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Abstract

A Roman dominating function on a graph G is a function
[+ V(G) — {0,1, 2} satisfying the condition that every vertex
u of G for which f(u) = 0 is adjacent to at least one vertex v
of G for which f(v) = 2. The weight of a Roman dominating
function is the value f(V(G)) = ¥ ,ev(g) f(#). The Roman
domination number, ygr(G), of G is the minimum weight of
a Roman dominating function on G. A graph G is said to
be Roman domination edge critical or just yg-edge critical, if
Yr(G + €) < vr(G) for any edge e € E(G). In this paper,
we characterize all yp-edge critical connected graphs having
precisely two cycles.
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1 Introduction

Let G = (V(G), E(G)) be a simple graph of order n. We denote
the open neighborhood of a vertex v of G by Ng(v), or just N(v),
and its closed neighborhood by Nfv]. For a vertex set S C V(G),
N(S) = UyesN(v) and N|[S] = UyesN[v]. For notation and graph
theory terminology in general we follow [3].

For a graph G, let f : V(G) — {0,1,2} be a function, and let
(Vo; V1; V2) be the ordered partition of V = V(G) induced by f,
where V; = {v € V(G) : f(v) =1} and |V;| = n; for ¢ = 0,1,2. There
is a 1 —1 correspondence between the functions f : V(G) — {0, 1, 2}
and the ordered partitions (Vp; V1; V2) of V(G). So we will write f =
(Vo; V1; V2). A function f : V(G) — {0,1,2} is a Roman dominating
function on G if every vertex u of G for which f(u) = 0 is adjacent to
at least one vertex v of G for which f(v) = 2. The weight of a Roman
dominating function f on G is the value f(V(G)) = 3 cv(g) f(w)-
The Roman domination number of a graph G, denoted by vr(G),
is the minimum weight of a Roman dominating function on G. A
function f = (Vo; V4; V2) is called a yg(G)-function or yg-function if
it is a Roman dominating function on G and f(V(G)) = vr(G), [2, 7).

Roman domination edge critical graphs introduced by Hansberg et
al. [4] and further studied in [1, 5, 6]. A graph G is said to be Ro-
man domination edge critical, or just yr-edge critical, if yr(G +€) <
vr(G) for any e € E(G), where G denotes the complement of G.

In this paper, we continue the study of ygr-edge critical graphs, and
characterize yg-edge critical connected graphs having precisely two
cycles. In Section 3 we state some known results which we use for the
next. In Section 4 we present some preliminary results. In Section
5 we show that there is no «yg-edge critical graph with precisely two
cycles and minimum degree at least two. In Section 6 we show that
there is no ygr-edge critical graph with precisely two cycles, minimum
degree one, and any support vertex of degree three. In Section 7 we
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prove the main result of this paper which is a full characterization of
~r-edge critical graphs with precisely two cycles.

We recall that a leaf in a graph is a vertex of degree one, and a
support vertez is one that is adjacent to a leaf. Let L(G) be the set
of all leaves in a graph G, and S(G) be the set of all support vertices
of G. Also for a graph G and a subset of vertices S we denote by
G[S] the subgraph of G induced by S.

2 Main result

Let H; be the following graph shown in Figure 1, and H; be a graph
obtained from H; by removing a leaf.

Figure 1. The graph H;.

We will prove the following.

Theorem 1. A graph G with precisely two cycles is yr-edge critical
if and only if G = Hy or Hs.

3 Known results and Observations

In this section we state some known results and observations which
we use for the next. The following is a fundamental theorem of
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Cockayne et al. [2].

Theorem 2 ([2]). Let f = (Vo;V1; V2) be any ygr-function on G.
Then,

(a) G[V1], the subgraph induced by V1, has mazimum degree 1.

(b) No edge of G joins Vy and V5.

As consequences of Theorem 2 we have the following.

Observation 3. Let f be a yr(G)-function.

(1) If f(z) = 2 for a vertex z of degree 2, then f(z) = 0 for any
z € N(z).

(2) If f(z) = 2 for some leaf z, and y € N(z), then f(z) =0 for any
z € N[y} - {=z}.

Observation 4. If zzyz2 is a path in a yg-edge critical graph G

such that deg(z) > 2, deg(z1) = 2 and deg(zy) = 1, then f(z) # 1
Jor any yr(G)-function f.

Hansberg et al. [4] obtained the following results for yg-edge critical
graphs.

Theorem 5 ([4]). A graph G is yr-edge critical if and only if for
any two non-adjacent vertices x,y, there is a ygr(G)-function f =
(Vo; V15 Va) such that {f(z), f(y)} = {1,2}.

Lemma 6 ([4]). Any support vertez in a yp-edge critical graph is
adjacent to exactly one leaf.

