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Abstract

The Wiener index is the sum of distances between all pairs of vertices in
a connected graph. A cactus is a connected graph in which any two of
its cycles have at most one common vertex. In this article, we present
some graphic transformations and derive the formulas for calculating the
Wiener index of new graphs. With these transformations, we characterize
the graphs having the smallest Wiener index among all cacti given matching
number and cycle number.
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1. Introduction

All graphs considered in this paper will be finite, simple and undirected.
Undefined notations and terminologies can be found in [1]. Let G be a
connected graph with vertex set V(G) and edge set E(G) (so the vertex
number |V (G)| is its order). The cycle number of G is |E(G)| - |V(G)| +1.
A pendent vertex of G is a vertex of degree one and a pendent edge of
G is an edge incident to a pendent vertex. Two distinct edges of G are
independent if they are not adjacent in G. A matching of G is a set of
pairwise independent edges, while a mazimum matching of G is a matching
of maximum cardinality and the cardinality of a maximum matching of G
is its matching number. The distance de(u,v) between two distinct vertices
u and v of G is the number of edges on a shortest path connecting these
vertices in G. For convenience, set dg(u,u) = 0. The distance W(G,v) of
a vertex v € V(G) is the sum of distances between v and all other vertices
of G. Let degg(v) be the degree of vertex v and let Ng(v) be the set of all
adjacent vertices of v in G.
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The Wiener index W(G) of a connected graph G is a graph invariant
based on distances [2,3]. It is defined as the sum of distances between all
pairs of vertices of G:

we)= Y dc(u,v)=% S WG

{uv}CV(G) veV(G)

The Wiener index is the oldest topological index related to molecular
branching [4].
A quantity closely related to W(G) is the average distance u(G) defined
by
W(G)

uG) = W(zﬁ)l—)-

When G represents a network (e.g., an interconnection network connect-
ing many processors), ¢(G) is the average distance between the nodes (or
processors) of the network. Hence it is a measure of the average delay of
messages for traversing from one node to another (see, for example, [5]). It
is obvious that studying u(G) is equivalent to studying W(G).

There are two groups of closely related problems of the Wiener index
which have attracted the attention of researchers for a long time:

(a) how Wiener index depends on the structure of a graph;

(b) how Wiener index can be efficiently calculated, especially without
the aid of a computer (by so-called paper-and-pencil methods).

Many chemical applications of the Wiener index deal with acyclic or-
ganic molecules, whose molecular graphs are trees. Therefore, for trees
and hexagonal systems, the greatest progress in solving the above prob-
lems was made (see two recent surveys [6,7]). It is worth indicating that
many scholars have investigated the relations of Wiener index and some
isomorphic invariants of graphs, such as order, maximum degree, diameter,
degree sequence, matching number, et al. (see, for example, [8-18]).

Except trees, many results of the other graphs in solving the above
problems were also made. For example, Tang and Deng [19] characterized
the graphs having the first three smallest and largest Wiener indices among
all unicyclic graphs. Du and Zhou [18] determined the graphs having the
minimal Wiener index among all unicyclic graphs given order and matching
number. Balakrishnan et al. [5] presented an expression of W(G) for a
connected graph G with at least two cut vertices.

A connected graph is a cactus if any two of its cycles have at most
one common vertex. It is obvious that both trees and unicyclic graphs are
special cacti. For eigenvalues on some matrices associated cacti such as
adjacency (Laplacian or signless Laplacian) matrix, for example, see [20-
26]. Motivated by the results above, in this article we give some graphic
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transformations and derive the formulas for calculating the Wiener index
of new graphs, then we characterize the graphs having the smallest Wiener
index among all cacti given matching number and cycle number.

The rest of the article is organized as follows. In Section 2, we present
some graphic transformations and derive the formulas for calculating the
Wiener index of new graphs. In Section 3, we determine the graphs having
the smallest Wiener index among all cacti given matching number and
cycle number. In Section 4, we summarize our conclusions and indicate
some directions for future work.

2. Some transformations changing the Wiener index

In this section we present three graphic transformations and derive the

formulas for calculating the Wiener index of new graphs (see Theorems 2.4,
2.8 and 2.9), which have not been studied before and will be used in the
next section.
Definition 2.1. Let G, H be two connected graphs and let wv be a
nonpendent edge of G such that it is not contained in triangles. Let A
be the graph obtained from G and H by identifying u and a vertex @ of H
(still denote the new vertex by u). Let Ay, be the graph obtained from G
and H in the following way: delete uv, identify v and v, and denote the new
vertex by w; add an edge wz and identifying z and @ (still denote the new
vertex by z). We call the procedure from A to A,, an a; transformation of
Aat wv if |V (H)| =1 and the produce from A to A,, an a3 transformation
of A at wv if |V(H)| = 2. Diagrams from A to A,, are shown in Fig. 1 for
a cut edge uv of G.

A Auv
Fig. 1 Diagrams for a cut edge uv from A to A,,

Remark 2.2. Let M(B) be a maximum matching of a graph B and let
n(B) be the matching number of B. By the definitions of A and Ay, it is
not difficult to see the following facts.

(1) If |[V(H)| = 1, namely H = P, then n(A) = n(Auy») when uwv €
M(A) or one of u and v is not saturated by M(A).

(2) If [V(H)| = 2, namely H & P,, then 7(A) < n(Auy) < 7(A)+1. In
particular, n(A) = n{Ay,) when v is saturated by M(A).
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Let G be a connected graph and let uv be a nonpendent edge of G such
that it is not contained in triangles. For convenience, we define some fixed
notations as follows:

Vi = {z : 2 € V(G) and wv is not in each shortest path from u to z}.

Vo = {z: 2 € V(G) and wv is in some shortest path from u to z}.

N(a,V,) ={y:y €V, — {v} and uv is in some shortest path from a to
y}, where a € V.

N(Vy,b) = {z : z € V, — {u} and wv is in some shortest path from b to
z}, where be V,,.

