Roman domination edge critical graphs having precisely two cycles*

Nader Jafari Rad

Department of Mathematics, Shahrood University of Technology, Shahrood, Iran

and

School of Mathematics
Institute for Research in Fundamental Sciences (IPM)
P.O. Box 19395-5746, Tehran, Iran
n.jafarirad@gmail.com

Abstract

A Roman dominating function on a graph G is a function $f:V(G)\to\{0,1,2\}$ satisfying the condition that every vertex u of G for which f(u)=0 is adjacent to at least one vertex v of G for which f(v)=2. The weight of a Roman dominating function is the value $f(V(G))=\sum_{u\in V(G)}f(u)$. The Roman domination number, $\gamma_R(G)$, of G is the minimum weight of a Roman dominating function on G. A graph G is said to be Roman domination edge critical or just γ_R -edge critical, if $\gamma_R(G+e)<\gamma_R(G)$ for any edge $e\not\in E(G)$. In this paper, we characterize all γ_R -edge critical connected graphs having precisely two cycles.

Keywords: Domination, Roman domination, Roman domination edge critical.

2010 Mathematical Subject Classification: 05C69.

^{*}The research was in part supported by a grant from IPM (No. 90050042).

1 Introduction

Let G = (V(G), E(G)) be a simple graph of order n. We denote the open neighborhood of a vertex v of G by $N_G(v)$, or just N(v), and its closed neighborhood by N[v]. For a vertex set $S \subseteq V(G)$, $N(S) = \bigcup_{v \in S} N(v)$ and $N[S] = \bigcup_{v \in S} N[v]$. For notation and graph theory terminology in general we follow [3].

For a graph G, let $f:V(G)\to\{0,1,2\}$ be a function, and let $(V_0;V_1;V_2)$ be the ordered partition of V=V(G) induced by f, where $V_i=\{v\in V(G):f(v)=i\}$ and $|V_i|=n_i$ for i=0,1,2. There is a 1-1 correspondence between the functions $f:V(G)\to\{0,1,2\}$ and the ordered partitions $(V_0;V_1;V_2)$ of V(G). So we will write $f=(V_0;V_1;V_2)$. A function $f:V(G)\to\{0,1,2\}$ is a Roman dominating function on G if every vertex G of or which G or which G is adjacent to at least one vertex G of G for which G is the value of G denoted by G is the minimum weight of a Roman dominating function on G and G denoted by G is the minimum weight of a Roman dominating function or G is called a G denoted by G function if it is a Roman dominating function on G and G function or G is the minimum dominating function on G and G function or G is a Roman dominating function on G and G function or G is a Roman dominating function on G and G function or G is a Roman dominating function on G and G function or G is a Roman dominating function on G and G function or G is a Roman dominating function on G and G function or G is a Roman dominating function on G and G function or G is a Roman dominating function on G and G function or G is a Roman dominating function on G and G function of G is a Roman dominating function on G and G function of G f

Roman domination edge critical graphs introduced by Hansberg et al. [4] and further studied in [1, 5, 6]. A graph G is said to be Roman domination edge critical, or just γ_R -edge critical, if $\gamma_R(G+e) < \gamma_R(G)$ for any $e \in E(\overline{G})$, where \overline{G} denotes the complement of G.

In this paper, we continue the study of γ_R -edge critical graphs, and characterize γ_R -edge critical connected graphs having precisely two cycles. In Section 3 we state some known results which we use for the next. In Section 4 we present some preliminary results. In Section 5 we show that there is no γ_R -edge critical graph with precisely two cycles and minimum degree at least two. In Section 6 we show that there is no γ_R -edge critical graph with precisely two cycles, minimum degree one, and any support vertex of degree three. In Section 7 we

prove the main result of this paper which is a full characterization of γ_R -edge critical graphs with precisely two cycles.

We recall that a *leaf* in a graph is a vertex of degree one, and a support vertex is one that is adjacent to a leaf. Let L(G) be the set of all leaves in a graph G, and S(G) be the set of all support vertices of G. Also for a graph G and a subset of vertices S we denote by G[S] the subgraph of G induced by S.

2 Main result

Let H_1 be the following graph shown in Figure 1, and H_2 be a graph obtained from H_1 by removing a leaf.

Figure 1. The graph H_1 .

We will prove the following.

Theorem 1. A graph G with precisely two cycles is γ_R -edge critical if and only if $G = H_1$ or H_2 .

3 Known results and Observations

In this section we state some known results and observations which we use for the next. The following is a fundamental theorem of Cockayne et al. [2].

Theorem 2 ([2]). Let $f = (V_0; V_1; V_2)$ be any γ_R -function on G. Then,

- (a) $G[V_1]$, the subgraph induced by V_1 , has maximum degree 1.
- (b) No edge of G joins V_1 and V_2 .

As consequences of Theorem 2 we have the following.

Observation 3. Let f be a $\gamma_R(G)$ -function.

- (1) If f(x) = 2 for a vertex x of degree 2, then f(z) = 0 for any $z \in N(x)$.
- (2) If f(x) = 2 for some leaf x, and $y \in N(x)$, then f(z) = 0 for any $z \in N[y] \{x\}$.