Lemma 7 ([4]). The cycle C, is yr-edge critical if and only if
n € {4,5}.

Hansberg et al. [5] continued the study of ygr-edge critical graphs
and obtained the following.

Lemma 8 ([5])). If x,y are two support vertices of degree 2 in a
YRr-edge critical graph and z € N(z) N N(y), then z is not a support
vertez, and deg(z) > 3.

Lemma 9 ([5]). If z,y are two support vertices of degree two in
a Yr-edge critical graph G, and z € N(z) N N(y) is a vertex with
deg(z) > 4, then G[N(2) \ {z,y}] is a complete graph.
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Lemma 10 ([5]). If z,y are two adjacent support vertices of degree
3 in a yp-edge critical graph, and z; € N(z)\{y}, 22 € N(y)\{z} are
two vertices with deg(z1) > 2 and deg(zg) > 2, then either z) = z3
or z; € N(z2).

Lemma 11 ([5]). Let u and v be two support vertices in a yr-edge
critical graph such that degg(u) = degg(v) = 2. Ifu; # v is a non
leaf adjacent to u, and vy # u,u) is a non leaf adjacent to v, then u)
is adjacent to v;.

Lemma 12 ([5]). If u is a support vertez with degg(u) = 2 in a
Yr-edge critical graph G, and v is a leaf such that v and v have a
common neighbor z, then G[N(z) \ {u,v}] is a complete graph.

Lemma 13 ([5]). If z1z2z324T5 is @ path in a Yr-edge critical graph
G such that degg(z2) = degg(z3) = degg(z4) = 2, then z1 is adja-
cent to xx.

Lemma 14 ([5)). If z is a support vertez in a yr-edge critical graph,
and y, z are two vertices adjacent to = such that deg(y) = deg(z) = 2,
then y is adjacent to z.

4 Preliminary results

In this section we present some preliminary results.

Lemma 15. If a graph G contains a cycle vivavzvav; as an induced
subgraph such that deg(v;) = 2 for i = 1,2,3 and deg(vq) > 2, then
G is not yp-edge critical.

Proof. Assume that a graph G contains a cycle vjvovzvavy as an
induced subgraph such that deg(v;) = 2 for ¢ = 1,2,3 and deg(v4) >
2. Let z € N(vq) — {v1,vs}. Suppose that G is yr-edge critical. By
Theorem 5, there is a yr(G)-function f such that {f(z), f(v1)} =
{1,2}. If f(z) = 1, then f(uy) + f(va) + f(vs) + f(ve) 2 3 and g
defined on V(G) by g(a) = £(a) if a & {v1,v2,vs, 4,2}, g(va) = 2,
g(v2) = 1, and g(v;) = g(v3) = g(z) = 0, is an RDF for G of weight
less than vYr(G), a contradiction. Thus f(x) = 2. By Theorem 2,
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f(v4) =0. Now h defined on V(G) by h(vq) = 2, h(v;) = h(vs) =0,
and f(u) = f(u) if u € N[vg], is an RDF for G of weight less than
1r(G), a contradiction. O

Lemma 16. If a graph G contains a cycle vivavsvavsvy as an induced
subgraph such that deg(v;) = 2 for i =1,2,3,4 and deg(vs) = 3, then
G is not yr-edge critical.

Proof. Assume that a graph G contains a cycle v1v9v3v4vsv; as an in-
duced subgraph such that deg(v;) = 2 for 7 = 1, 2, 3,4 and deg(vs) =
3. Let z € N(vs) — {v1,v4}. Suppose that G is yp-edge critical. By
Theorem 5, there is a yr(G)-function f such that {f(z), f(v2)} =
{1,2}. I f(x) = 1, then f(v1) + f(va) + f(us) + f(va) > 4 and g
defined on V(G) by g(a) = f(a) if a & {v1,vo,v3,vs, 2}, g(vs) =
9(v3) = 2, and g(v1) = g(v2) = g(vs) = g(z) = 0, is an RDF for
G of weight less than yg(G), a contradiction. Thus f(z) = 2. Now
f(v1) + f(v2) + f(v3) + f(va) + f(vs) > 4, and h defined on V(G)
by h(v2) = 2, h(v1) = h(v3) = 0, h(vq) = 1, and f(u) = f(u) if
u & N[vz) U {v4}, is an RDF for G of weight less than yr(G), a
contradiction. a

Lemma 17. If a yr-edge critical graph G contains an induced cycle
C of length three with precisely one verter (say ) of degree at least
three, then G|N(z) — V(C)] is complete, and any vertex of N(z) —
V(C) is of degree at least three.