Qu,v) = {(z,y) : x € V, — {u},y € V, — {v} and wv is in some shortest
path from z to y}.

O(u,v) = {z : z € V(G), dg(z,u) =dg(z,v)}.

Lemma 2.3. Let A and Ay, be the two graphs presented in Definition 2.1.
Then

(1) da(a,b)=4da, (a,b) ifa#banda,beV, ora,beV,.

(2) da(a,b)=da,,(a,b) Ifa#bandabe V(H).

(8) Vu—(N(Vu,v)U{u}) = O(u,v).

Proof. (1) We only prove the case of a,b € V,,. Assume, for a contradic-
tion, that the result does not hold. Then

J={(z,y) : x,y € Va,z # y and da(z,y) #da,, (z,9)} #0.

Assume that (a,b) € J such that da(a,b) = min{da(z,y) : (z,y) € J}.
Then by the definition of A,, we have that d4(a,b) = d4,,(a,b) + 1. This
indicates that there is a shortest path containing uv from a to b in A.
Denote such a shortest path by

Pa,b = Qqga a2 - - ar,

where ap = a, a, = b and r > 2. From the assumption of (a,b) we have
ay,ar_1 € V,. Since P, contains uv, assume, without loss of generality,
that v = a; and v = a;41. Then a;a;4; - a,_1a, is a shortest path con-
taining wv from v = a; to b = a,. So by the definition of V,, we get that
b e V,, a contradiction to the choice of b € V.

(2) By the definitions of A and A,, it is obvious that the result holds.

(3) Assume that z € ©(u,v), namely dg(z,u) = dg(z,v). It is easy
to see that all shortest paths in A from z to v and from z to v do not
contain the edge uv. Hence z € V,, and = & N(V,,v) | J{u}. It follows that
z €V, — (N(Va,v) U{u}). So we get

O(u,v) € Vu — (N(Va, v) | J{u}). (2.1)

Next assume that z € V,, — (N(Vy,v) U{v}). Denote the length of a
path P by l(P). Let P and P be two shortest paths in A from u to = and
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from v to z, respectively. Then uP is a path in A from u to z. Since uP
contains uv, by the definition of V,, and = € V,, we see that uP is not a
shortest path in A from u to z. Thus, I(P) < {(uP), namely I(P) < I(P).
Analogously, since vP is a path in A from v to z and contains uv, by
the definition of N(V,,v) and = ¢ N(V,,v) we also see that vP is not
a shortest path in A from v to z. It follows that I(P) < I(vP), namely
I(P) < l(P). Therefore, da(z,u) = l(P) = I(P) = dg(z,v). This indicates
that z € ©(u,v). So

Vi — (N(Va,v) | J{u}) € O(x,v). (2.2)

By Eqgs. (2.1) and (2.2) we complete the proof of (3). O
Theorem 2.4. Let A and Ay, be the two graphs presented in Definition
2.1. Then

W(A) = W(Aw) = 9z, v)] - [O(x,v)| = (IV(H)| - )([Vu] - 1). (2.3)
Proof. It is obvious that © € V;, and v € V,,. Set
g(a,b,z,y) = da(a,b) —da,, (z,¥), f(a,b)=W(A,a)— W(Au,b).
By Lemma 2.3 (1)-(2) we have

9(z,y,2,y) =0, z,y €V,. (2.4)
9(z,y,2,9) =0, =,y € V(H). (2.5)
g(:L‘,y, z’y) =0, T,y € Vv- (2.6)

For a € V;, — {u}, z € N(a,V,) — {v}, y € V, — (N(a, Vo) U{v}), by the
definition of N(a, V) it follows that da(a,z) = da,,(a,z) +1, da(a,y) =
da,,(a,y). So we have

g(a,z,a,2) =1, a€V, —{u}, =€ N(a,V,) - {v}. (2.7)

g9(a,7,6,7) =0, a€V,—{u}, z€V, - (N, V)| J{v})- (28)
In a similar way to obtain Eqs. (2.7) and (2.8) we also get

g(b,z,b,z) =1, beV, - {v}, =€ N(V,,b) - {u}. (2.9)

g(b,z,b,z) =0, beV, - {v}, z€Vu— (N(Vi,b)| J{u}). (210)

For arbitrary @ € V(H) and z € V,,, it is easy to see that there must exist
a shortest path containing uv in A from a to z. So we get

g9(a,z,a,2) =0, a€ V(H)—{u}, z€V,—{v}. (2.11)
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Also it is easy to see that

glu,z,w,z) =0, zeV, —{u}. (2.12)
g(u,z,w,z) =1, z eV, - {v}. (2.13)
9(u,z,w,z) = -1, =zeV(H)-{u}. (2.14)
g(v,z,z,z)=-1, =zeV,—{v} (2.15)
g(v,z,2z,2) =0, z € N(V,v). (2.16)
g(v,z,2,2) =1, z e V(H) - {u}. (2.17)

g(a,z,a,z)=-1, a€V,—{u}, z€ V(H) - {u}. (2.18)
For arbitrary a € V,,, b€ V, and q € V(A) — {u, v}, we also have