Observation 4. If xx_1x_2 is a path in a γ_R -edge critical graph G such that $\deg(x) \geq 2$, $\deg(x_1) = 2$ and $\deg(x_2) = 1$, then $f(x) \neq 1$ for any $\gamma_R(G)$ -function f.

Hansberg et al. [4] obtained the following results for γ_R -edge critical graphs.

Theorem 5 ([4]). A graph G is γ_R -edge critical if and only if for any two non-adjacent vertices x, y, there is a $\gamma_R(G)$ -function $f = (V_0; V_1; V_2)$ such that $\{f(x), f(y)\} = \{1, 2\}$.

Lemma 6 ([4]). Any support vertex in a γ_R -edge critical graph is adjacent to exactly one leaf.

Lemma 7 ([4]). The cycle C_n is γ_R -edge critical if and only if $n \in \{4,5\}$.

Hansberg et al. [5] continued the study of γ_R -edge critical graphs and obtained the following.

Lemma 8 ([5]). If x, y are two support vertices of degree 2 in a γ_R -edge critical graph and $z \in N(x) \cap N(y)$, then z is not a support vertex, and $\deg(z) \geq 3$.

Lemma 9 ([5]). If x, y are two support vertices of degree two in a γ_R -edge critical graph G, and $z \in N(x) \cap N(y)$ is a vertex with $\deg(z) \geq 4$, then $G[N(z) \setminus \{x,y\}]$ is a complete graph.

Lemma 10 ([5]). If x, y are two adjacent support vertices of degree 3 in a γ_R -edge critical graph, and $z_1 \in N(x) \setminus \{y\}$, $z_2 \in N(y) \setminus \{x\}$ are two vertices with $\deg(z_1) \geq 2$ and $\deg(z_2) \geq 2$, then either $z_1 = z_2$ or $z_1 \in N(z_2)$.

Lemma 11 ([5]). Let u and v be two support vertices in a γ_R -edge critical graph such that $\deg_G(u) = \deg_G(v) = 2$. If $u_1 \neq v$ is a non leaf adjacent to u, and $v_1 \neq u$, u_1 is a non leaf adjacent to v, then u_1 is adjacent to v_1 .

Lemma 12 ([5]). If u is a support vertex with $\deg_G(u) = 2$ in a γ_R -edge critical graph G, and v is a leaf such that u and v have a common neighbor z, then $G[N(z) \setminus \{u,v\}]$ is a complete graph.

Lemma 13 ([5]). If $x_1x_2x_3x_4x_5$ is a path in a γ_R -edge critical graph G such that $\deg_G(x_2) = \deg_G(x_3) = \deg_G(x_4) = 2$, then x_1 is adjacent to x_5 .

Lemma 14 ([5]). If x is a support vertex in a γ_R -edge critical graph, and y, z are two vertices adjacent to x such that $\deg(y) = \deg(z) = 2$, then y is adjacent to z.

4 Preliminary results

In this section we present some preliminary results.

Lemma 15. If a graph G contains a cycle $v_1v_2v_3v_4v_1$ as an induced subgraph such that $deg(v_i) = 2$ for i = 1, 2, 3 and $deg(v_4) > 2$, then G is not γ_R -edge critical.

Proof. Assume that a graph G contains a cycle $v_1v_2v_3v_4v_1$ as an induced subgraph such that $\deg(v_i)=2$ for i=1,2,3 and $\deg(v_4)>2$. Let $x\in N(v_4)-\{v_1,v_3\}$. Suppose that G is γ_R -edge critical. By Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(x),f(v_1)\}=\{1,2\}$. If f(x)=1, then $f(v_1)+f(v_2)+f(v_3)+f(v_4)\geq 3$ and g defined on V(G) by g(a)=f(a) if $a\not\in\{v_1,v_2,v_3,v_4,x\},\ g(v_4)=2,\ g(v_2)=1$, and $g(v_1)=g(v_3)=g(x)=0$, is an RDF for G of weight less than $\gamma_R(G)$, a contradiction. Thus f(x)=2. By Theorem 2,

 $f(v_4) = 0$. Now h defined on V(G) by $h(v_2) = 2$, $h(v_1) = h(v_3) = 0$, and f(u) = f(u) if $u \notin N[v_2]$, is an RDF for G of weight less than $\gamma_R(G)$, a contradiction.

Lemma 16. If a graph G contains a cycle $v_1v_2v_3v_4v_5v_1$ as an induced subgraph such that $\deg(v_i) = 2$ for i = 1, 2, 3, 4 and $\deg(v_5) = 3$, then G is not γ_R -edge critical.

Proof. Assume that a graph G contains a cycle $v_1v_2v_3v_4v_5v_1$ as an induced subgraph such that $\deg(v_i)=2$ for i=1,2,3,4 and $\deg(v_5)=3$. Let $x\in N(v_5)-\{v_1,v_4\}$. Suppose that G is γ_R -edge critical. By Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(x),f(v_2)\}=\{1,2\}$. If f(x)=1, then $f(v_1)+f(v_2)+f(v_3)+f(v_4)\geq 4$ and g defined on V(G) by g(a)=f(a) if $a\notin\{v_1,v_2,v_3,v_4,x\},\ g(v_5)=g(v_3)=2$, and $g(v_1)=g(v_2)=g(v_4)=g(x)=0$, is an RDF for G of weight less than $\gamma_R(G)$, a contradiction. Thus f(x)=2. Now $f(v_1)+f(v_2)+f(v_3)+f(v_4)+f(v_5)\geq 4$, and f(u)=f(u) if $u\notin N[v_2]\cup\{v_4\}$, is an RDF for G of weight less than $\gamma_R(G)$, a contradiction.