Proof. Assume that a yp-edge critical graph G contains a cycle C :
zvivez as an induced subgraph such that deg(v;) = deg(v2) = 2 and
deg(vs) > 3. Assume that G[N(z) — V(C)] is not complete, and let
a,b € G[N(z) — V(C)] be two non-adjacent vertices. By Theorem 5,
there is a yr(G)-function f such that {f(a), f(b)} = {1,2}. Without
loss of generality let f(a) = 1. Then f(v1) + f(v2) + f(z) > 2, and
g defined on V(G) by g(z) = 2, g(a) = g(v1) = g(va) = 0, and
g(u) = f(u) if u # {z, a,v1,v2}, is an RDF for G of weight less than
Yr(G), a contradiction. Thus G[N(z) — V(C)] is complete. Now let
a € N(z) — V(C)]. By Theorem 5, there is a yg(G)-function h such
that {h(a), h(v1)} = {1,2}. If h(a) = 1, then h; defined on V(G)
by hi(z) = 2, hi(u) = 0if u € N(z), and hi(u) = h(u) if u & N|[z],
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is an RDF for G of weight less than yg(G), a contradiction. Thus
h(a) = 2 and h(v;) = 1. If deg(a) = 1, then h,, as defined above, is
an RDF for G of weight less than yr(G), a contradiction. Suppose
that deg(a) = 2. Let b € N(a)—{z}. Clearly h(v;)+h(v2)+h(z) > 2.
Now hg defined on V(G) by ha(z) = 2, he(u) = 0 if u € N(z),
ho(b) = max{1, h(b)}, and ho(u) = h(u) if u € N[z]U {b}, is an RDF
for G of weight less than yr(G), a contradiction. a

Lemma 18. If z,y are two support vertices of a yr-edge critical
graph G, then there is no path zajas...a;y between x and y such that
deg(a;) =2 fori=1,2,..,t.

Proof. Let z,y be two support vertices of a yg-edge critical graph G,
z1 be a leaf adjacent to z and y; be a leaf adjacent to y. Assume that
there is a path P : za)as...a;y between z and y such that deg(a;) = 2
for ¢ = 1,2,...,t. By Theorem 5, there is a yg(G)-function f such
that {f(z1), f(vy1)} = {1,2}. Assume, without loss of generality, that
f(z1) = 2. Then by Observation 3, f(z) = f(a1) =0. If t =1, then
f(y) = 2 contradicting Theorem 2. Thus ¢t > 2. Then f(a2) = 2,
contradicting Observation 3. O

Lemma 19. Let G be a yp-edge critical graph G with precisely two
cycles. If Cy : zx1z9x3T47 is a cycle in G such that deg(z) = 4 and
deg(z;) = 2 fori = 1,2,3,4, and Cy is the another cycle such that
V(C1)NV(Cy) = {z}, then there is a vertez y € N(z) NV (Cy) such
that deg(y) = 3 and y is not a support vertez.

Proof. Let V(C2) N N(z) = {y,z}. Assume that both y and z are
support vertices. By Theorem 5, there is a yr(G)-function f such
that {f(y1), f(z1)} = {1,2}, where y; is the leaf adjacent to y, and
z) is the leaf adjacent to z. Without loss of generality assume that
f(y1) = 2. Then f(z)+ f(z1)+...+ f(z4) = 4. Now g defined on V(G)
by g(y1) = g(z2) = g(z3) = 1, g(z) = 2, g(z1) = g(za) = 9(y) = 0,
and g(u) = f(u) if u € V(G) - {z,21,...,24,%, %1}, is an RDF for
G of weight less than ygr(G), a contradiction. Thus we assume that
z is not a support vertex. If deg(z) > 3 then the proof is com-
plete. Thus assume that deg(z) = 2. If deg(y) = 2, then by Lemma
17, |V(C3)| > 4. By Theorem 5, there is a yr(G)-function g; such
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that {g1(y),91(2)} = {1,2}, and this easily produce a contradic-
tion. Thus deg(y) > 3. We show that y is not a support vertex.
Assume that y is a support vertex. Let y; be the leaf adjacent to
y. If |V(Cy)| = 3, then by Theorem 5, there is a yg(G)-function
g2 such that {ga(y1),92(2)} = {1,2}, and this easily produces a
contradiction. Thus |[V(C3)| > 4. Let w € N(y) — {z,y1}. If
d(w, z) > 1, then by Theorem 5, there is a yg(G)-function f; such
that {f1(w), f1(2)} = {1,2} and we obtain a contradiction. Thus w
is adjacent to z. By Theorem 5, there is a yg(G)-function f2 such
that {fa(y1), f2(2)} = {1,2}. This easily produces a contradiction.
Thus y is not a support vertex and the proof is completed. a

5 Graphs with no leaf

In this section we characterize yg-edge critical graphs with precisely
two cycles and minimum degree at least two.

