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Abstract

An h-edge-coloring (block-coloring) of type s of a graph G is a assign-
ment of h colors to the edges (blocks) of G such that for every vertex «
of G the edges (blocks) incident with z are colored with s colors. For
every color i, £z,; (Bz,;) denotes the set of all edges (blocks) incident with
z and colored by i. An h-edge-coloring (h-block-coloring) of type s is
equitable if for every vertex z and for colors 4,7, | | €z,i | — | €=z, | | £ 1
(| Bzyi | — | Bz,j || <1). In this paper we study the existence of h-edge-
coloring of type s = 2,3 of K, and then show that the solution of this
problem induces the solution of the existence of a C4- (K2-design having
an equitable h-block-coloring of type s = 2,3.
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1 Introduction

Let H be a simple graph. An h-edge-coloring of type s of H is an assignment
of h colors to the edges of H such that for every z € V(H) the edges incident
with = are colored with s colors. An h-edge-coloring of type s = 2 (s = 3) of
H is called h-bicoloring (h-tricoloring) of H. Say C, be the set of these colors.
For every i € Cs, £;,; denotes the set of all edges incident with x and colored
with i. An h-edge-coloring of type s is equitable if for every vertex z and for
4,j €Cz, | | &zi | — | &z, | | £ 1. Let G be a subgraph of H. A G-H-design
of order v = |H|, is a pair & = (V,B), where V is the vertex set of H and
B is an edge-disjoint decomposition of H into copies of G (called block). A
cycle is a connected graph in which each vertex has even degree (see [5]). A
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cycle is even, or odd, according as to whether the number of edges is even, or
odd, respectively. Denote by C4 (or 4-cycle) the cycle having 4 vertices each
of degree 2. Denote by K, the complete simple graph on t vertices. Let K.
denote the complete multipartite graph whose vertex set may be partitioned
into Xy,...,X; where |X;| = z for each ¢ = 1,...,t. According to [1], there
exist three trivial necessary conditions for existence of a decomposition of edges
of K. into 4-cycles, and such a decomposition is denoted by K, — Cy:

l.tx>4

2. Each vertex of ,K, has even degree, i.e., (¢t — 1) is even.
3. The number of edges of ,K. ((3)z?) is divisible by 4.

A block-coloring of a C4- ,K,-design (briefly 4CD(tz)) £ = (V, B) is a mapping
¢ : B — C where C is a set of colors. An h-block-coloring is a coloring in which
exactly h colors must be used. An h-block-coloring of type s is a coloring of
blocks such that, for each element z € V, the blocks containing z are colored
with s colors (2, 4). Say C, be the set of these colors. For a vertex x and
for every i € C,, B is the set of all blocks incident with z and colored with
the ith color. A block-coloring of type s is equitable if for every vertex z and
fori,j € Cz, | | Bz | — | Bz,; | | £ 1. For 4CD(v) ¥ the color spectrum is
defined as Q,(X) ={h| there exists an h-block-coloring of type s of £}, Moreover
let Q,(v) = |J,(Z), where the union is taken over the set of all 4CD(v)s.
The upper s-chromatic index ¥,(Z) of ¥ is defined as X, (Z) = max,(Z),
and similarly, X.(v) = maxQ,(v). A graph H (4CD(tz)) is said to be h-
uncolorable if there is no any h-edge-coloring (h-block-coloring) of it. Note that
the definition of h-edge-coloring of type h of H coincides with the definition of
the edge-coloring of H studied in [5).

In this paper we use the following labeling for ,K, (see [1]): denote by
Vlyso o, Vtz the vertices of tKﬂ: and by Xi ={'Ui,‘l)i+g,vi+22, e ’vi+(r—1)t}’ 1=
1,...,¢, the t disjoint independent sets of ,K,.

Theorem 1.1 For allt > 2, there exists a C4- 1 Ka-design (or ACD(2t)).

Proof. Let V = Uz-1{"n”t+t} and B = {B . = (vi,v,,v,.,.,,vj.,.t)} | 4 =
1,...,t—1,j=1i+1,...,t}. It is easy to check that & = (V,B) is a 4CD(2t).
O

Proposition 1.2 The 4CD(2t) X constructed in Theorem 1.1 is equivalent to
the complete graph K,.

