bound for lem(By, ., Pry1) for all integers
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m 21, n>1and r > 1. By Corollary 4.3 we have the
following results.

Theorem 5.1. Let(1 )+—<x<(1—d)+4bean
integer such that d + x =0(mod / ) where d = ged(m+n+1,7)
and (m +n+ 1) = kid, then lem(Bpn, Pry1)> dj’ﬁ"‘—f;‘—‘FQ.

Proposition 5.2. Let r and m + n + 1 be even integers with
r>2 m21andn > 1. Then there exists a graph of size
i"”'++ll which is both By, , and P, decomposable.

Proof. Every simple connected graph of even size is P
decomposable. So B, is P; decomposable.

Thus the statement is true if r=2.

If r > 4, then our aim is to construct a graph G of size T(W’—Q"'Hl
such that G is By, , and P,4+; decomposable.

Let W={ v1,u1,v2,up, - v5, us} be a set of r vertices. Given
m+n + 1 is even, so one of them say m is even and n is odd.
We add new vertices a;; and b;; for i = 1,2,3,- g — L
J=1L123,. .- ,%= 1. 1=1,23,- +,5,5 + 1. Then for each 1,
construct a path P* of length r as a; 1, vy, @i, V2, " " i3, Vg, Gi, 241
and for each j, form another path Q7 of length r as b;1, u;, bj‘Q, Ug,

iz y Uz v bz 1. By adding new vertices al,ag,a;;, ,ar
form a path P1 of length r as ay, vy, ug, vo, Ug, - ‘Uz, Uz and form
another path P2 of length T as al,vg, as,v3,03, " ar vy, Uz,

Let G = P'UP?UUZ] P‘uu 21QJ Size of G is (2+% — 1
n;l )7’— r('m+2n+1!.

By construction itself G is Pr4+; decomposable. According to our
construction, (V(G) \ W) is an empty graph. Degree of vy
=4+ (2 )2 m + 2 and degree of wz=2+ (%1)2 = n+1 for
k=1, 2 3 . In G it can be seen that, each vertex vy € W
is adjacent to exactly m vertices € W and each vertex upy € W
is adjacent to exactly n — 1 vertices € W and (W) is a cycle C;:
U1, U1, V2, U2, - * "vga U%,'vl.

Also for each k,1 < k < §, the adjacent vertices vk, ux have
no common neighbor in G. So G satisfies all the conditions of
Theorem 3.6. Hence the graph G is B, , decomposable. O

336



Illustration 1.

Figure 1:

The graph in Figure 1 is an example of a graph with size 70
which is P;; decomposable and Bgs decomposable.

Proposition 5.3. Let r and t be integers withr > 2 and t >
[£], then there exists a P,y decomposable graph G of size tr
such that |W,|=t and the subgraph induced by V(G) \ W, is an
empty graph.

Proof. Let W = vy, vp,v3, -+ ,7; be a set of ¢t vertices. We
consider two cases 7 is even and odd separately. We construct
the required graph G in such a way that every edge in G, has
exactly one end point in W and (V(G)\ W) is an empty graph.
Case 1: When r > 2 is even.
By adding new vertices a;; for ¢ =1,2,3,--- ,t and j = 1,2,3,
-, 5 + 1 then for each 4, construct a path Pt of length r as
Qi,1, Vi) Gi2, Vit Qi3 Vit2, Gig *°°y Q4% Vipr-1, Qi 41 and the
addition in subscript is taken modulo ¢.
Let G = U{_,P.. For constructing a path we had taken §
vertices from W cyclically in a given order. So for constructing
t paths we include a vertex exactly § times from W. Thus the
number of paths passing through each vertex v; is § and in G,
no vertex v; is a pendant vertex of a path. Hence for each i,
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1 <7< ¢, degree of each vertex v; € W in G is r.

Case 2: When r is is odd.

By adding new vertices b; for i = 1,2,3,.-- ,t and k = 1, 2, 3,
. 3‘2*—1, then for each i, construct a path @ of length r as b; 1,

Ui, bi2s Vg1, big, Vige, bia oo, byep, e

Let G = Ui_,Q!. For constructing a path we had taken '—“2“—1

vertices from W cyclically in a given order. So for constructing

t paths we include a vertex exactly % times from W.