Vu = {u} = N(Va,b) Ve = (N(Va, ) ), (2.19)
Vo — {v} = N(a, Vo) Ve = (N (a, Vo)) | J{w})], (2.20)
fee)= D>, gezen)+ >, 94z,9,71)

eV, —{u} zeV,—{v}

+ Y 9(¢.2,9.2) +9(g, v q,0) +9(g,v,q,2). (221)

zeV(H)—{u}

Now let a € V,, — {u}, b€ V, — {v} and c € V(H) — {u}. By applying
Egs. (2.21), (2.4), (2.20), (2.8), (2.18), (2.12) and (2.7), we get

fle,@)=0+ Y glaz,a,z)+ Y (-1)+0+g(a,v,a,2)
z€N(a,V,) zeV(H)-{u}
=|N(a, V)| - (IV(H)| — 1) + 9(a, v, 0, 2). (2.22)
By applying Egs. (2.21), (2.19), (2.10), (2.6), (2.11), (2.13), (2.15) and
(2.9), we get
fb.b)= > g(b,z,bz)+0+0+1+(=1) = |N(V,,b)|. (2.23)
ze€N(V,,b)
By applying Eqs. (2.21), (2.18), (2.11), (2.5), (2.14) and (2.17), we get

flee)= D (-D)+0+0+(-1)+1=—(|Vi| ~1). (2.24)
€V, —{u}
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By applying Eqgs. (2.4), (2.13) and (2.14), we get

f(u’w) = Z g(u, z, w, IL‘) + Z g(“)“":w» 27)

z€V,—{u} z€Vy—{v}

+ Z g(u’z’w1 x) +g(u’vl w’ z)
z€V(H)={u}
=0+ (Vo -1) = (IV(H) -1) +0=|V,| - |[V(H)|.  (2.25)
By applying Egs. (2.19), (2.16), (2.15) and (2.17), we get
flv,2) = Z g(v,z,2,z) + z g(v,z,z,x)

z€Vu—{u} z€V,—{v}

+ Z g(v’m’z?z)-'-g(v’u’ z’w)

€V (H)—-{u}
= z g(v,:v,z,x)+ Z (_1) + Z 1+0
z€Vu—(N(Vaw) J{uh) z€V, ~{v} zeV(H)—{u}
= —|Vu = (N(Va,v) U{u})l = (Vo =)+ (V(H)] - 1). (2.26)

Therefore, from Egs. (2.22)-(2.26) we get

AW(A) - W(Auw) = D  fla,a)+ flu,w) + f(v,2)

a€V,—{u}
+ Z f(b’b)+ Z f(C,C)
beVoy={v} c€V(H)—{u}
= X (IN@Vl+g@vaz)+ > IN(Vib)
aeV,—{u} beV,—{v}

=2(IVa]| = D(V(H)| = 1) = [V = (N(Va, ) fuD)l-

Note that
U {@v):veN@V)}=uv)= |J {(=b):zeNVa,b}
eeV,—{u} beV,—{v}
> glav,az)= > 9(a,v,a,2)
a€V, —{u} zeVu—(N(Vy,0) J{uh)

= Vi = (N(Va,v) L)l
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So we get
W(A)=W (Au) = [, v)|— |V = (N (Va, v) | {u}) = (IV(H)|=1)(|Va]-1).

Therefore, by combining Lemma 2.3 (3) we arrive at Eq. (2.3). O
Corollary 2.5. Let A and A,, be the two graphs given in Definition 2.1
in which uv is a nonpendent cut edge of G.

(1) If|V(H)| =1, then we have that W(A,,) < W(A).

(2) If [V(H)| = 2, dega(u) > 3 and dega(v) > 3, then we have that
W(Au,) < W(A).
Proof. Now ©(u,v) = §. Let G, and G, be the two components of G —uv
containing u and v, respectively. Then

V, =V(Gy), V, =V(G,).

Qu,v) = {(z,y) :z e Vo — {u}, ye V, - {v}}.

(1) Since uv is a nonpendent edge of G, we have |V,,| > 2 and |V, | > 2.
Therefore, Q(u,v) # 0. From Eq. (2.3) it follows that

W(Au) = W(4) - [Q(u,v)| < W(A).

(2) Since dega(u) > 3 and dega(v) > 3, we have |V,,| > 2 and |V,| > 3.
Hence

[Q(w, )] = ([Val = D(IVal = 1) 2 2(Va] - 1).
From Eq. (2.3) it follows that

W(Auw) = W(A) = [Q(u,v)| + (Vu] = 1) S W(A) = (V] - 1) < W(A).

This proof is complete. O
Corollary 2.6. Let G be a cactus and let C = byby - - - byby be a cycle of G
with k > 6. Let C* be the component containing the vertez b; in G — E(C)
(1=1,2,---,k). Assume that A and Ay, are the two graphs presented in
Definition 2.1.

(1) Assume that k is an even number. If |V(H)| = 1, or |V(H)| = 2
and degg(bz) > 3, then we have W(Ap,) < W(A).

(2) Assume that k is an odd number. If |V(H)| = 1 and |V(C?)| +

V(CY)| > MRS o e have W(Abys,) < W(A).

Proof. Write [ = |£|. By the structure of C and k > 6, it follows that
©(b1,b2) = @ if k is an even number, ©(by,by) = V(C'+?) if k is an odd
number, and

k I+1
Ve, =V(CH (U V(€), Vi =] V(CY).
i={+2 i=2
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Therefore, again by the structure of C and k > 6 we get
Qb1,b2) 2 {(2,9) : € Wy, — ({1} (JO(1,82)), y € V(C?) — {b}}
@ w):ze V(€)= {81}, ye V(CHJV(CH}
(@ v) 1z € V(CH), y e V(CH)}.

So we deduce
|Q(b1,52)] = (Vo | - 1©(b1, b2)] = (IV(C?)| = 1) +2[V(C)| - 1. (2.27)
(1) At present ©(b;,b2) = 0.
Assume that |V(H)| = 1. Note that |Q(by,b2)| > 2|V(C!)| -1 2> 1 by

Eq. (2.27). So from Eq. (2.3) we immediately deduce W( Ay, 5,) < W(A).
Next assume that |V(H)| = 2 and degg(bs) > 3. It is obvious that

[V(C?)| 2 (dega(be) —2) +1 > 2.
So by Eq. (2.27) we have
1901, b2)| 2 (Vo | = 1) +2IV(CH)| =1 2 [V, |.
Therefore, from Eq. (2.3) we deduce
W (Ap,b,) = W(A) — b1, b2)| + ([Ve,| — 1) < W(A).
(2) At present O(by, by) = V(C't2). Note that
Vol 2 [V(CH| + [V(C)| + [V(C* )] + IV(CH2)| 2 ©(b1, ba)] +3,
so from |V(C1)| + |[V(C?)| > [|V(C™*?)| + 3] and Eq. (2.27) we deduce
|€2(b1, b2)| = 2(|V(C?)| — 1) + 2|V(CH)| = 1 2 |©(b1, b))
Hence by Eq. (2.3) we get
W (Abyb,) = W(A) — [Q(b1, b2)] +1©(b1, b2)| < W(A). O

Lemma 2.7 [5,6]. Let G be a connected graph with a cut-vertez u and let
G, and Gy be two connected subgraphs of G with V(G1)V(G2) = {u},
G1UG2 =G, ny = |V(G1)| and ng = |V(G2)|. Then

W(G) = W(G1) + W(G2) + (n1 — )W(G2,4) + (n2 - YW(G1, w).