Lemma 17. If a γ_R -edge critical graph G contains an induced cycle C of length three with precisely one vertex (say x) of degree at least three, then G[N(x) - V(C)] is complete, and any vertex of N(x) - V(C) is of degree at least three.

Proof. Assume that a γ_R -edge critical graph G contains a cycle C: xv_1v_2x as an induced subgraph such that $\deg(v_1)=\deg(v_2)=2$ and $\deg(v_3)\geq 3$. Assume that G[N(x)-V(C)] is not complete, and let $a,b\in G[N(x)-V(C)]$ be two non-adjacent vertices. By Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(a),f(b)\}=\{1,2\}$. Without loss of generality let f(a)=1. Then $f(v_1)+f(v_2)+f(x)\geq 2$, and g defined on V(G) by g(x)=2, $g(a)=g(v_1)=g(v_2)=0$, and g(u)=f(u) if $u\neq\{x,a,v_1,v_2\}$, is an RDF for G of weight less than $\gamma_R(G)$, a contradiction. Thus G[N(x)-V(C)] is complete. Now let $a\in N(x)-V(C)$. By Theorem 5, there is a $\gamma_R(G)$ -function h such that $\{h(a),h(v_1)\}=\{1,2\}$. If h(a)=1, then h_1 defined on V(G) by $h_1(x)=2$, $h_1(u)=0$ if $u\in N(x)$, and $h_1(u)=h(u)$ if $u\notin N[x]$,

is an RDF for G of weight less than $\gamma_R(G)$, a contradiction. Thus h(a)=2 and $h(v_1)=1$. If $\deg(a)=1$, then h_1 , as defined above, is an RDF for G of weight less than $\gamma_R(G)$, a contradiction. Suppose that $\deg(a)=2$. Let $b\in N(a)-\{x\}$. Clearly $h(v_1)+h(v_2)+h(x)\geq 2$. Now h_2 defined on V(G) by $h_2(x)=2$, $h_2(u)=0$ if $u\in N(x)$, $h_2(b)=\max\{1,h(b)\}$, and $h_2(u)=h(u)$ if $u\not\in N[x]\cup\{b\}$, is an RDF for G of weight less than $\gamma_R(G)$, a contradiction.

Lemma 18. If x, y are two support vertices of a γ_R -edge critical graph G, then there is no path $xa_1a_2...a_ty$ between x and y such that $deg(a_i) = 2$ for i = 1, 2, ..., t.

Proof. Let x, y be two support vertices of a γ_R -edge critical graph G, x_1 be a leaf adjacent to x and y_1 be a leaf adjacent to y. Assume that there is a path $P: xa_1a_2...a_ty$ between x and y such that $\deg(a_i) = 2$ for i = 1, 2, ..., t. By Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(x_1), f(y_1)\} = \{1, 2\}$. Assume, without loss of generality, that $f(x_1) = 2$. Then by Observation 3, $f(x) = f(a_1) = 0$. If t = 1, then f(y) = 2 contradicting Theorem 2. Thus $t \geq 2$. Then $f(a_2) = 2$, contradicting Observation 3.

Lemma 19. Let G be a γ_R -edge critical graph G with precisely two cycles. If $C_1: xx_1x_2x_3x_4x$ is a cycle in G such that $\deg(x) = 4$ and $\deg(x_i) = 2$ for i = 1, 2, 3, 4, and C_2 is the another cycle such that $V(C_1) \cap V(C_2) = \{x\}$, then there is a vertex $y \in N(x) \cap V(C_2)$ such that $\deg(y) \geq 3$ and y is not a support vertex.

Proof. Let $V(C_2) \cap N(x) = \{y, z\}$. Assume that both y and z are support vertices. By Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(y_1), f(z_1)\} = \{1, 2\}$, where y_1 is the leaf adjacent to y, and z_1 is the leaf adjacent to z. Without loss of generality assume that $f(y_1) = 2$. Then $f(x)+f(x_1)+...+f(x_4) \geq 4$. Now g defined on V(G) by $g(y_1) = g(x_2) = g(x_3) = 1$, g(x) = 2, $g(x_1) = g(x_4) = g(y) = 0$, and g(u) = f(u) if $u \in V(G) - \{x, x_1, ..., x_4, y, y_1\}$, is an RDF for G of weight less than $\gamma_R(G)$, a contradiction. Thus we assume that z is not a support vertex. If $\deg(z) \geq 3$ then the proof is complete. Thus assume that $\deg(z) = 2$. If $\deg(y) = 2$, then by Lemma 17, $|V(C_2)| \geq 4$. By Theorem 5, there is a $\gamma_R(G)$ -function g_1 such

that $\{g_1(y),g_1(z)\}=\{1,2\}$, and this easily produce a contradiction. Thus $\deg(y)\geq 3$. We show that y is not a support vertex. Assume that y is a support vertex. Let y_1 be the leaf adjacent to y. If $|V(C_2)|=3$, then by Theorem 5, there is a $\gamma_R(G)$ -function g_2 such that $\{g_2(y_1),g_2(z)\}=\{1,2\}$, and this easily produces a contradiction. Thus $|V(C_2)|\geq 4$. Let $w\in N(y)-\{x,y_1\}$. If d(w,z)>1, then by Theorem 5, there is a $\gamma_R(G)$ -function f_1 such that $\{f_1(w),f_1(z)\}=\{1,2\}$ and we obtain a contradiction. Thus w is adjacent to z. By Theorem 5, there is a $\gamma_R(G)$ -function f_2 such that $\{f_2(y_1),f_2(z)\}=\{1,2\}$. This easily produces a contradiction. Thus y is not a support vertex and the proof is completed.

