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ABSTRACT. Let R be a commutative ring with non-zero identity.
The cozero-divisor graph of R, denoted by I'V(R), is a graph with
vertex-set W*(R), which is the set of all non-zero non-unit elements
of R, and two distinct vertices a and b in W*(R) are adjacent if and
only if a ¢ Rb and b ¢ Ra, where for ¢ € R, Rc is the ideal generated
by c. In this paper, we completely determine all finite commutative
rings R such that IV(R) is planar, outerplanar and ring graph.

1. INTRODUCTION

The investigation of graphs related to algebraic structures is a very large
and growing area of research. One of the most important classes of graphs
considered in this framework is that of Cayley graphs. These graphs have
been considered, for example, in [23], [24], [25], [26] for groups and in [14],
(18], [19] for semigroups. Let us refer the readers to the survey article
[22] for extensive bibliography devoted to various applications of the Cay-
ley graphs. In particular, the Cayley graphs of semigroups are related to
automata theory, as explained in [17] and the monograph [16]. Several
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other classes of graphs associated with algebraic structures have been also
actively investigated. For example, power graphs and divisibility graphs
have been considered in [20], [21). Graphs associated to rings have been
studied with respect to several ring constructions, see [13] and [15]. The
present article concentrates on zero-divisor graphs of rings that have been
investigated in [4], [5], [6], [7], [8], [9]-

Let R be a commutative ring with non-zero identity and let Z*(R) be
the set of all non-zero zero-divisors of R. Also suppose that W*(R) is the
set of all non-zero non-unit elements of R.

For an arbitrary commutative ring R, the cozero-divisor graph of R,
denoted by I'V(R), was introduced in [1], which is a dual of the zero-divisor
graph I'(R) “in some sense”. The vertex-set of IV(R) is W*(R) and, for
two distinct vertices a and b in W*(R), a is adjacent to b if and only if
a ¢ Rb and b ¢ Ra, where Rc is an ideal generated by the element ¢ in
R. In [1] and [2], some basic results on the structure of this graph were
obtained. Also, in (3], the situation where I''(R) is planar, outerplanar and
ring graph is investigated in the following cases:

(@) R is not local,
(B) R is a local ring such that the maximal ideal m of R is a principal
ideal, or |R| # 2 for k > 2.

As we mentioned at the end of (3], the remaining case is that m is not
principal and |R| = 2* for some k > 3. This is the situation that we study
for planarity of IV(R), and so we determine all finite commutative rings
such that I'(R) is planar. We also characterize all finite commutative rings
such that I'V(R) is an outerplanar graph or a ring graph.

Throughout the paper R is a finite commutative ring with non-zero
identity. Hence we have that W*(R) = Z*(R).

2. PLANAR, OUTERPLANAR AND RING GRAPH COZERO-DIVISOR GRAPHS

Recall that a graph is said to be planar if it can be drawn in the plane,
such that its edges intersect only at their ends. A subdivision of a graph is
any graph that can be obtained from the original graph by replacing edges
by paths. A remarkable characterization of the planar graphs was given by
Kuratowski in 1930. Kuratowski’s Theorem states that a graph is planar if
and only if it contains no subdivision of K5 or K3 3, where K, is a complete
graph with n vertices and K, ,, is a complete bipartite graph, with parts
of sizes m and n (cf. [10, p. 153)).

In [3], the present first and third authors characterized all finite non-local
rings with planar cozero-divisor graphs as follows.

Theorem 2.1. (3, Theorem 2.5] Let R be a non-local ring. Then I'(R) is
planar if and only if R is isomorphic to one of the following rings:
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Zs x Z2 X Zg,
Zy x F,Zy x Zs,Zy x (Z2[X)/(X?)),
Z3 x F,Z3 x Zs,Z3 x (Zo[X]/(X?)),
where IF is a finite field.

If (R, m) is a local ring, then the following results are proved in (3.

Theorem 2.2. (3, Theorem 2.6] Suppose that (R, m) is a local ring such
that m is a principal ideal. Then I''(R) is planar.

Theorem 2.3. (3, Theorem 2.9] Assume that (R, m) is a local ring such
that m is not principal. If |R| is odd, then I'(R) is not planar.