Theorem 2.8. Let G be a connected graph and let u and v be two distinct
vertices of G in which u is a cut-vertez of G. Assume that Gy and G are
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two non-trivial connected subgraphs of G such that V(G,) N V(Gz2) = {u},
Gi1lUG2 =G and v € V(Gs). Write

n = IV(GI)') NG,(U) = {ul’u2a tee ’us}v
G' =G — {uuy,uuy, -, uu,} + {vuy, vug, - -+, vu,}.
Then
W(G)-W(G') = (n1 —1{[W(G,u)-W(G,v)]+(n1 —1)dg(u,v)}. (2.28)

In particular, if W(G,u) > W(G,v), then W(G) > W(G').
Proof. Denote the vertex u of G; by w. By Lemma 2.6 we get

W(G) = W(G1) + W(G2) + (IV(G2)| - YW(G1,w) + (rq — 1)W(G2, u).
W(G') = W(G1) + W(G2) + (IV(G2)| - YW (G1,w) + (m1 — 1)W(Ga,v).
Therefore, we have

W(G) = W(G') = (n1 - 1)[W (G2, u) — W(G2,v)]. (2:29)
It is easy to see that

W(Gu)= Y delau)+ Y, delbu)=W(Gu)+W(Gz,u).

a€V(Gy) beV(G2)
WG = S delav)+ Y do(bv)
a€V(Gy)—{u} beV(G2)

= W(G1,u) + (n1 — 1)dg,(u,v) + W(Ga,v).
So it follows that
W(G,u) - W(G,v) = [W(G2,u) — W(G2,v)] — (n1 — 1)dg, (u,v). (2.30)

Since dg,(u,v) = dg(u,v), by Egs. (2.29) and (2.30) we get Eq. (2.28). It
is obvious that the additional assertion holds from Eq. (2.28). O

ug

uz  u2 u2 u

uq uy uy
F Q
Fig. 2 Diagrams from F' to Q
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Theorem 2.9. Let G be a connected graph with at least two vertices,
including a vertex u, and let F, Q be the two graphs shown in Fig. 2. Then

W(F) - W(Q) = [V(G)| - 2. (2.31)

In particular, if |V(G)| 2 3, then W(Q) < W(F).
Proof. Write U = {u,u;,ug,u3,us}. Let H and N be the vertex-induced
subgraphs of U in F and Q, respectively. It is easy to see that

W(H)=16, W(H,u)=6, W(N)=17, W(N,u) =5.
By Lemma 2.7 we have
W(F) = W(H) +W(G) + ([V(H)| - DW(G,u) + (IV(G)| - 1)W(H,u)

=16+ W(G) + AW (G, u) + 6(]V(G)| - 1).
W(Q) =W (N)+W(G)+ ([V(N)| - DW(G,u) + (IV(G)| - 1)W(N, )
=17+ W(G) + 4W(G, u) + 5([V(G)| - 1).

Therefore, we easily get Eq. (2.31). If |V(G)| > 3, then from Eq. (2.31)
we immediately deduce W(Q) < W(F). O

3. On the minimal Wiener index of cacti

In this section we use the transformations given in Section 2 to deter-
mine the graphs having the smallest Wiener index in some types of cacti
(see Theorem 3.8, Corollaries 3.10 and 3.11), which have not been studied
before.

Let G be a connected graph. For two vertex-disjoint connected sub-
graphs G; and G2 of G, we call min{dg(a,b) : a € V(G1),b € V(G2)} the
distance of G; and G,. Let P = ugujusz - - - ux be a path of G with distinct
vertices ug, uy,-- -, ux. If

dege(ug) > 3,degg(u1) = - - - = degg(uep—1) = 2,dege(ur) = 1,

then we call P a pendent path of length k at up in G.

A cactus with at least two cycles is called a bundle if all of its cycles
have exactly one common vertex, which is called the center of the bundle.
Let G be a cactus. The base of G, denoted by G, is such a unique connected
subgraph of G that it has the same cycles as G and has not pendent edges.
A vertex v of G is called a branch verter of G if degs(v) 2 3.

Let C(n,m,r) be the set of all cacti with order n, matching number m
and cycle number r. Assume that Z is a cactus having the smallest Wiener
index in C(n, m,r). We assume that n > 10, m > 3 and also assume that
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T > 2 (otherwise, Z is a tree or unicyclic graph and Z has been determined
in (15,18]). Let M(Z) be a maximum matching of Z containing pendent
edges as most as possible. For a cycle C = byby---bib; of Z, from now
we always denote the component containing the vertex b; in Z — E(C) by
C? (i =1,2,---,k). In the next few lemmas we investigate the structural
properties of Z. .

Lemma 3.1. Each vertez of Z not in Z is on some pendent path of length
at most 2.

Proof. In order to prove the result, we only need to show the two following
claims.

Claim 1. Each pendent path of Z has length at most 2.

Suppose, for a contradiction, that there exists a pendent path vov; - - - v
of Z at vp with length k > 3. Then e = vk_3vk_3 is a nonpendent cut edge
of Z. By an o; transformation of Z at e, we obtain a cactus Z. with n
vertices and r cycles. From the assumption of M(Z), it is easy to see that
e € M(Z) or vi_3 is not saturated by M(Z). So by Remark 2.2 (1) we
have n(Z.) = 7(Z). Therefore, Z, € C(n,m,r). But by Corollary 2.5 (1)
we have W(Z,) < W(Z), a contradiction to the choice of Z.