Proof. Take the edge v;v; from every block B}; = (vi,vj,vite,vj4¢) With
t=1,...,t —land j =1+1,...,t. The result is the complete graph K; on
vertex set {vy,...,v¢}.
Let K, be the complete graph on vertex V(K;) = {v1,...,v:}. For every edge
v;v; € E(K,), construct the block B,?'j = (vi,Vj, Vige, Vj4e). The result is the
required 4CD(2t) . O
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Proposition 1.3 The 4CD(2t) T constructed in Theorem 1.1 has an equitable
h-block-coloring of type s if and only if K; has an equitable h-edge-coloring of
type s.
Proof. Assign the same color to the edge v;v; of K; and to the block Bf_j of
.0

Equitable block colorings of a C4- (K;-design for admissible values of ¢ are
discussed in [2, 4]. Now we want to study the existence of equitable h-edge-
colorings of K; and equitable h-block-colorings of C4- Ka-design.

2 Bicoloring

In this section we will consider bicoloring.

Lemma 2.1 [5] A simple connected graph H has an equitable 2-bicoloring if
and only if it is not an odd cycle.

From Lemma 2.1 and Proposition 1.3, we obtain the following results.

Theorem 2.2 For every t =3 (mod 4), the complete graph K; cannot be equi-
tably 2-bicolored.

Corollary 2.3 For every t = 3 (mod 4), any 4CD(2t) cannot be equitably 2-
bicolored.

Theorem 2.4 For every t = 0,1,2 (mod 4), t > 4, there exists an equitable
2-bicoloring of K.

Corollary 2.5 For everyt = 0,1,2 (mod 4), t > 4, there exists an equitable
2-bicolorable of 4ACD(2t).

Theorem 2.6 For every t > 3, there exists an equitable 3-bicoloring of K.

Proof. The following cases may be considered:

Casel1t = 2m. Let G = (V1,E) and Go = (V,,F) be two Kms with |
VNV, {=0. Let Gz be the complete bipartite graph on ViU V. Fori=1,2,3
assign the color i to the edges of G;. It is easy to check that Gy U Go U G; is a
K5, having an equitable 3-edge-coloring of type 2.

Case 2 t = 2m + 1. Take the two Kmy1s Gy = (V1 U {oo}, E) and G2 =
(VaU {0}, F) such that | V1 N V, |= 0. Let Gs be the complete bipartite graph
on Vi U V,y. Fori=1,2,3 assign the color i to the edges of G;. It is easy to
check that Gy U Go U G3 is a Kamy1 having an equitable 3-edge-coloring of type
2.0

Corollary 2.7 For allt, there exists an equitable 3-bicolorable AC D(2t).
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Proof. The result follows from Proposition 1.3 and Theorem 2.6. [J

Theorem 2.8 For every t > 3, the number of colors h for which there exists
an equitable h-bicoloring of K, is at most 4.

Proof. Let ¢ : E(K,) — C be an equitable h-edge-coloring of type 2 of K.
Let z be an element of V incident with the edges of color ¢ € C. we have the
following cases:

1. t = 2k. There are at least k£ — 1 edges of color c incident with z. Hence
there are at least k elements in V incident with edges of color ¢. Then
hk < 2t = 4k. Thus h < | %] =4.

2. t = 4k + 1. There are 2k edges of color ¢ incident with z. Hence there
are at least 2k + 1 elements in V incident with edges of color ¢. Then
h(2k +1) <2t =8k +2. Thus h < [2k+1J =3.

3. t = 4k + 3. There are 2k + 1 edges of color ¢ incident with 2. Hence there
are at least 2k + 2 elements in V incident with edges of color ¢. Then
h(2k +2) <2t =8k +6. Thus h < [2k+2j =30

Corollary 2.9 For the upper 2-chromatic indez X5(2t) of 4CD(2t), t > 3 the
following inequalities hold:

o X5(2t) <4, ift =0 (mod 2);

e X5(2t) <3, ift=1,3 (mod 4).
Proof. The result follows by considering Proposition 1.3 and Theorem 2.8. O
Theorem 2.10 The complete graph K, cannot be equitably 4-bicolored.

Proof. We shall suppose that ¢ be an equitable 4-bicoloring of K,, and we
show that this leads to a contradiction. Let V(K;) = {v1,vs,...,v,;} and let
P(V) be the family of all subsets of V. Define

fa: V=PV)

Jalvi) = {vjlviv; € E(Ke),  o(viv;) = a}.