The only remaining case that is left as a question in [3] is the case
where m is not principal and |R| = 2¥, where k > 3. In this note we shall
completely determine such rings with planar cozero-divisor graphs. Hence
in the rest of the paper unless stated otherwise, we assume that (R, m) is
a local ring such that m is not principal and |R| = 2%, where k > 3. Also
S stands for a minimal generating set of m.

We first present the following lemma.

Lemma 2.4. Suppose that I'(R) is planar. Then |S| = 2 and, for each
a€S, |U(R)a| <2

Proof. If |S| > 2, then, for a,b,c € S, the induced subgraph of I''(R) with
vertex set {a, b, c,a+b,a+c} forms the complete graph K3, and so I''(R) is
not planar. So we may assume that S = {a,b}. Now, if [U(R)a| > 2, then
we consider three distinct vertices a,ua,va in U(R)a. Hence the induced
subgraph of I(R) with vertex sets {a, ua,va} and {b,a+b, a+ub} form the
bipartite graph K3 3, and so I'V(R) again is not planar. Thus |[U(R)a| < 2.
Similarly, we have [U(R)b| < 2. O

Theorem 2.5. Assume that I'(R) is planar. Then |R| < 16. Moreover,
if |R/m| =2, then |m/(0: a)| = |m/(0:b)| =2 and (0: a) # (0 : b), where
a and b belong to a minimal generating set of m.

Proof. Let S = {a,b}. By Lemma 2.4, we have |U(R)a|, [U(R)b| < 2. Now
one can easily see that R = (U(R) + U(R)) U U(R), which implies that
|Ra| < 6. Recall that there exists an isomorphism R/(0 : a) = Ra. Now
since (0 : a) C m, we have |R/m| < |R/(0 : a)| < 4. Similarly, we have
|R/m| < |R/(0:b)| < 4.

We have the following two cases.

Case 1. |R/m| = 4. In this case, we have |R/(0: a)| =4 = |R/(0: b)|.
Hencem = (0 : a) = (0: b). Thusm = {ra+ sb | r,s € U(R)}, and so
|m| £ 9. Therefore we have that jm| =8 or |m| = 4.

39



If jm| = 8, then we have |U(R)a| = 2 = |[U(R)}|. In this situation, we
have |{a,b, ua,ub}| = 4 and |{a + b,ua + b,a + ub,ua + ub}| = 3, where
u € U(R)\ {1}. Hence one can easily see that K3 3 is a subgraph of I'(R),
and so it is not planar. Thus [m| = 4, and so [R| = 16.

Case 2. |R/m| = 2. In this case, for each generator z € S, either
(0:z) =mor |m/(0: z)| = 2. Thus we have the following three situations.

() If (0: @) = m = (0 : b), then m® = 0, and so m = {0,a,b,a + b}.
Hence |R| = 8.

(ii) If (0 : @) = m and |m/(0 : b)| = 2, then clearly b # 0. Let n = (0 : b).
Then we have m = n U (n + b). We claim that 4> = 0. Suppose on the
contrary that b # 0. Then n+b = n+b% Thus b(1—b) € nand hence b € n
which is a contradiction. Therefore we have b = 0. We also have n2 = 0.
Now, we show that the vertices of the set {a,b,a + b,a + b%,a + b + %}
induce the complete graph Ks. If a € R(a+b%), then we have a = r(a+b?),
for some non-zero element » € R. Then (1 —r)a = rb%. If r € U(R),
then 1 —r € m, and so (1 —r)a = 0. Thus b? = 0, which is impossible.
Otherwise, 1 —r € U(R), and so a € Rb, which is again impossible. Hence
a ¢ R(a + b?). Similarly a + b ¢ Ra. Therefore the vertices a and a + b2
are adjacent. Now, if a = r(a + b + b?) for some non-zero element r € R,
then (1 — r)a = r(b+ b%). If r is not unit, then 1 — r is unit and a € Rb,
which is impossible. If r is a unit element, then we have b + b2 = 0 so that
b2 + b® = 0. This implies that b2 = 0, which is again impossible. Thus
a ¢ R(a+ b+ b?). Similarly, (a + b+ b%) ¢ Ra. Hence a is adjacent to
a + b+ b2. Now, by a similar discussion, it is easy to see that the vertices
of the set {a,b,a + b,a + b?,a + b + b?} induce the complete graph K.
Therefore I(R) is not planar in this situation.