Claim 2. Each vertex of Z not in Z is on some pendent path. .

Suppose, for a contradiction, that there are vertices of Z not in Z with
degree at least 3. Let u be such a vertex with the largest distance from Z
and let uvv’- - - be the unique shortest path from « to Z. By Claim 1 we
know that all other vertices adjacent to u except v are on pendent paths
of lengths at most 2.

Case 1 Suppose that Z has a pendent edge H = uu’ at u.

First assume that degz(v) > 3. By an a; transformation of Z at uv,
we obtain a cactus Z,, with n vertices and r cycles. By Remark 2.2 (2) we
have 7(Zyy) = m,m + 1.

If n(Zyy) = m, then Z,, € C(n,m,r), and from Corollary 2.5 (2) it
follows that W(Z,,) < W(Z), a contradiction to the choice of Z.

If n(Zyv) = m + 1, then by an a; transformation of Z,, at wz, we can
get a cactus N € C(n,m,r). But by Corollary 2.5 we have that W(N) <
W(Zyv) < W(Z), a contradiction to the choice of Z.

Next assume that degz(v) = 2. From degz(v) = 2 we know that vv’
is a cut edge of Z not in Z. By an a; transformation of Z at vv’, we get
a cactus Zyy Wwith n vertices and r cycles. By the assumption of M(Z)
we may assume that vu’ € M(Z). Then vv' € M(Z) or v is not saturated
by M(Z). It follows that 7(Zy) = n(Z) by Remark 2.2 (1). Therefore,
Zyy € C(n,m,r). But by Corollary 2.5 (1) we have W(Z,.) < W(Z), a
contradiction to the choice of Z.

Case 2 Suppose that Z has not pendent edges at u. .

From the assumption of u we see that uv is a cut edge of Z not in Z. By
an o, transformation of Z at uv, we get a cactus Z,, with n vertices and r
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cycles. From the assumption of M(Z) we also see that uv € M(Z) or u is
not saturated by M(Z). It follows that 7(Z,,) = n(Z) from Remark 2.2 (1).
Thus, Z,, € C(n, m,r). But by Corollary 2.5 (1) we have W(Z,,) < W(Z),
a contradiction to the choice of Z. O

For each v € V(Z), let ¥(v) and ¢(v) be the numbers of pendent edges
and pendent paths of length 2 at v in Z, respectively.

Lemma 3.2. (1) There erists at most a vertex u of Z such that ¢(u) #0
or P(u) > 2.

(2) The vertez u with ¢(u) # 0 or Y(u) > 2 is a branch vertex of 2.
Proof. (1) Suppose, for a contradiction, that there exist two distinct
vertices u and v of Z with ¢(u) # 0 or ¥(u) > 2 and ¢(v) # 0 or P(v) > 2.
Also assume, without loss of generality, that W(Z,u) > W(Z,v).

First assume that ¢(u) # 0. Let uu'v” be a pendent path of length 2
at v and put 2’ = Z — uv’ + vv/. Then Z’ € C(n, m,r) and by Theorem
2.8 we have W(Z') < W(Z), a contradiction to the choice of Z.

Next assume that ¥(u) > 2. Let uuj,uug,- -, Ulyy) be all pendent
edges at u. If v is saturated by M(Z), then write Z' = Z — uu; + vy,
otherwise set

Z' =7 — {uuy,uug, - -, vy} + {vur, vug, -+, Vg }

Then Z’ € C(n, m,r) and by Theorem 2.8 we have that W(Z') < W(Z), a
contradiction to the choice of Z.

(2) Suppose, for a contradiction, that the vertex u with ¢(u) # 0 or

¥(u) > 2 is not a branch vertex of Z. From r > 2 and the assumption

above we see that there is a cycle not containing u. Let C be a cycle not
containing u and having the largest distance from u. Denote a shortest path
connecting u and C by uzy- --v, where v € V(C). Write C = byba -+ - bbs
in which b, = v. From » € V(Z) and r > 2 we deduce [V(C')| > 5. By
the assumption of C it is not difficult to see that all of bs, b3, -, bk are
not branch vertices of Z. So by the result of (1) we have IV(Ci)| < 2 for
i=23,-,k.

If W(Z,u) > W(Z,v), then in a similar way to prove (1) we can get
contradictions.

Next assume that W(Z,v) > W(Z,u). If vby, vby & M(Z), then set

G' = Z — {vbg, vbr} + {uby, ubi}.

Clearly Z' € C(n,m,r) and by Theorem 2.8 we have that W(Z’) < W(2),
a contradiction to the choice of Z. Hence now assume, without loss of
generality, that vby € M(Z). Then by the assumption of M(Z) and vb; €
M(Z) it follows that there are not pendent edges at v and bs.

Let k > 4. By an a; transformation of Z at vb,, we get a cactus Zys,
with n vertices and r cycles. Since vby € M(Z), from Remark 2.2 (1) it
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follows that 7(Zys,) = n(Z). So Zy, € C(n,m,r). It is easy to see that
|9(v, b2)| > [{(z,9) : € V(C!) — {v},y e V(CI)} 2 4.

On the other hand, ©(v,by) = V(C**?) if k = 2/ + 1 is an odd number and
O(v,b2) = @ if k is an even number. So by Theorem 2.4 we have

W(Zup,) = W(Z) — [Q(v, b2)| + |O(v, b2)| < W(Z),

a contradiction to the choice of Z.