5 Graphs with no leaf

In this section we characterize γ_R -edge critical graphs with precisely two cycles and minimum degree at least two.

Theorem 20. If G is a graph with precisely two cycles and $\delta(G) > 1$, then G is not γ_R -edge critical.

Proof. Assume that G is a γ_R -edge critical graph with precisely two cycles C_1, C_2 , and $\delta(G) > 1$. By Lemma 13, $|V(C_1)| \leq 5$ and $|V(C_2)| \leq 5$. By Lemma 15, $|V(C_i)| \neq 4$ for i = 1, 2. Then $\{|V(C_1)|, |V(C_2)|\} \subseteq \{3, 5\}$.

If $|V(C_1)|=5$, then by Lemma 16, $d(C_1,C_2)=0$. By Lemma 17, $|V(C_2)|=5$. Let $x\in V(C_1)\cap V(C_2)$ and $N(x)\cap V(C_1)=\{y,z\}$. Then $\gamma_R(G)=\gamma_R(G+yz)=6$, a contradiction. Thus we assume that $|V(C_1)|\neq 5$ and similarly $|V(C_2)|\neq 5$. So $|V(C_1)|=|V(C_2)|=3$. By Lemma 17, $d(C_1,C_2)\geq 1$. Let $x\in V(C_1)$ and $y\in V(C_2)$ be the vertices with $d(x,y)=d(C_1,C_2)$. If $d(x,y)\geq 2$, then by Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(x),f(y)\}=\{1,2\}$, and we easily obtain a contradiction. Thus d(x,y)=1. Now $\gamma_R(G)=\gamma_R(G+ab)$, where $a\in N(x)\cap V(C_1)$, and $b\in N(y)\cap V(C_2)$, a contradiction.

6 Graphs with any support vertex of degree at least three

In this section we characterize γ_R -edge critical graphs with precisely two cycles, minimum degree one, and any support vertex of degree at least three.

Lemma 21. Let G be a γ_R -edge critical graph with precisely two cycles such that $\delta(G) = 1$ and any support vertex of G has degree at least three. If x and y are two support vertices of degree 3, then x is not adjacent to y.

Proof. Let G be a γ_R -edge critical graph with precisely two cycles C_1 and C_2 . Assume that there are two adjacent support vertices x, ywith deg(x) = deg(y) = 3. Let x_1 be a leaf adjacent to x and y_1 be a leaf adjacent to y. By Lemma 6 we can assume that $z_1 \in N(x)$ and $z_2 \in N(y)$ are two vertices with $\deg(z_i) > 1$ for i = 1, 2. By Lemma 10, either $z_1 = z_2$ or $z_1 \in N(z_2)$. If $z_1 = z_2$, then by Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(x_1), f(y_1)\} = \{1, 2\}$. By Observation 3, $f(x) = f(y) = f(z_1) = 0$, a contradiction. Thus $z_1 \neq z_2$, and so $z_1 \in N(z_2)$. Assume that C_1 is the cycle with vertex set $\{x, y, z_1, z_2\}$. Without loss of generality assume that $d(z_2, C_2) =$ $d(C_1, C_2)$. We show that $\deg(z_1) \geq 3$. Suppose that $\deg(z_1) = 2$. By Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(y_1), f(z_1)\} =$ $\{1,2\}$. If $f(z_1) = 2$, then by Observation 3, $f(x) = f(z_2) = 0$, and so $f(x_1) = f(y) = 1$. Now g defined on V(G) by g(u) = f(u) if $u \notin \{x, y, z_1, x_1, z_2\}, g(x) = 2, g(u) = 0 \text{ if } u \in N(x), \text{ and } g(z_2) = 1$ is an RDF for G of weight less than $\gamma_R(G)$, a contradiction. Thus $f(z_1) = 1$ and $f(y_1) = 2$. These easily produce a contradiction. Thus $deg(z_1) \geq 3$. By Lemma 6, $deg(z_1) = 3$ and z_1 is a support vertex. Let w be the leaf adjacent to z_1 . By Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(y_1), f(w)\} = \{1, 2\}$. Without loss of generality assume that f(w) = 2 and $f(y_1) = 1$. By Observation 3, $f(z_1) = f(x) = f(z_2) = 0$, and so f(y) = 1. But then $f(x_1) = 2$. This contradicts Observation 3.

Lemma 22. Let G be a γ_R -edge critical graph with precisely two cycles such that $\delta(G) = 1$ and any support vertex of G has degree at

least three. Then G has at most one support vertex on its cycles.