Theorem 20. If G is a graph with precisely two cycles and §(G) > 1,
then G is not yr-edge critical.

Proof. Assume that G is a yg-edge critical graph with precisely
two cycles C1,Cq, and 6(G) > 1. By Lemma 13, |V(Cy)] < 5
and [V(Cy)| < 5. By Lemma 15, |[V(C;)| # 4 for i = 1,2. Then
{IV(C), IV(Ca)l} < {3, 5}

If [V(C1)| = 5, then by Lemma 16, d(Cy,Cs) = 0. By Lemma 17,
[V(C2)| = 5. Let z € V(C1) NV(Cy) and N(z) N V(Cy) = {y,z2}.
Then vr(G) = yr(G+yz) = 6, a contradiction. Thus we assume that
[V(C1)| # 5 and similarly |V(Cs)| # 5. So [V(C1)] = |V(Cy)| = 3.
By Lemma 17, d(C1,C2) > 1. Let z € V(C)) and y € V(C5) be the
vertices with d(z,y) = d(C1,Cy). If d(z,y) > 2, then by Theorem
5, there is a yr(G)-function f such that {f(z), f(y)} = {1,2}, and
we easily obtain a contradiction. Thus d(z,y) = 1. Now vg(G) =
Yr(G + ab), where a € N(z) N V(C}), and b € N(y) N V(Cs), a
contradiction. a
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6 Graphs with any support vertex of degree
at least three

In this section we characterize yr-edge critical graphs with precisely
two cycles, minimum degree one, and any support vertex of degree
at least three.

Lemma 21. Let G be a ygr-edge critical graph with precisely two
cycles such that §(G) = 1 and any support vertez of G has degree at
least three. If x and y are two support vertices of degree 3, then x is
not adjacent to y.

Proof. Let G be a ygr-edge critical graph with precisely two cycles
C} and Cy. Assume that there are two adjacent support vertices x, y
with deg(z) = deg(y) = 3. Let z; be a leaf adjacent to z and y; be a
leaf adjacent to y. By Lemma 6 we can assume that z; € N(z) and
zp € N(y) are two vertices with deg(z;) > 1 for ¢ = 1,2. By Lemma
10, either 2; = 2z or z; € N(zg). If 21 = 29, then by Theorem 5,
there is a yg(G)-function f such that {f(z1), f(x1)} = {1,2}. By
Observation 3, f(z) = f(y) = f(21) = 0, a contradiction. Thus
21 # 29, and so 21 € N(z3). Assume that C} is the cycle with vertex
set {z,y, 21, 22}. Without loss of generality assume that d(zp, C2) =
d(Ci,C3). We show that deg(z;) > 3. Suppose that deg(z;) = 2. By
Theorem 5, there is a yg(G)-function f such that {f(y1), f(z1)} =
{1,2}. If f(z1) = 2, then by Observation 3, f(z) = f(z2) = 0, and
so f(z1) = f(y) = 1. Now g defined on V(G) by g(u) = f(u) if
u & {z,y, 21,71, 22}, 9(z) = 2, g(u) = 0 if u € N(z), and g(22) = 1
is an RDF for G of weight less than yr(G), a contradiction. Thus
f(z1) = 1 and f(y1) = 2. These easily produce a contradiction.
Thus deg(z1) > 3. By Lemma 6, deg(z;) = 3 and 2, is a support
vertex. Let w be the leaf adjacent to z;. By Theorem 5, there is a
~vr(G)-function f such that {f(y1), f(w)} = {1,2}. Without loss of
generality assume that f(w) = 2 and f(y;) = 1. By Observation 3,
f(z1) = f(z) = f(z2) = 0, and so f(y) = 1. But then f(z1) = 2.
This contradicts Observation 3. a

Lemma 22. Let G be a yp-edge critical graph with precisely two
cycles such that 6(G) = 1 and any support vertez of G has degree at
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least three. Then G has at most one support vertez on its cycles.

Proof. Assume that there are at least two support vertices on a cycle
Ci. By Lemma 18, G has precisely two adjacent support vertices
z,y on C;. By Lemma 21, we may assume that deg(z) = 3 and
deg(y) > 3. Thus there is a nontrivial path between z and y in which
any internal vertex of the path is of degree two. This contradicts
Lemma 18. a

Lemma 23. Let G be a yg-edge critical graph with precisely two
cycles such that 6(G) = 1 and any support vertex of G has degree at
least three. Then G has no support vertex on its cycles.

Proof. Assume that z is a support vertex on a cycle Cy. Let z; be
the leaf adjacent to z.