Let k = 3. If b3 has not pendent edges, set M’ = M(Z)—{vbz}+ {b2b3},
then M’ is a maximum matching of Z containing the same pendent edges as
M(Z) and vby,vby & M'. This becomes a case proved above. Now assume
that b3 has a pendent edge b3b/. Write Z/ = Z — bsb’ + vb'. Form the
assumption of M(Z) we deduce bsb’ € M(Z). Therefore, M' = M(Z) -
{vbg, bab’} + {bobs, vb'} is a matching of Z’ with |M’| = m. It follows that
Z' € C(n,m,7). It is easy to see that

W(Z,bs) =2+ |V(C)| + W(C!,v), W(Z,v) =4+ W(C!,v).

It is obvious that W(Z,b3) > W(Z,v). So by Theorem 2.8 we have that
W(Z') < W(Z), a contradiction to the choice of Z. O

D6 L6 Do Do

Gl Gz G3 G4
Gs Gs Gy Gs

G

Gy

Fig. 3 Diagrams in Lemma 3.3
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Lemma 3.3. Let G; and RN} be the graphs shown in Fig. 3 in which R
is a connected graph (including the vertex u) and each G; has at least 10
vertices (i =1,2,.--,10). Then

W(G1) > W(RNg); W(G1o) > W(RNG);

W(G;) > W(RN}), i =2,3;
W(G:) > W(RN3}), i =4,5;

W(G;) > W(RN}) or W(G;) > W(RNE), i =86,T,
W(G;) > W(RN?), i =8,9.

Proof. Put W(R,u) =y, |V(R)| = v and k = 2s +t. Applying Lemma
2.6, by direct calculations we get

W(RN?) =k(k+s+4) +3+W(R) + (k+2)u+ (k+s+2)(v — 1).
W(G1)=9+W(R)+4u+6v,  W(Gz)=18+W(R)+5u+8v,

W(Gs) =17+ W(R)+5u+9%,  W(Gy) =28+W(R)+6pn+12v,
W(Gs) =30+ W(R) +6u+ 11y, W(Gs) = 31 + W(R) + 6 + 10,
W(Gr) =29+ W(R) +6p+ 11y, W(Gs) =44+ W(R) + Tu + 14v,
W(Gy) =464+ W(R)+7u+13v,  W(Gyo) = 64+ W(R) +8u+ 16v.

Therefore, the results easily follow. O

Lemma 3.4. Let C = byby---bib; be a cycle of Z such that [V(C!)| > 2
and |V(C%)| <2 (i =2,8,---,k). Then C is a triangle and there ezists a
mazimum matching M’ of Z such that bybg,bib, & M'.

Proof. Suppose, for a contradiction, that k£ > 4. We distinguish two cases.

Case 1 Assume that k is an even number and set k = 21.

Case 1.1 Assume that ! > 3. If b; or by are not saturated by M(Z),
then write e = b1by. If some edge of C belongs to M(Z), then we also
denote such an edge by e. By an «; transformation of Z at e we obtain a
cactus Z, with n vertices and » cycles, and by Remark 2.2 (1) we also have
7(Ze) = 7(Z). Hence, Z, € C(n,m,r). But by Corollary 2.6 (1) we have
W(Z.) < W(Z), a contradiction to the choice of Z. Therefore, now assume
that both b; and b, are saturated by M(Z) and all edges of C' do not belong
to M(Z). At present by the assumptions of C we see that there exists a
unique pendent edge at by. Taking u = by, v = b; and H = C? in Theorem
2.4, then by an ay transformation of Z at byb; we obtain a cactus Zp,p,
with n vertices and r cycles. Since b; is saturated by M(Z), by Remark
2.2 (2) it follows that n(Zy,,) = 7(Z). Hence, Zy,p, € C(n,m,r). Note
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that degz(b;) > 3 from [V(C?)| > 2, so by Corollary 2.6 (1) we have that
W(Z,b,) < W(Z), a contradiction to the choice of Z.

Case 1.2 Assume that [ = 2. By n > 10, we get that |V(C')| > 4. By
the symmetry of vertices b, and b4, assume, without loss of generality, that
V(C?)| 2 [V(CY)].

Assume that b1by € M(Z) or one of b; and b is not saturated by
M(Z). By an o transformation of Z at by b; we obtain a cactus Z,5, with
n vertices and r cycles. From Remark 2.2 (1) we see that 7(Z,5,) = n(Z).
Thus, Zp,s, € C(n,m,r). Note that

O(b1,b2) =0, Qby,b2) 2 {(z,y):z€ V(C!) - {b1},y € V(C?)} #0,

so from Theorem 2.4 we deduce W(Zyp,) = W(Z) — |Q(b1, b2)| < W(Z), a
contradiction to the choice of Z. Analogously, if bjby € M(Z) or by is not
saturated by M(Z), then we can also get a contradiction.

Next assume that bybe,biby & M(Z) and all of by, by, by are saturated
by M(Z). It is obvious that at most one of bybz and bzbs belongs to M(Z).
So from |V(C?)| > |V(C*)| we deduce |V(C?)| = 2, i.e., there is a unique
pendent edge at by. Taking u = by, v = b; and H = C? in Theorem 2.4,
then by an a3 transformation of Z at byb;, we obtain a cactus Zp,;, with
n vertices and r cycles. Since b; is saturated by M(Z), by Remark 2.2 (2)
we have 7)(Zy,5,) = 17(Z). Therefore, Zy,5, € C(n,m,r). From |V(C!)| > 3
it follows that

|9(b2, b1)] = {(z,y) : = € Vb, — {ba},y € V(C!) = {b1}}] 2 2(|Vh,| - 1)
Note that [Vp,| > |[{b2} U V(G®)| = 2 and ©O(bs,b;) = @, so by Theorem 2.4

we deduce
W(Zoyp,) = W(Z) — |QUb1, ba)| + |Va,| = 1 S W(Z) — (|Va,| — 1) < W(2Z),

a contradiction to the choice of Z.

Case 2 Assume that k is an odd number and set k = 2/ + 1.