Proof. Assume that there are at least two support vertices on a cycle C_1 . By Lemma 18, G has precisely two adjacent support vertices x, y on C_1 . By Lemma 21, we may assume that $\deg(x) = 3$ and $\deg(y) > 3$. Thus there is a nontrivial path between x and y in which any internal vertex of the path is of degree two. This contradicts Lemma 18.

Lemma 23. Let G be a γ_R -edge critical graph with precisely two cycles such that $\delta(G) = 1$ and any support vertex of G has degree at least three. Then G has no support vertex on its cycles.

Proof. Assume that x is a support vertex on a cycle C_1 . Let x_1 be the leaf adjacent to x.

Case 1. deg(x) = 3. If any vertex in N(x) is of degree two, then by Lemma 14, $|V(C_1)| = 3$, and this contradicts Lemma 17. Thus there is a vertex $y \in N(x)$ with $\deg(y) \geq 3$. By Lemma 22 any vertex of $V(C_1) - \{x, y\}$ is of degree two. By Lemma 13, $|V(C_1)| \leq 5$. Let $z \in N(y) \cap V(C_1) - \{x\}$. By Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(x_1), f(z)\} = \{1, 2\}$. By Theorem 2 and Observation 3, $f(x_1) = 1$ and f(z) = 2, and f(u) = 0 for $u \in N(z)$. If $V(C_1) = 3$, then g defined on V(G) by g(u) = f(u) if $u \in V(G) - \{z, x, x_1\}$, $g(z) = g(x_1) = 0$ and g(x) = 2, is an RDF for G of weight less than $\gamma_R(G)$, a contradiction. If $|V(C_1)| = 4$, then f(x) = 1, and g defined on V(G) by g(u) = f(u) if $u \in V(G) - \{z, x, x_1\}, g(z) = 1, g(x_1) = 0$ and g(x) = 2, is an RDF for G of weight less than $\gamma_R(G)$, a contradiction. It remains to assume that $|V(C_1)| = 5$. Let $w \in N(x) - \{x_1, y\}$. Then $f(w) + f(x) \ge 2$. Now g defined on V(G) by g(u) = f(u) if $u \in V(G) - \{w, x, x_1\}, g(w) = g(x_1) = 0$ and g(x) = 2, is an RDF for G of weight less than $\gamma_R(G)$, a contradiction.

Case 2. $\deg(x) \geq 4$. By Lemma 22, any vertex of $V(C_1) - \{x\}$ is of degree two. By Lemmas 13, 15 and 17, we obtain that $|V(C_1)| = 5$. Let $N(x) \cap V(C_1) = \{y, z\}$. By Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(y), f(z)\} = \{1, 2\}$. Without loss of generality assume

that f(z) = 2. Let $w \in N(z) - \{x\}$. Then by Observation 3, f(x) = f(w) = 0. Let $b \in N(y) - \{x\}$. So $f(x_1) = f(b) = 1$. Now g defined on V(G) by g(u) = f(u) if $u \in V(G) - \{y, z, w, x, x_1, b\}$, $g(z) = g(y) = g(x_1) = g(b) = 0$, g(w) = g(x) = 2, is an RDF for G of weight less than $\gamma_R(G)$, a contradiction.

The following is proved in a similar manner as in the proof of Lemma 23, and so we omit the proof.

Lemma 24. Let G be a γ_R -edge critical graph with precisely two cycles and $\delta(G) = 1$. If there is a vertex x on a cycle C_1 such that any vertex of $V(C_1) - \{x\}$ is a support vertex or a vertex of degree two, then G has no support vertex on C_1 .

Now we are ready to give the main result of this section.

Theorem 25. Let G be a graph with precisely two cycles such that $\delta(G) = 1$ and any support vertex of G has degree at least three. Then G is not γ_R -edge critical.

Proof. Assume that G is a γ_R -edge critical graph with precisely two cycles C_1 and C_2 . Let $x \in V(C_1)$ and $y \in V(C_2)$ be two vertices with $d(x,y) = d(C_1,C_2)$. By Lemma 23, no vertex of C_1 or C_2 is a support vertex. Since any support vertex is of degree at least three, by Lemma 6, any vertex of $V(C_1) \cup V(C_2) - \{x,y\}$ is of degree two. By Lemmas 13 and 15, $|V(C_i)| \in \{3,5\}$ for i=1,2. If $|V(C_1)|=5$, then by Lemma 16, d(x,y)=0, a contradiction, since $\delta(G)=1$. So $|V(C_1)|=|V(C_2)|=3$. If d(x,y)>1, then by Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(x),f(y)\}=\{1,2\}$. Assume, without loss of generality, that f(x)=1. Then f(u)=f(w)=1, where $V(C_1)=\{x,u,w\}$, a contradiction. Thus $d(x,y)\leq 1$. This is a contradiction, since $\delta(G)=1$.

7 Proof of Theorem 1

In this section we prove our main result namely Theorem 1. First it is straightforward to see that H_1 and H_2 are γ_R -edge critical. Let G

be a γ_R -edge critical graph with precisely two cycles C_1 and C_2 . By Theorem 20, $\delta(G) = 1$. Let $xx_1...x_t$ be the longest path in G such that $\deg(x_t) = 1$, $\deg(x_i) = 2$ for i = 1, 2, ..., t - 1, and $\deg(x) > 2$. By Lemma 13, $t \leq 3$, and by Theorem 25, $t \in \{2, 3\}$. Let C(2) be the set of all vertices of G of degree at least two which are adjacent to a support vertex of degree two. By Lemma 11, G[C(2)] is complete. We show that t = 2.