Case 1. deg(z) = 3. If any vertex in N(z) is of degree two, then by
Lemma 14, |V(C})| = 3, and this contradicts Lemma 17. Thus there
is a vertex y € N(z) with deg(y) > 3. By Lemma 22 any vertex of
V(C1) — {z,y} is of degree two. By Lemma 13, |V(C})| < 5. Let
z € N(y)NV(Cy)— {z}. By Theorem 5, there is a yg(G)-function f
such that {f(z1), f(2)} = {1,2}. By Theorem 2 and Observation 3,
f(z1) =1and f(z) =2, and f(u) =0 for u € N(2). If V(Cy)| = 3,
then g defined on V(G) by g(u) = f(u) if u € V(G) - {z,z,11},
9(z) = g(z1) = 0 and g(z) = 2, is an RDF for G of weight less than
Yr(G), a contradiction. If |V(C1)| = 4, then f(z) = 1, and g defined
on V(G) by g(u) = f(u) ifu € V(G)—{z, 2,21}, g(2) = 1, g(z1) = 0
and g(z) = 2, is an RDF for G of weight less than yg(G), a contradic-
tion. It remains to assume that |V(C;)| = 5. Let w € N(z)—{z1,y}.
Then f(w) + f(z) > 2. Now g defined on V(G) by g(u) = f(u) if
u € V(G) - {w,z, 21}, g(w) = g(z1) = 0 and g(z) = 2, is an RDF
for G of weight less than yg(G), a contradiction.

Case 2. deg(z) > 4. By Lemma 22, any vertex of V(C}) — {z} is of
degree two. By Lemmas 13, 15 and 17, we obtain that |V (C})| = 5.
Let N(z)NV(C,) = {y, z}. By Theorem 5, there is a yg(G)-function
f such that {f(y), f(2)} = {1,2}. Without loss of generality assume
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that f(z) = 2. Let w € N(2) — {z}. Then by Observation 3, f(z) =
f(w) = 0. Let b € N(y) — {z}. So f(z;) = f(b) = 1. Now g
defined on V(G) by g(v) = f(u) if v € V(G) - {y, z,w, z,21,b},
9(2) = g(y) = g(z1) = g(b) = 0, g(w) = g(z) = 2, is an RDF for G
of weight less than yr(G), a contradiction. O

The following is proved in a similar manner as in the proof of Lemma
23, and so we omit the proof.

Lemma 24. Let G be a «yr-edge critical graph with precisely two
cycles and 6(G) = 1. If there is a vertez z on a cycle Cy such that
any vertex of V(C1) — {z} is a support vertez or a vertez of degree
two, then G has no support vertex on Cj.

Now we are ready to give the main result of this section.

Theorem 25. Let G be a graph with precisely two cycles such that
6(G) =1 and any support vertex of G has degree at least three. Then
G is not yp-edge critical.

Proof. Assume that G is a yg-edge critical graph with precisely two
cycles C; and Cy. Let z € V(C;) and y € V(Cy) be two vertices
with d(z,y) = d(C}, C2). By Lemma 23, no vertex of Cy or C3 is a
support vertex. Since any support vertex is of degree at least three,
by Lemma 6, any vertex of V(C;) UV (C;) — {z,y} is of degree two.
By Lemmas 13 and 15, |V(C;)| € {3,5} for ¢ = 1,2. If |V(C})| = 5,
then by Lemma 16, d(z,y) = 0, a contradiction, since §(G) = 1. So
[V(C1)| = |V(C?)| = 3. If d(z,y) > 1, then by Theorem 5, there is a
Yr(G)-function f such that {f(z), f(¥)} = {1,2}. Assume, without
loss of generality, that f(z) = 1. Then f(u) = f(w) = 1, where
V(Ci) = {z,u,w}, a contradiction. Thus d(z,y) < 1. Thisis a
contradiction, since 6(G) = 1. a

7 Proof of Theorem 1

In this section we prove our main result namely Theorem 1. First it
is straightforward to see that H; and H, are ygr-edge critical. Let G
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be a yp-edge critical graph with precisely two cycles C; and C,. By
Theorem 20, §(G) = 1. Let zz;...z; be the longest path in G such
that deg(z;) = 1, deg(z;) =2 for i = 1,2,...,t — 1, and deg(z) > 2.
By Lemma 13, t < 3, and by Theorem 25, t € {2,3}. Let C(2) be the
set of all vertices of G of degree at least two which are adjacent to
a support vertex of degree two. By Lemma 11, G[C(2)] is complete.
We show that ¢ = 2.

Fact 1. t = 2.