In G it can be seen that, each vertex v; is a pendant vertex of

exactly one path. Thus the number of paths passing through

each vertex v; is '—;—1- and exactly one path ends on each vertex

v;. So for each i, 1 < i < t, degree of each vertex v; € W in G=

'T‘l 2 +1=r. In both case, G is P.,; decomposable. Also size

of G is tr and |W|= |W,|=t. O

Illustration 2.

Figure 2:

The graph G in Figure 2 is an example of Py decomposable
graph of size 72. The graph G3 in Figure 2 is an example of G
is a P3 decomposable graph of size 63.
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Proposition 5.4. For every positive integer v, there exists a
graph of size r(m + n + 1) which is both Bpn, and P
decomposable.

Proof. By, and P,y are bi-parttite graphs. So the result
follows directly by Theorem 3.1 and Theorem 3.2. a

Proposition 5.5. Let d = ged(r,m + n + 1) be an odd integer,
then for all T > 1 there ezists a graph of size %ﬂ’l‘i‘;ﬂ which
is both B, n, and P,,, decomposable.

Proof. If d =1, then d“&"idﬂ =r(m+n+1). So the result

is true by Proposition 5.4.

If d > 1, then construct a graph G of size i-ﬂﬂf"—“l in the

followmg way. Let W={vy,v3, " ,vapa+ } be a set of &z

vertices.

By division algorithm, let m+n+1 = ar+b, a and b are integers

witha >0, 0 < b < r. Clearly b =0(mod d).

By a.dding new vertices (a;;)s , for i = 1,2,3,-- -df,,"lg, j=

1,2,3,---,[%] and s = 1, 2,3, ..., a, then by fixing a value for s,

construct £ L% ~ paths Py of length r as in Proposition 5.3. Let

this graph be H and degree of each vertex v; in Hy= 7.

Applying these process a times by taking s = 1,2,3,...,a, we

get a4t paths Py of length 7.

Let thls graph be H, then H =US_; H,. Clearly H is P4

decomposable and size of H is ar%= d;'l"i

In H, degree of each vertex in v; € W is ar and the subgraph

induced by V(H) \ W is an empty graph.

We can form f"j:l Z1 — 1 edge disjoint spanning cycles of the

complete graph on the %2-3 vertices of W (which are also

referred to as spanning cycles of W for simplicity).

Select one spanning cycles of W and then for each k, 1 < k£ <

d“z” construct a path P* as ck.1, U(k—1)5+1,V(k-1)5+2, V(k—1)5+3>
*) Uk§+1s Ch.2) Uk54+2) Ch3s " Uko1) 54441 sy Cr =iyt by adding

new vertices c¢x; for 1 <t < d‘“ 5+ where the addition in

subscript is taken modulo -4215
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Length of each path Pk= §+24-;—1§ = 7. Let this graph be F},

then F1 U,jzf1 P*. The number of vertices v; occurs in a path
Pkis Z + dglg = 217 and v; is not a pendant vertex of P* for
any k. So the number of paths passing through each vertex v;
is %‘—1. Thus the degree of each vertex v; € W in Fy is d + 1.

A similar construction with respect to another edge disjoint
spanning cycles of W leads to a similar graph.

It is possible to select 2 spanmng cycles of W, since &1% >

22 > 28 +1. So by selectmg spanning cycles of W, we

construct a P,,; decomposable graph say F U"_IF of size
rétlt where F, is the graph similar to R.

In F, degree of each vertex v; € W is 4(d+1). Let G= HUF.
Size of G is (a4f2% + HL2)r= —‘*‘—-"[ar + b= J‘—ﬂﬂ"'—"ﬂl

By construction itself G is P,y decomposable

In H, it can be seen that, each vertex v; € W is adjacent to
exactly ar vertices ¢ W. In F it can be seen that, each vertex
v; € W is adjacent to exactly (d — 1)& < vertices ¢ W and Cq¢ dg1r
is a sub graph of F. So in G, it can be seen that, each vertex
v; € W is adjacent to exactly ar + (d — 1) vertices € W and
deg(v;) = ar + (d + 1)3.