Fact 1. t = 2.

Proof of Fact 1. Assume that t=3. Since G[C(2)] is complete, x is the unique vertex with these properties. By Lemma 18, x is not a support vertex. Assume that $x \in C(2)$. Let a be a support vertex of degree two which is adjacent to x, and b be the leaf adjacent to a. Let $y \in N(x) - \{a, x_1\}$ be a vertex of degree more than one. By Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(x_1), f(y)\} = \{1, 2\}$, and clearly $f(x_1) = 2$ and f(y) = 1. Then f(a) + f(b) = 2, and g(a) = 1 defined on f(a) = 1. Then f(a) = 1 if f(a)

Let $a \in V(C_1)$ and $b \in V(C_2)$ be two vertices with $d(a,b) = d(C_1, C_2)$, and let P the shortest path between a and b. We consider the following cases.

• Case 1. P contains x.

By Lemma 24, no vertex of C_i is support vertex, for i=1,2, and by Lemmas 13 and 15, $|V(C_i)| \in \{3,5\}$, and C_i has $|V(C_i)|-1$ vertices of degree two for i=1,2. We show that $|V(C_1)|=5$. Suppose that $|V(C_1)|=3$. If $d(x_1,a)\geq 2$, then by Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(x_1), f(a)\} = \{1,2\}$, and clearly $f(x_1) = 2$ and f(a) = 1, and then we obtain a contradiction. Thus $d(x_1,a) = 1$ and so $x_1 = a$. Let $a_1 \in V(C_1) \cap N(x)$. By Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(x_1), f(a_1)\} = \{1,2\}$, and clearly $f(x_1) = 2$ and $f(a_1) = 1$, and we obtain a contradiction. We deduce that $|V(C_1)| = 5$, and similarly $|V(C_2)| = 5$.

From Lemma 16, we obtain that a = b = x. Then $\gamma_R(G) = \gamma_R(G + ab) = 8$, where $a, b \in N(x) \cap V(C_1)$, a contradiction.

• Case 2. P does not contain x. Without loss of generality assume that $x \in V(C_1)$, since $\deg(x) \geq 3$, $x \notin C(2)$ and x is not a support vertex. So any vertex of C_2 is either a support vertex, or a vertex of degree two. By Lemma 24, no vertex of C_2 is support. Now by Lemmas 13 and 15, $|V(C_2)| \in \{3,5\}$. If $|V(C_2)| = 3$, then by Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(x_1), f(b)\} = \{1, 2\}$, and clearly f(b) = 1. Then f(u) = f(w) = 1, where $V(C_2) = \{a, u, w\}$, a contradiction. Thus $|V(C_2)| = 5$. By Lemma 16, $d(C_1, C_2) = 0$. Let $y, z \in$ $N(a) - V(C_2)$. By Lemma 19, $\deg(y) \geq 3$, and y is not a support vertex. This implies that x = y. By Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(x_1), f(y)\} = \{1, 2\}$, and clearly $f(x_1) = 2$. Then f(x) = 0, and $f(a) + f(a_1) + ... +$ $f(a_4) \geq 4$, where $V(C_2) = \{a, a_1, ..., a_4\}$. Now g defined on V(G) by $g(a) = g(a_2) = 2$, $g(y) = g(a_1) = g(a_3) = g(a_4) = 0$, and g(u) = f(u) for $u \in V(G) - \{a, a_1, ..., a_4, y\}$, is an RDF for G, a contradiction. \diamond

Thus t=2, and therefore $x \in C(2)$. Since C(2) is complete, we may assume without loss of generality that for any vertex $u \in V(C_1) - \{a\}$, either $\deg(u) = 2$, or u is a support vertex. By Lemmas 13, 15 and 24, $|V(C_1)| \in \{3,5\}$. Let $V(C_1) = \{a,a_1,..,a_l\}$, where l=2 or 4. It is obvious that for any $\gamma_R(G)$ -function f, f(x) = 2. Using this, it is a routine matter to obtain the following, and we omit the proofs.

Fact 2. If $|V(C_1)| = 3$ and C_1 has two vertices of degree two, then $d(x, C_1) = 1$.

Fact 3. If $|V(C_1)| = 5$ and C_1 has four vertices of degree two, then $d(x, C_1) \neq 0$.

Fact 4. $V(C_2) \cap C(2) \not\subseteq \{b\}$.

Proof of Fact 4. Assume that $V(C_2) \cap C(2) \subseteq \{b\}$. By Lemmas 13, 15 and 24, $|V(C_2)| \in \{3,5\}$. Furthermore, C_i has $|V(C_i)| - 1$ vertices of degree two for i = 1, 2.