Proof of Fact 1. Assume that ¢t = 3. Since G[C(2)] is complete, =
is the unique vertex with these properties. By Lemma 18, z is not a
support vertex. Assume that z € C(2). Let a be a support vertex of
degree two which is adjacent to =, and b be the leaf adjacent to a. Let
y € N(z)—{a, z1} be a vertex of degree more than one. By Theorem
5, there is a yr(G)-function f such that {f(x1), f(y)} = {1,2}, and
clearly f(z1) = 2 and f(y) = 1. Then f(a) + f(b) = 2, and ¢
defined on V(G) by g(z) = 2, 9(5) = 9(z2) = g(=3) = 1, g(v) = 0 if
v € N(z), and g(v) = f(v) if v &€ {z,y, 21, 29, 23, a, b}, is an RDF for
G of weight less that yg(G), a contradiction. Thus = € C(2).

Leta € V(C1) and b € V(C3) be two vertices with d(a, b) = d(Cj, Cs),
and let P the shortest path between a and b. We consider the fol-
lowing cases.

e Case 1. P contains z.

By Lemma 24, no vertex of C; is support vertex, for i =
1,2, and by Lemmas 13 and 15, |[V(C;)| € {3,5}, and C; has
|[V(C:)| — 1 vertices of degree two for i = 1,2. We show that
|[V(C1)| = 5. Suppose that |V(C1)| = 3. If d(z1,a) > 2,
then by Theorem 5, there is a yr(G)-function f such that
{#(z1), f(a)} = {1,2}, and clearly f(z:) = 2 and f(a) = 1,
and then we obtain a contradiction. Thus d(z;,a) = 1 and
so £; = a. Let aj € V(C1) N N(z). By Theorem 5, there
is a yr(G)-function f such that {f(z1), f(a1)} = {1,2}, and
clearly f(z;) = 2 and f(a;) = 1, and we obtain a contradic-
tion. We deduce that |V(C;)| = 5, and similarly |V(C2)| = 5.
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From Lemma 16, we obtain that a = b = z. Then yr(G) =
Yr(G + ab) = 8, where a,b € N(z) N V(C1), a contradiction.

e Case 2. P does not contain x. Without loss of generality
assume that z € V(C1), since deg(z) > 3, z ¢ C(2) and z is
not a support vertex. So any vertex of C5 is either a support
vertex, or a vertex of degree two. By Lemma 24, no vertex of
C, is support. Now by Lemmas 13 and 15, |[V(C?)| € {3,5}.
If |V(C2)| = 3, then by Theorem 5, there is a ygr(G)-function
[ such that {f(z1), f(b)} = {1,2}, and clearly f(b) = 1. Then
f(uv) = f(w) = 1, where V(C3) = {a,u,w}, a contradiction.
Thus |V(C32)| = 5. By Lemma 16, d(C;,C2) = 0. Let y,z €
N(a) — V(C;). By Lemma 19, deg(y) > 3, and y is not a
support vertex. This implies that 2 = y. By Theorem 5, there
is a yr(G)-function f such that {f(z1), f(¥)} = {1,2}, and
clearly f(z;) = 2. Then f(z) = 0, and f(a) + f(a1) + ... +
f(as) > 4, where V(C3) = {a,a1,...,as}. Now g defined on
V(G) by g(a) = g(az) = 2, g(y) = g(a1) = g(a3z) = g(as) =0,
and g(u) = f(u) for v € V(G) — {qa, a1, ..., a4, y}, is an RDF for
G, a contradiction. o

Thus t = 2, and therefore z € C(2). Since C(2) is complete, we may
assume without loss of generality that for any vertex u € V(C)—{a},
either deg(u) = 2, or u is a support vertex. By Lemmas 13, 15 and
24, |V(Cy)| € {8,5}. Let V(C1) = {a,ai,..,ai}, where [l = 2 or 4.
It is obvious that for any ygr(G)-function f, f(z) = 2. Using this,
it is a routine matter to obtain the following, and we omit the proofs.

Fact 2. If |V(C1)| = 3 and C; has two vertices of degree two, then
d(z,Cy) =1.

Fact 3. If |V(C})| = 5 and C) has four vertices of degree two, then
d((l), Cl) 7‘5 0.

Fact 4. V(C3) N C(2) € {b}.
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Proof of Fact 4. Assume that V(C3) N C(2) C {b}. By Lemmas
13, 15 and 24, |V(C;)| € {3,5}. Furthermore, C; has |V(C;)| — 1
vertices of degree two for 7 = 1, 2.