Clearly, (W) is a % regular Hamilton decomposable graph.

Hence G is By, n decomposable by Corollary 3.5. O

Illustration 3.

In figure 3, r = 15,m+n+1 = 20,d = 5 and 9'-*—11—9 The
graph G4 is an example of Pig and By, ,, decomposable That is
G4 is Bmn = {Biog, Buis, Bia7, Bisg, Bus, Bisa, Biss, Bira,
Big,1} decomposable.
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Figure 3:

Theorem 5.6. Let d = (m +n+1,7), then for allT > 1,
rmintl) £d is even

l an; PT = :
cm( : +1)— {d;”(m ET ot 1) ifd is odd

Proof. 1f d is even, then r should be even. So by Proposition
5.2, there exists a graph of size r—("—”‘%—ll which is both B,, , and
P.., decomposable. If d is odd, then by Proposition 5.5, there
exists a graph of size d“ﬂﬂﬂﬂ— which is both By, , and Pr4;
decomposable. These complete the proof of the theorem. O

Corollary 5.7. Let (2k1 )+ £ < oml (2k—m —d) +4 be an
integer such that d+x = 0(mod4) where d = gcd(m +n+1,7)
and (m+n+1) = kid, then for all positive integers m,n and T,

r 1), if d is even;
dizr(mintl) 4. (Dp F < (m T :
E - < (B, Pry1)< d+1 LZm+n+1), of d isodd

Proof. Tt follows directly by Corollary 5.1 and Theorem 5.6. U
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6 Least Common Multiple of B,,, and
rK. e

In this section the size of a least common multiple of B,,, and
r K3 is determined.

Lemma 6.1. B, , is rK,; decomposable if and only if r = 1.

Proof. Clearly the condition is necessary. The sufficient part
follows directly from Lemma 3.7, since the central edge of B, »
is adjacent to all the other edges of B, , O

Theorem 6.2. iem(Bma, 7Ko)=r(m+n+1), ifr < 2.

Proof. Clearly lem(Bpmpn, K2)= (m+n+1). If r = 2, then by

Lemma 6.1, lcm(Bm n, 2K2) > (m+n+1). Also by Theorem 4.4,

lem(Bpn, 2K2) < 2(m+n+1). Hence lem(Bm q, 2K2)=2(m+n+1).
O

G

| t[/[ r/w’ e C A

u 2® 5w

v
w 1

| l/]: l/w, |

- é X u

v u x “w

Figure 4:

Every least common multiple of two connected graphs is
connected but least common multiple of a connected and a
disconnected graph need not be connected. For example
consider the graphs By ; and 2K,.

By Theorem 3.2, lem(Bsy,, 2K3)=8. Clearly Gs, Gg, G7 and
Gs are both By; and 2K, decomposable graphs of size 8. So
Gs, Gg, G7 and Gy are belongs to LCM(By1, 2K3) and all are
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connected except Gs.

Now we turn our attention to lem(Bmn,7K3) for 7 > 2. We
use the characterization of rK, decomposition of a graph G for
finding a least common multiple of B,,, and rK;. For this
purpose it is necessary to find the edge chromatic number of
B n- The edge chromatic number x'(Bm,n) = A(Bmn) = m+1,
since m > n. So x'(er,,,) =m+ 1.

Theorem 6.3. For any integer t > 1, tBn, is T7K>
decomposable, if t = 0(mod ).

Proof. X' (tBpn)=m+1<m+n+1< t(mt"J'ﬁ = e(tB,,""")-

So the theorem follows directly from Theorem 3.8. a

Remark 6.4. The converse of the above theorem need not be
true.