Case 2.1 Assume that ! > 3. If bjby € M(Z) or one of b; and by is not
saturated by M(Z), then by an ¢ transformation of Z at b;by we obtain
a cactus Zp,p, with n vertices and r cycles. From Remark 2.2 (1) we have
that 9(Zy,s,) = 7(Z). Therefore, Zy,p, € C(n,m,r). Since

VEYI+IV(CH) 23> 25 > (V(G"*2)] +3,

by Corollary 2.6 (2) we have W(Zp,,) < W(Z). Note that Zy,s, is a cactus
satisfying the conditions of Case 1.1, so we can get a contradiction by the
result of Case 1.1. If b;b, € M(Z) or by is not saturated by M(Z), then
in a similar way above we can get a contradiction. Hence now assume that

biby, biby & M(Z) and all of by, by and by are saturated by M(Z).
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Assume that by has not pendent edges. Since b, is saturated by M(Z),
it follows that bebs € M(Z). By an «; transformation of Z at babs we get
a cactus Zp,p, With n vertices and 7 cycles. From Remark 2.2 (1) we have
that 7(Zs,s,) = 7(Z). Therefore, Zp,p, € C(n, m,r). It is easy to see that

O (b2, b3) = C'*3, Q(by,b3) 2 {(z,9) :z € V(C), y € V(C)}.

Hence by [V(CY)| > 2 > |V(C'3)|, we get that |Q(b2, b3)| > |O(b2, bs].
So from Theorem 2.4 we deduce W(Zy,5,) < W(Z). Note that Zp,p, is a
cactus satisfying the conditions of Case 1.1, so we can get a contradiction
by the result of Case 1.1. Therefore, now assume that b, has a pendent edge
bobh. In a similar way above we can prove both b3 and b; have a pendent
edge. Taking v = by, v = b; and H = C? in Theorem 2.4, then by an a;
transform of Z at byb; we get a cactus Zpp, with n vertices and r cycles.
From Remark 2.2 (2) we get 7(Zs,5,) = 7(Z). Thus, Zp,s, € C(n,m,7).
Since O(bs,b;) = C*+2 and

Qb2,b1) 2 {(z,v) : z € Vo, — ({b2} [ J O(b2, b1)), v € V(C") — {01 }}

Ul(z,9) : 2 € V(C?), ye V(CH)),
it follows that
192(ba, b1)| 2 (|Vey | — [©(b2, b1)| — 1)(IV(CH)] - 1) + [V(C¥)| - [V(C¥)|
> (Veol = IV(CHD)] — 1) + 4. |
Therefore, by Theorem 2.4 we get
W(Zb,s,) < W(Z) +2(IV(C*?)| - 2) < W(2).

Note that Z,s, is a cactus satisfying the conditions of Case 1.1, so we can
get a contradiction by the result of Case 1.1.

Case 2.2 Assume that | = 2. For j = 2, 3,4, 5, since |[V(C7)| < 2, there
is an integer i ({ = 1,2,---,10) such that Z & G; in which R = C!. It
is easy to see that 7(Gs) = n(G7) = n(RN}) if u is saturated by M(2),
otherwise n(Ge) = n(G7) = n(RN}). In addition, we have that

7(G1) = n(RN}), n(G2) = n(Gs) = n(RN}), n(G4) = n(Gs) = n(RNy),
n(Gs) = n(Gs) = n(RNE), n(G10) = n(RNJ).

These indicate that there exist two nonnegative integers s, ¢ such that
RN} € C(n,m,r), and by Lemma 3.3 we have W(Z) > W(RN{), a con-
tradiction to the choice of Z.
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From the discussions above we get £k = 3. Assume, without loss of

generality, that b,b; € M(Z). Then by the assumption of M(Z) it follows
that there are not pendent edges at by. In a similar way to prove the case
on k = 3 in Lemma 3.2 (2), we see that b3 has not pendent edges. Hence
M' = M(Z) — {b1by} + {b2b3} is a maximum matching of Z that does not
contain b;by and b1bs. O
Lemma 3.5. Z is a bundle and each cycle of Z is a triangle.
Proof. Assume that Z is not a bundle. Then there exist two cycles of Z
that have not common vertices. Let C and C be such two cycles of Z that
they have the largest distance among all pairs of cycles without common
vertices. Denote a shortest path connecting C' and Cby P=uz- v,
where u € V(C) and v € V(C). Assume, without loss of generality, that
W(Z,u) > W(Z,v). Let ub and ud’ be the two edges incident to » in C. It
is obvious that u is a branch vertex of Z. By Lemmas 3.1 and 3.2 we see
that C satisfies the conditions of Lemma 3.4. So C is a triangle and there
is a maximum matching M’ of Z such that ub,ub’ & M’. Let

Z' =7 — {ub,ub'} + {vb,vb'}.

Then Z' € C(n,m,r) and by Theorem 2.8 we have W(Z') < W(Z), a
contradiction to the choice of Z. Therefore, Z is a bundle.

Let w be the center of Z. Since r > 2, it follows that degz(w) > 4. By
Lemmas 3.1 and 3.2 we see that each cycle C of Z satisfies the conditions
of Lemma 3.4. Hence C is a triangle. O
Lemma 3.6 [27]. If m <7 and G € C(n,m,r), thenm =71, n=2r +1,
each cycle of G is a triangle and each edge of G is contained in some
triangle.

Cn,m,r D,

Fig. 4 The two extremal cacti
Let Cn m,» and D, be the two cacti shown in Fig. 4. Then we have
W(Crmr)=(n+m—-r)(n-3)—r+4, W(D,)=(2r+1)r
Lemma 3.7. (1) Ifm>r+1, then Z=Cyppr.
(2) If m<r, then Z= D,.

Proof. By Lemmas 3.1,3.2 and 3.5 we see that Z is such a bundle that
all of its cycles are triangles, each vertex not in Z (if exist) is on some
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pendent path of length at most 2 and each vertex v of 7 except the center
has ¢(v) = 0 and 9(v) < 1.