Without loss of generality, suppose that the edges incident with v, are col-
ored with colors A and B, such that |f4(v1)] = r and |fg(v)| = s, |r — 5| <
1. Since ¢ is an equitable 4-bicoloring, there exists a vertex vy, such that
fc(vz2) # 0. As edges incident with v, are colored with A and B, edge viv2
must be colored with A or B. Let v; € fa(vs). Likewise, there exists a ver-
tex vg, such that fp(vs) # 0. Similar to above, edges v;vs and vov3 cannot
be colored D. Hence, v; and v must be in fa(vs). So fa(vs) # 0. Sup-
pose that a vertex v € fp(v;). Because v € fa(ve) or v € fo(ve), edges
incident with v are colored with A and B or B and C. Therefore, edge vv;
must be colored with A. Thus, fg(v1) € fa(vs). Clearly, fg(v;) does not
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contain v; and vo. Hence, |fa(v3)] > s + 2. Since edges incident with vz are
colored with A and D, vs € fa(vi). Therefore, |fp(vs)] < r — 2. Hence,

[1fa(vs)| = |fo(s)l] = |fa(vs)] — |fo(vs)] = s+2—(r—2) > 3. Thisisa
contradiction. O

Corollary 2.11 [t is not possible that 4CD ¥ is bicolorable with 4 colors.
Proof. The statement follows from Proposition 1.3 and Theorem 2.10. O
Corollary 2.12 For every t > 3, we have X3(2t) = 3.

Proof. It follows by Corollaries 2.7, 2.9 and 2.11. O

3 Tricoloring

In this section we will consider tricolorings.

Theorem 3.1 [5) Let H be a simple graph and letk > 2. Ifk td(v) (Vv € V(H))
then H has an equitable k-edge-coloring of type k.

Corollary 3.2 For every t # 1 (mod 3), t > 4, there is an equitable 3-
tricoloring of K.

Theorem 3.3 For everyt = 1 (mod 3), there is an equitable 3-tricoloring of
K.
Proof. This result could be easily proved as follows.

e t=4 (mod 6). Let F={F;|i=1,...,t — 1} be a 1-factorization of K,.
Partition F into the three parts F1, F2 and F3 such that | F; |= £32 for
every i = 1,2,3. Assign the color i to each edge of the 1-factors of F;.

e t=1 (mod6). Let F = {F;|i=1,...,t} be an almost 1-factorization
of K, such that 7 is the missing vertex of F;. Note that | F; {= 0 (mod
3). Partition the edges of F; into the 3 classes F{, j = 1,2,8 such that
| F] |= &3*. For j = 1,2,3, assign the color j to the edges of F} and to
the edges of F, if a is a vertex of some edge in F{. O

Corollary 3.4 For allt, there exists an equitable 3-tricolorable 4C D(2t).

Proof. The assertion is concluded by considering Proposition 1.3 and Theorems
32and 33. 0

Theorem 3.5 For all t > 4, there exists an equitable 4-tricoloring of K.

Proof. The proof is divided into three parts, depending on t.
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1.t = 3m. Let G; = (V;,E;), i = 1,2,3, be three K,,s with V;,Vy and
V3 mutually disjoint. For every 1 < i < j < 3, construct the complete
bipartite graph on V; UV;. Denote these graphs by G;, i = 4,5,6. For
every i = 1,2, 3, assign the color 7 to the edges of G; and assign the colors
4, 2 and 1 to the edges of G4, Gs and Gg, respectively. It is easy to check
that Uf=1 G; is a Kg,» having an equitable 4-edge-coloring of type 3.

2.t =38m+1. Let G; = (V;U{oo},E;), i = 1,2,3, be three K,,;15 with
V1, Vs and V3 mutually disjoint. For every 1 < i < j < 3, construct the
complete bipartite graph on V;UV;. Denote these graphs by G;, i = 4, 5,6.
For every i = 1,2, 3, assign the color ¢ to the edges of G; and assign the
colors 4, 2 and 1 to the edges of G4, Gs and Gg, respectively. It is easy
to check that Uf=1 G; is a Kam+1 having an equitable 4-edge-coloring of
type 3.