If [V(Cy)| = [V(Cs)| = 5, then by Lemma 16, d(C1,C;) = 1 and
{a,b} C C(2), or d(C}1,C3) = 0, since C; and C; have no vertex of
degree three. Suppose that d(C;,C2) = 1 and {a,b} C C(2). By
Lemmas 9 and 12, deg(a) = deg(b) = 4. By Theorem 5, there is
a vr(G)-function f such that {f(a1), f(b1)} = {1,2}, where b; €
N(b) nV(C3). Then w(f) > 11, while yg(G) < 10, a contradiction.
Thus we assume that d(C,C2) = 0. Let V(Cy) N V(C;) = {a}, and
let b, € N(a) N V(C2). By Theorem 5, there is a yg(G)-function
f such that {f(a1), f(01)} = {1,2}. Let V(C2) = {a,by,..., ba}.
Assume that f(a;) = 2. Then f(a3)+f(as)+f(b2)+f(b3)+f(bs) > 4.
Now g defined on V(G) by g(a) = g(a2) = g(b2) = 2, g(a1) =
g9(a3) = g(ag) = g(b1) = g(bs) = g(bs) = 0, and g(u) = f(u) if
u € V(G) - {a,b,a1,...,a4,b1, ...,b4}, is an RDF for G of weight less
than yg(G), a contradiction.

If [V(C1)| = |V(C2)| = 3, then by Lemma 17, d(C,C3) = 1, which
contradicts Fact 2. Thus we may assume that |V(C))| = 3 and
[V(C2)| = 5. By Fact 2, d(z,C1) = 1 and by Lemma 16, C has a
vertex of degree at least four. Consequently, d(z,Cs) = 0, contra-
dicting Fact 3. o

Thus V(Co) N C(2) € {b}. From Lemmas 13, 15 and 24, we ob-
tain that |[V(Cy)| € {3,5}, and by Lemma 16 and Facts 2 and 3,
[V(C1) nV(Cy)] = 1. Let V(C1) NV (C2) = {a}. We show that
V(Cyl=3.

Fact 5. |V(Cy)| = 3.

Proof of Fact 5. Suppose that |V(C1)| = 5. Let {y,2} C N(a) N
V(C2). By Lemma 19, we may assume, without loss of generality,
that deg(z) > 3, and z is not a support vertex. Now we consider y.

e (a) If y is a support vertex of degree three, then we let w €
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N(y) — {a,y1}, where y; is the leaf adjacent to y. If w is
a support vertex of degree 3, then by Lemma 10, |[V(C2)| =
4 and w is adjacent to z. Let w; be the leaf adjacent to
w. By Theorem 5, there is a yg(G)-function f such that
{f(w1), f(e1)} = {1,2}, and we can easily obtain a contra-
diction. Now suppose that deg(w) = 2. By Theorem 5, there
is a yr(G)-function f such that {f(ai1), f(as)} = {1,2}, and
we obtain a contradiction. If w € C(2), then by Lemmas 9 and
12, deg(w) = 3, and by Theorem 5, there is a yr(G)-function
[ such that {f(w), f(a)} = {1,2}, and clearly f(w) = 2. This
produces a contradiction. It remains to assume that y is ad-
jacent to z. By Theorem 5, there is a ygr(G)-function f such
that {f(a1), f(y1)} = {1, 2}, where y; is the leaf adjacent to y,
and this easily produces a contradiction.

(b) If deg(y) = 2, then we let h € C(2) (may be h = z). If
d(h,z) > 1, then by Theorem 5, there is a yr(G)-function f
such that {f(h), f(2)} = {1,2}, and clearly f(h) = 2. This
produces a contradiction. Thus d(h,z) < 1. If z € C(2), then
h € N(2)-V(C3), and by Theorem 5, there is a yg(G)-function
[ such that {f(h), f(¥)} = {1,2}, and clearly f(h) = 2. This
produces a contradiction. Thus z € C(2). If |V(C2)| > 6, then
we let w € N(y) — {a} and v € (N(w) N V(C?)) — {y}. By
Lemmas 10, and 14, deg(w) = 2. By Theorem 5, there is a
vr(G)-function f such that {f(2), f(a1)} = {1,2}, and we can
obtain a contradiction. Thus [V(C?)| < 5.

— If |V(C3)| = 3, then by Theorem 5, there is a yr(G)-
function f such that {f(a1), f(y)} = {1,2}, and so f(y)+
f(a)+ f(a1) +...+ f(aq) = 5. Then g defined on V(G) by
g9(a) = g(az) = 2, g(y) = g(a1) = g(a3) = g(as) = 0, and
g(u) = f(u) fore u € V(G) — {y,a,a1,...,a4} is an RDF
for G, a contradiction.