Theorem 6.5. Let d = ged(m +n+1,7). Then tBny is er
decomposable if and only if t can be expressed in the formt = —

where k is an integer with k > m""—;-"_,%

Proof. Suppose that t = % where k is an integer with k

( 2>
fn?::i Also e(th,n) = t(m +n + 1) = -"é—r(m +n+ 1) =

e(tBm,n) = 0(mod r).
Xl(th") =m+1< k(mtntl) _ kr(mintl) _ t(m4ndl)

- d dr r
e(tBm,n)

Heﬂce tBm n is 7Ky decomposable by Theorem 3.8. Conversely,
if B, » is 7K, decomposable, then we have, r|t(m +n + 1).
rit(m+n+1) = Ljt23El = ¢ = 0(mod §), since ged(mintl 1) =
1. That is t = k%, for some positive integer k.

rKs|tBmn = X (tBmn) < &8mnl o (m 4 1) < ¢mintl o

++1 d(m+l)
m+1< kPR = k2> oo

v 0O

Remark 6.6. 2(m+1) = m+m+2 > m+n+1+1 = 2

1 1 dim+l) < d d
3T Wi ) = mintl 2 2 T Tk

S;) if k satisfies the condition k > %%;"—_:)1', thenk > & = k >
(1.
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d(m+1) (m+1)
Remark 6.7. Ifk < 2751, then & < 2L <1k <d.

There fore if t > r and t satisfies the condition t = &, then k

. " d(m+1
satisfies the condition k > ;m%

Theorem 6.8. Let d = ged(m +n +1,7) , then
lem(Bumn, 7K3) > [E2H)12(m 4 n 4 1).

m4n+1

Proof. By Theorem 4.1, we have Ilem(Bma,r7K2) 2>

[T fmintl)  where m+n+1=kd By putting the
values of k; = 222l and ArK, = 1, we get lem(Bmn, TK2) >
d Al

[t o(m+n+ 1), O

Theorem 6.9. Let d = ged(m +n+1,7) , then

lem(Bmn, 7K3) = k%(m +n+1), where k = [%

Proof. By Theorem 6.5, tBm,, where t = & with k = [%l—i]
is 7K, decomposable. So lem(Bmn, 7K3) < k5(m +n +1).
By Theorem 6.8, lem(Bmna,7K2) = ki(m + n + 1). Hence

1em(Bynn, 7K2) = k5(m +n + 1), where k = [, O

Remark 6.10. Let d = gcd(m+n+1,r) , then the disconnected

graph [£2)2(m + 0+ 1) By € LOM (B, 7Ka).

7 Least Common Multiple of any Grapk
G and 7K.

In this section the size of a least common multiple of of any
graph G and rK) is determined.

Theorem 7.1. For any graph G without isolated vertices and
an integer r > 1, with d = ged(q(G),r), then lem(G,7Ks) >

[F6154(G).

Proof. Same as Theorem 4.1. 0O
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Theorem 7.2. For any graph G without isolated vertices and an

integer v > 1, with d = gcd(q(G),r), then tG is 7K,
decomposable if and only if t can be expressed in the form t = -’;1

where k is an integer with k > d—;‘(ég)"l.

Proof. Suppose that ¢t = %’ where k& is an integer with & > —ldf;«(-g .

e(tG) = tq(G) = £4(G) = €(tG) = O(mod ).
X (t6) = X'(G) < M2 = =g = M2 — <A,

Hence tG is r K> decomposable by Theorem 3.8.
Conversely, if tG is r K, decomposable, then r|tg(G) = gl%gl =

t = 0(mod %), since gcd(q—(gl, £) = 1. That is t = k3, for some
positive integer k. By Theorem 3.8, rKo|tG = x (tG) < itr@ =

X(G) < t99) = ¥'(G) < k319 = k> & Q). =

Theorem 7.3. For any graph G without isolated vertices and
an integer v > 1, with d = ged(q(G),r), then lem(G,7K3) =

k3q(G), where k = [

Proof. By Theorem 7.2, tG is r K, decomposable, where ¢ = %
with k = [2L)]. So lem(G,rKs) < [ E)]24(G).

9(G) 9(G)
Now consider any H € LCM (G,rK,). Since we are

considering only rK,, we may assume the copies of G in H
are vertex disjoint. Then it shows that ¢(H) > [%gl] La(G),
by Theorem?7.2. Hence lem(G,rK3y) = k5q(G), where k =

dx' (G
[ |- D

Remark 7.4. If G is biparttite, then lem(G, rK3) =[%%l]§q(G).
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