3.t =3m+2. Let G; = (V; U {001,002}, E;), i = 1,2,3, be three K, 28
with V;, Vs and V3 mutually disjoint. Remove from E; and E; the edge
001002 and give the same names Gy and Gz to the resulting graphs. For
every 1 <i < j < 3, construct the complete bipartite graph on V; UV;.
Denote these graphs by G;, ¢ = 4,5,6. For every i = 1,2,3, assign the
color i to the edges of G; and assign the colors 4, 2 and 1 to the edges of

G4, Gs and Gg, respectively. It is easy to check that U?=1 G; is a Kam+2

having an equitable 4-edge-coloring of type 3. O

Remark 3.6 If we assign color 5 to the edges of Gs in the proof of previous
Theorem, then we obtain a 5-tricolorable K,.

Theorem 3.7 For every t > 4, there is a 6-tricolorable K,.
Proof. We consider the following three parts:

L.t =3m. Let G; = (V;,E;), i = 1,2,3, be three K,,s with V;,V; and
V3 mutually disjoint. For every 1 < i < j < 3, construct the complete
bipartite graph on V; UV;. Denote these graphs by G;, i = 4,5,6. For
every ¢ = 1,2,...,6, assign the color i to the edges of G;. It is easy to
check that U?=1 G; is a K3 having an equitable 6-edge-coloring of type
3.

2.t=3m+1. Let G; = (V; U {o0},E;), i = 1,2,3, be three K418 with
V1, V2 and V3 mutually disjoint. For every 1 < i < j < 3, construct the
complete bipartite graph on V;UV;. Denote these graphs by G;, i = 4, 5, 6.

For every i = 1,2,...,6, assign the color i to the edges of G;. It is easy
to check that U?=1 G; is a Kam41 having an equitable 6-edge-coloring of
type 3.
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3. t=3m+2. Let G; = (V;U{oo1,002},E;), i = 1,2,3, be three Krny2s
with V1, Vs and V3 mutually disjoint. Remove from E; and Ej3 the edge
003007 and give the same names G2 and Gj to the resulting graphs. For
every 1 € i < j < 3, construct the complete bipartite graph on V; U'V;.
Denote these graphs by G;, ¢ = 4,5,6. For every i = 1,2,...,6, assign
the color i to the edges of G;. It is easy to check that Uf=1 G; is a K342
having an equitable 6-edge-coloring of type 3. O

Corollary 3.8 For all t > 4 and for h = 4,5,6, there exist an egitable h-
tricolorable 4CD(2t)s.

Proof. The result follows from Proposition 1.3, Theorems 3.5 and 3.7 and
Remark 3.6. (1

Theorem 3.9 For every t > 3, the number of colors h for which there exists
an equitable h-tricoloring of K;, is at most 9.

Proof. Let ¢ : E(K;) — C be an equitable h-edge-coloring of type 3 of K;.
Let z be an element of V incident with the edges of color ¢ € C. we have the
following cases:

1. t = 3k. There are at least k — 1 edges of color c incident with z. Hence
there are at least k elements in V incident with edges of color c¢. Then
hk < 3t =9k. Thus h < | %] =09.

2. t = 3k + 1. There are k edges of color ¢ incident with z. Hence there
are at least k + 1 elements in V incident with edges of color ¢. Then
h(k+1) <3t =9k+3. Thus h < |35E| =8.

3. t = 3k + 2. There are at least k edges of color ¢ incident with z. Hence
there are at least k + 1 elements in V incident with edges of color ¢. Then
h(k+1) <3t=9k+6. Thus h < |3&E| =8. O

Theorem 3.10 For every t = 0,1,2 (mod 6), t > 6, there ezists an equitable
7-tricoloring of K,.

Proof. Lett = 6k+ h, h = 0,1,2. Let V;, i = 1,2,...,6, be mutually
disjoint sets each of size k. Let Wy = 0, W), = {co} and W, = {oc01,002}.
Let G; = (Wo UV, UV,;3,E;), 7 = 1,2,3 be three Kog4n. For b = 2, remove

from E, and E3 the edge cojo0, and give the same names G2 and Gs to the
resulting graphs. For i = 4,5,6,7, construct the tripartite graphs G; on vertex
sets ViUV, U V3, ViU Vs UVg, VoUV4U Vs and VLUV, UV respectively.
Fori=1,2,...,7 assign the color i to the edges of G;. It is easy to check that
UZ=1 G; is a Kexr+n having an equitable 7-edge-coloring of type 3. O
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