If $|V(C_1)| = |V(C_2)| = 5$, then by Lemma 16, $d(C_1, C_2) = 1$ and $\{a,b\} \subseteq C(2)$, or $d(C_1, C_2) = 0$, since C_1 and C_2 have no vertex of degree three. Suppose that $d(C_1, C_2) = 1$ and $\{a,b\} \subseteq C(2)$. By Lemmas 9 and 12, $\deg(a) = \deg(b) = 4$. By Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(a_1), f(b_1)\} = \{1, 2\}$, where $b_1 \in N(b) \cap V(C_2)$. Then $w(f) \ge 11$, while $\gamma_R(G) \le 10$, a contradiction. Thus we assume that $d(C_1, C_2) = 0$. Let $V(C_1) \cap V(C_2) = \{a\}$, and let $b_1 \in N(a) \cap V(C_2)$. By Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(a_1), f(b_1)\} = \{1, 2\}$. Let $V(C_2) = \{a, b_1, ..., b_4\}$. Assume that $f(a_1) = 2$. Then $f(a_3) + f(a_4) + f(b_2) + f(b_3) + f(b_4) \ge 4$. Now g defined on V(G) by $g(a) = g(a_2) = g(b_2) = 2$, $g(a_1) = g(a_3) = g(a_4) = g(b_1) = g(b_3) = g(b_4) = 0$, and g(u) = f(u) if $u \in V(G) - \{a, b, a_1, ..., a_4, b_1, ..., b_4\}$, is an RDF for G of weight less than $\gamma_R(G)$, a contradiction.

If $|V(C_1)| = |V(C_2)| = 3$, then by Lemma 17, $d(C_1, C_2) = 1$, which contradicts Fact 2. Thus we may assume that $|V(C_1)| = 3$ and $|V(C_2)| = 5$. By Fact 2, $d(x, C_1) = 1$ and by Lemma 16, C_2 has a vertex of degree at least four. Consequently, $d(x, C_2) = 0$, contradicting Fact 3. \diamond

Thus $V(C_2) \cap C(2) \not\subseteq \{b\}$. From Lemmas 13, 15 and 24, we obtain that $|V(C_1)| \in \{3,5\}$, and by Lemma 16 and Facts 2 and 3, $|V(C_1) \cap V(C_2)| = 1$. Let $V(C_1) \cap V(C_2) = \{a\}$. We show that $|V(C_1)| = 3$.

Fact 5. $|V(C_1)| = 3$.

Proof of Fact 5. Suppose that $|V(C_1)| = 5$. Let $\{y, z\} \subseteq N(a) \cap V(C_2)$. By Lemma 19, we may assume, without loss of generality, that $\deg(z) \geq 3$, and z is not a support vertex. Now we consider y.

• (a) If y is a support vertex of degree three, then we let $w \in$

- $N(y)-\{a,y_1\}$, where y_1 is the leaf adjacent to y. If w is a support vertex of degree 3, then by Lemma 10, $|V(C_2)|=4$ and w is adjacent to z. Let w_1 be the leaf adjacent to w. By Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(w_1), f(a_1)\} = \{1,2\}$, and we can easily obtain a contradiction. Now suppose that $\deg(w)=2$. By Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(a_1), f(a_4)\} = \{1,2\}$, and we obtain a contradiction. If $w \in C(2)$, then by Lemmas 9 and 12, $\deg(w)=3$, and by Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(w), f(a)\} = \{1,2\}$, and clearly f(w)=2. This produces a contradiction. It remains to assume that y is adjacent to z. By Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(a_1), f(y_1)\} = \{1,2\}$, where y_1 is the leaf adjacent to y, and this easily produces a contradiction.
- (b) If $\deg(y)=2$, then we let $h\in C(2)$ (may be h=x). If d(h,z)>1, then by Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(h),f(z)\}=\{1,2\}$, and clearly f(h)=2. This produces a contradiction. Thus $d(h,z)\leq 1$. If $z\not\in C(2)$, then $h\in N(z)-V(C_2)$, and by Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(h),f(y)\}=\{1,2\}$, and clearly f(h)=2. This produces a contradiction. Thus $z\in C(2)$. If $|V(C_2)|\geq 6$, then we let $w\in N(y)-\{a\}$ and $u\in (N(w)\cap V(C_2))-\{y\}$. By Lemmas 10, and 14, $\deg(w)=2$. By Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(z),f(a_1)\}=\{1,2\}$, and we can obtain a contradiction. Thus $|V(C_2)|\leq 5$.
 - If $|V(C_2)| = 3$, then by Theorem 5, there is a $\gamma_R(G)$ function f such that $\{f(a_1), f(y)\} = \{1, 2\}$, and so $f(y) + f(a) + f(a_1) + ... + f(a_4) \ge 5$. Then g defined on V(G) by $g(a) = g(a_2) = 2$, $g(y) = g(a_1) = g(a_3) = g(a_4) = 0$, and g(u) = f(u) fore $u \in V(G) \{y, a, a_1, ..., a_4\}$ is an RDF for G, a contradiction.
 - If $|V(C_2)| = 4$, then $V(C_2) = \{y, w, z, a\}$. If $\deg(w) = 2$, then by Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(a_1), f(a_4)\} = \{1, 2\}$. Then f(a) = 0, and either f(y) = 1 or $f(y) + f(w) \ge 2$. If f(y) = 1, then g defined on V(G) by $g(a) = g(a_2) = 2$, $g(a_1) = g(a_3) = g(a_4) = g(y) = 0$,

and g(u)=f(u) if $u\in V(G)-\{y,a,a_1,...,a_4\}$ is an RDF for G, a contradiction. Thus $f(y)+f(w)\geq 2$. Then g defined on V(G) by $g(a)=g(a_2)=2$, g(w)=1, $g(y)=g(a_1)=g(a_3)=g(a_4)=0$, and g(u)=f(u) if $u\in V(G)-\{y,w,a,a_1,...,a_4\}$ is an RDF for G, a contradiction. We deduce that $\deg(w)>2$. If w is a support vertex, then similarly we obtain a contradiction. It remains to assume that $w\in C(2)$. Since G[C(2)] is complete, $z\in C(2)$, and $C(2)=\{z,w\}$. By Lemmas 9 and 12, $\deg(w)=\deg(z)=3$. By Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(y),f(z)\}=\{1,2\}$. Then $w(f)\geq 9$, while $\gamma_R(G)=8$, a contradiction.