(1) Suppose, for a contradiction, that Z % C, ;. Then there must
exist a triangle vyvow of Z, where w is the center of Z with degz(w) > 4
because of r > 2, such that ¥(v;) + ¥(v2) # 0.

Assume that ¥(v1)¥(v2) = 0. Assume, without loss of generality, that
¥(v1) = 1. In a similar way to prove the case on ¥ = 3 in Lemma 3.2 (2),
we get a contradiction.

Next assume that (v1) = ¥(v2) = 1. By a transformation descried in
Theorem 2.9, Z can be transformed into a cactus Z’ € C(n,m,r), and by
Theorem 2.9, we have that W(Z2') < W(Z), a contradiction to the choice
of Z.

(2) By Lemma 3.6 we see that Z has not pendent edges. Since Z is a
bundle whose each cycle is a triangle, it follows that Z = D,.. O

It has been proved that C, m 0 is the unique graph with the smallest
Wiener index in C(n,m,0) [15,18] and Cy m, is the unique graph with the
smallest Wiener index in C(n,m,1) [18]. Hence by Lemma 3.7 and the
assumption of Z we obtain the following main result in this section.
Theorem 3.8. Letn > 10, m > 3.

(1) Ifm >r+1, then Cp mr is the unique graph having the smallest
Wiener indez in C(n, m,r).

(2) Ifm <r, then D, is the unique graph having the smallest Wiener
indez in C(n,m,r).

From now denote the center of Cp m by w. Let wu;v; and ww; be all
pendent paths of length 2 and pendent edges in Cp,mr (1 <i<m—7—
1;1 < j <n-2m+1). Itis well known, for a connected graph G, that
W(G) > W(G + wv) if wv € E(G).

Corollary 3.9. Let C(n,m) denote the set of all cacti with order n > 10
and matching number m > 3.

(1) Ifn # 2m + 1, then Cpmm—1 is the unique graph having the
smallest Wiener index in C(n,m).

(2) Ifn =2m+ 1, then D, is the unique graph having the smallest
Wiener indez in C(n,m).

Proof. Let G € C(n,m) and let r be the number of cycles in G.

(1) From n # 2m+1 and Lemma 3.6 we see m > r+1. So by Theorem

3.8 (1) we have
W(G) 2 W(Caym,r), (3.1)

with equality if and only if G = Cy, -
On the other hand, since Cp mm-1 = Cn,m_,+U:':1"_1{wvi} € C(n,m),
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we have

m~r—1
W(Cnms) 2W(Camr+ |J {(w0i}) =W(Camm-1),  (3.2)
i=1
with equality if and only if m =7 + 1.
By Egs. (3.1) and (3.2) we get that W(G) > W(Cp m m—1), With equal-
ity if and only if G = C, yn,» and m =7 + 1, namely G = Cr, mm—1-
. (2) If m > r+1, then in a similar way to prove (1) we can obtain that
W(G) =2 W(Cyp,m,m—1). Since

Cnmm-1+ wiws = Dy, € C(n,m),

W(Cnmm-1) > W(Cp,m,m-1 + wiwe),

we have that W(G) > W(D,,).

If m <7, then by Lemma 3.6 we have m = r. So from Theorem 3.8 (2),
it follows that D,, is the unique graph having the smallest Wiener index
in C(n,m). O
Corollary 3.10. Let C(n) be the set of all cacti with order n > 10.

(1) Ifn is an even number and n = 2k, then Cok  x—) is the unique
graph having the smallest Wiener indez in C(n).

(2) Ifn is an odd number and n = 2k + 1, then Dy is the unique graph
having the smallest Wiener index in C(n).

Proof. Let G € C(n) and let m and r denote the matching number and
cycle number of G, respectively.

(1) Since n = 2k # 2m+1, from Corollary 3.9 (1) we get that W(G) >
W(Cp,m,m—-1), with equality if and only if G & C, . ;m—1. On the other

hand, since
k—m

Comm-1+ | {w2j-1w2;} = Cok e,
j=1
it follows that W (Cp m,m—1) = W(Cox.k,k—1), with equality if and only if
k = m. Therefore, we deduce W(G) > W(Cayk,x—1), with equality if and
only if G 2 C, ;n,m—1 and k = m, namely G 2 Co 4 k—1.
(2) If m > r+1, then by Theorem 3.8 (1) we have W(G) > W (Cp, m,»)-
On the other hand, from n > 2m +1 and n = 2k + 1 we see k > m. So

m—r—1 k-m+1
Cn,m,r + ( U {uivi}) U( U {w2j—lw2j}) & Dk)
i=1 j=1

It follows that W(Cp m ) > W(Dy). Therefore, we have W(G) > W(Dy).

If m <, then from Lemma 3.6 and n = 2k + 1 we deduce m = k. So
by Corollary 3.9 (2), it follows that W(G) > W(Dy), with equality if and
only if G= Dy. O
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4. Conclusion and future work

We give three graphic transforms described in Definition 2.1, Theorems
2.8 and 2.9, respectively, and derive the formulas for calculating the Wiener
index of new graphs. With the transforms we determine the graphs having
the smallest Wiener index among all cacti given order, matching number
and cycle number. To the best of our knowledge, the results above have
not been studied before. Moreover, the transforms are useful when we
investigate the Wiener index of some types of graphs. For example, let
U(n,d) be the set of unicyclic graphs with order n and diameter d. For
G € U(n,d), assume that G has a longest path P that does not contain
edges of the unique cycle. By applying the two transformations given in
Definition 2.1 and Theorems 2.8, it is easy to see that G can be transformed
into a unicyclic graph G’ € U(n,d) with W(G) > W(G'), where G’ is the
graph obtained from P by adding n—d—1 pendent edges to some 2-degree
vertex of P and connecting two new pendent vertices with an edge.

Future work: (i) determine the graphs having the smallest or largest
Wiener index among all unicyclic graphs with given diameter or number
of pendent vertices, (ii) characterize the graphs having the largest Wiener
index among all bicyclic graphs with given order.
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