— If [V(Cy)| = 4, then V(C?) = {y,w, 2z,a}. If deg(w) =2,
then by Theorem 5, there is a yg(G)-function f such that
{f(a1), f(as)} = {1,2}. Then f(a) = 0, and either f(y) =
lor f(y)+ f(w) > 2. If f(y) = 1, then g defined on V(G)
by g(a) = g(az) = 2, g(a1) = g(as) = g(as) = 9(y) = 0,
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and g(u) = f(u) if v € V(G) - {y,q, a3, ...,a4} is an RDF
for G, a contradiction. Thus f(y) + f(w) > 2. Then g
defined on V(G) by g(a) = g(az) = 2, g(w) = 1, g(y) =
9(a1) = g(as) = g(as) =0, and g(uv) = f(u) ifu € V(G) -
{y,w,a,a1,...,a4} is an RDF for G, a contradiction. We
deduce that deg(w) > 2. If w is a support vertex, then
similarly we obtain a contradiction. It remains to assume
that w € C(2). Since G[C(2)] is complete, z € C(2), and
C(2) = {z,w}. By Lemmas 9 and 12, deg(w) = deg(z) =
3. By Theorem 5, there is a yr(G)-function f such that
{f¥), f(2)} = {1,2}. Then w(f) > 9, while 7r(G) = 8,
a contradiction.

- If |V(Cy)} = 5, then V(C2) = {y,w, 2,a,u}, where w €
N(y). If there is a support vertex in {u,w}, then by Lem-
mas 14, and 10, deg(w) = 2 and u is a support vertex. Let
uy be the leaf adjacent to u, and z; is a support vertex
adjacent to z. By Theorem 5, there is a yp(G)-function
f such that {f(z1), f(u1)} = {1,2}. This easily produces
a contradiction. This implies that either deg(u) = 2 or
u € C(2). If deg(u) = 2, then by Theorem 5, there is a
vr(G)-function f such that {f(u), f(a1)} = {1,2}. This
produces a contradiction. So we assume that u € C(2).
By Lemmas 9 and 12, deg(u) = deg(z) = 3. By Theorem
5, there is a yp(G)-function f such that {f(2), f(w)} =
{1,2}. Then w(f) > 10, while yg(G) < 9, a contradiction.

e (c) If y € C(2), then by Theorem 5, there is a yr(G)-function
f such that {f(y), f(a2)} = {1,2}, and clearly f(y) = 2. Then
f(a)+f(a1)+ f(a2)+ f(a3)+ f(as) > 4. Now g defined on V(G)
by g(a) = g(a1) = g(as) =0, g(az) =2, g(as) = 1 g(u) = f(u)
ifu € V(G)—{a,ai,...,a4} is an RDF for G of weight less than
Yr(G), a contradiction. This completes the proof of Fact 5. o

Thus |V(C1)| = 3. Let d(a, z) = d(Cy, z). By Fact 2, d(x,a) = 1. By
Fact 4, we may assume that z € V(C2) and V(C;) NV(C2) = {a}.
If [V(C2)| > 4, then we let b € (V(C2) N N(a)) — {z}. By Theorem
5, there is a yg(G)-function f such that {f(z), f(b)} = {1,2}, and
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clearly f(z) = 2. Then f(a) = 0, and so f(a;)+f(a2) = 2. Now g de-
fined on V/(G) by g(a) = 2, 9(e1) = g(az) = 9(8) = 0, g(w) = f(u) if
u € V(G) - {a, a1, as,b} is an RDF for G of weight less than ygr(G),
‘a contradiction. Thus |V(C?)| = 3. If deg(b) = 2, then by Theo-
rem 5, there is a yg(G)-function f such that {f(a1), f(b)} = {1,2}.
Then g defined on V(G) by g(a) = 2, g(a1) = g(a2) = g(b) = 0,
and g(u) = f(u) if u € V(G) — {a,a1,a2,b} is an RDF for G of
weight less than yg(G), a contradiction. Thus deg(b) > 3. If b be a
support vertex of degree three, then by Theorem 5, there is a yg(G)-
function f such that {f(a1), f(b)} = {1,2}. Then g defined on V(G)
by g(a) =2, g(a1) = g(as) = g(b) = 0, g(w) = 1, where w is the leaf
adjacent to b, and g(u) = f(u) if u € V(G) — {a, a1, ag,b} is an RDF
for G of weight less than yr(G), a contradiction. Thus b € C(2).
Since G[C(2)] is complete, C(2) = {z,b}. If deg(b) = 3, then by
Theorem 5, there is a ygr(G)-function f such that {f(ai1), f(b)} =
{1,2}, and clearly f(b) = 2. Then g defined on V(G) by g(a) = 2,
g(a1) = g(a2) = g(b) = g(w) =0, g(w) = 2, w is the support vertex
adjacent to b and w; is the leaf adjacent to w, and g(u) = f(u) if
u € V(G) - {a,a1,02,b,w,w; } is an RDF for G of weight less than
Yr(G), a contradiction. We conclude that deg(b) > 4. By Lemmas
9 and 12, deg(b) = 4. Similarly we obtain that deg(z) = 4. Now it
is straightforward to see that G € {Hi, Ha}.
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