- If $|V(C_2)| = 5$, then $V(C_2) = \{y, w, z, a, u\}$, where $w \in N(y)$. If there is a support vertex in $\{u, w\}$, then by Lemmas 14, and 10, $\deg(w) = 2$ and u is a support vertex. Let u_1 be the leaf adjacent to u, and z_1 is a support vertex adjacent to z. By Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(z_1), f(u_1)\} = \{1, 2\}$. This easily produces a contradiction. This implies that either $\deg(u) = 2$ or $u \in C(2)$. If $\deg(u) = 2$, then by Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(u), f(a_1)\} = \{1, 2\}$. This produces a contradiction. So we assume that $u \in C(2)$. By Lemmas 9 and 12, $\deg(u) = \deg(z) = 3$. By Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(z), f(w)\} = \{1, 2\}$. Then $w(f) \geq 10$, while $\gamma_R(G) \leq 9$, a contradiction.
- (c) If $y \in C(2)$, then by Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(y), f(a_2)\} = \{1, 2\}$, and clearly f(y) = 2. Then $f(a)+f(a_1)+f(a_2)+f(a_3)+f(a_4) \geq 4$. Now g defined on V(G) by $g(a)=g(a_1)=g(a_3)=0$, $g(a_2)=2$, $g(a_4)=1$ g(u)=f(u) if $u \in V(G)-\{a,a_1,...,a_4\}$ is an RDF for G of weight less than $\gamma_R(G)$, a contradiction. This completes the proof of Fact 5. \diamond

Thus $|V(C_1)| = 3$. Let $d(a, x) = d(C_1, x)$. By Fact 2, d(x, a) = 1. By Fact 4, we may assume that $x \in V(C_2)$ and $V(C_1) \cap V(C_2) = \{a\}$. If $|V(C_2)| \ge 4$, then we let $b \in (V(C_2) \cap N(a)) - \{x\}$. By Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(x), f(b)\} = \{1, 2\}$, and

clearly f(x) = 2. Then f(a) = 0, and so $f(a_1) + f(a_2) \ge 2$. Now g defined on V(G) by g(a) = 2, $g(a_1) = g(a_2) = g(b) = 0$, g(u) = f(u) if $u \in V(G) - \{a, a_1, a_2, b\}$ is an RDF for G of weight less than $\gamma_R(G)$, a contradiction. Thus $|V(C_2)|=3$. If $\deg(b)=2$, then by Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(a_1), f(b)\} = \{1, 2\}$. Then g defined on V(G) by g(a) = 2, $g(a_1) = g(a_2) = g(b) = 0$, and g(u) = f(u) if $u \in V(G) - \{a, a_1, a_2, b\}$ is an RDF for G of weight less than $\gamma_R(G)$, a contradiction. Thus $\deg(b) \geq 3$. If b be a support vertex of degree three, then by Theorem 5, there is a $\gamma_R(G)$ function f such that $\{f(a_1), f(b)\} = \{1, 2\}$. Then g defined on V(G)by g(a) = 2, $g(a_1) = g(a_2) = g(b) = 0$, g(w) = 1, where w is the leaf adjacent to b, and g(u) = f(u) if $u \in V(G) - \{a, a_1, a_2, b\}$ is an RDF for G of weight less than $\gamma_R(G)$, a contradiction. Thus $b \in C(2)$. Since G[C(2)] is complete, $C(2) = \{x, b\}$. If deg(b) = 3, then by Theorem 5, there is a $\gamma_R(G)$ -function f such that $\{f(a_1), f(b)\}=$ $\{1,2\}$, and clearly f(b)=2. Then g defined on V(G) by g(a)=2, $g(a_1) = g(a_2) = g(b) = g(w_1) = 0, g(w) = 2, w$ is the support vertex adjacent to b and w_1 is the leaf adjacent to w, and g(u) = f(u) if $u \in V(G) - \{a, a_1, a_2, b, w, w_1\}$ is an RDF for G of weight less than $\gamma_R(G)$, a contradiction. We conclude that $\deg(b) \geq 4$. By Lemmas 9 and 12, deg(b) = 4. Similarly we obtain that deg(x) = 4. Now it is straightforward to see that $G \in \{H_1, H_2\}$.

Acknowledgements

The paper was completed while the author was visiting ICTP, Italy, during August 2012 as a short-term visit. He gratefully acknowledges and sincerely thanks the ICTP for its support and hospitality during that period.

References

[1] M. Chellali, N. Jafari Rad, and L. Volkmann, Some Results on Roman Domination Edge Critical Graphs, Akce J. graphs and Combinatorics, 9 (2012), 195-203.