If (0:b) = m and |m/(0 : a)| = 2, then we also get that I'V(R) is not
planar.

(iii) Suppose that [m/(0 : a)] = 2 = |m/(0 : b)|. We have the following
two situations:

(a) Assume that (0: a) = (0:b). Let n = (0: a). Then clearly a,b ¢ n.
Sowe have m =nU(n+a) =nU(n+b). Thusn+a =n+b Hence
b =a+ n, for some n € n. Now we have bz = az + nz = az for all £ € m.
In particular, we have a2 = ab = b2. We claim that a? € n. Suppose on the
contrary that a ¢ n. Then a®? + n =a+n. Thus a(1 —a) € n. Since 1 —a
is unit, we have that a € n, which is impossible. Hence a2 = ab = b2 € n.
Thus Rab = {0,ab}. Now one can easily see that

m = {c1a + cob+ czab|c; € {0,1}, forall 1 < i< 3}.

Hence |m| < 8. Since n = {0,a + b,ab,a + b + ab}, we have that [m| = 8.
Clearly, m = {0,a,b,ab,a + b,a + ab,b+ ab,a + b + ab}. We show that, in
this case, the vertices of the sets {a,a +a?,a + b} and {b,b+ 5% a+b+b?}
induce a subgraph isomorphic to K3 3, and so IV(R) is not planar. Clearly,



a ¢ R(b+b%). If b+b? = ra, for some r € R, then we have b = ra—ab € Ra,
which is impossible. So a and b + b? are adjacent. Similarly, b and a + a2
are adjacent. If @ = r(a + b+ b?), for some r € R, then we have (1—r)a =
r(b+b%). If 1 — r is unit, then a € Rb, which is impossible. If 7 is unit,
then we have b = 7~!(1 —r)a —ab € Ra, which is again impossible. Also, if
a + b+ b% = ra, for some r € R, then we have b € Ra, which is impossible.
Thus a is adjacent to a + b+ b. If a + a® = r(a + b+ b?), for some r € R,
then we have r(a + b + b%) = 0, whenever r € m, which is a contradiction.
Otherwise, r is unit and since 7b = a2 + (1 — r)a — rab, b € Ra, which is
impossible. Similarly, we have a +b+b? ¢ R(a+ a?). So a +a? is adjacent
to a+b+b2. Also, one can easily see that a+a? is adjacent to b+ b2. Now,
if a+b+4b? = r(a+b), then we have a+b+b2 = 0, whenever r € m, which is
impossible. Otherwise, r is a unit and (r —1)(a +b) = b%. Sincer —1 € m,
we have b2 = 0, which is impossible. Similarly, (a + b) ¢ R(a + b+ b%).
Also, one can easily check that a + b is adjacent to vertices b and b + b2.
Therefore I'V(R) has a subgraph isomorphic to K3 3 so that it is not planar.

(b) Suppose that (0:a) # (0:b). Let n = (0 : a)N (0 : b). Clearly
|m/n| = 4. Thus |(0 : a)/n| = |(0 : b)/n| = 2. Since the elements a and
a + b also generate m, we have [m/(0 : (a + b))] = 2. We claim that in
this situation |R| < 16. Since a,b,a +b ¢ n and |m/n| = 4, we have
m=nU(n+a)U(n+b)U(n+a+b). Hence we have (0:a) =nU(n+zx),
(0: b) = nU(n+y) and (0 : a+b) = nU(n+z), where {z,y, z} = {a,b,a+b}.
First suppose that there exist generators a,b of m with ab = 0. Then if
0O:a+b)=nU(m+a)or (0:a+b) =nU(n+b), then we get that
a,b € n, which is impossible. Hence we have (0: a+b) = nU (n+a +b).
Thus (a + b)®2 = 0 which implies that a® = b3 = a? + b2 = 0. Therefore
m = {ra + sb+ ta? | r,s,t € R}. Now one can easily check that |m| < 8,
and so |R| < 186.

Now, assume that, for each minimal generating set {c,d} of m, we have
cd # 0. Hence we have z = a, y = b and z = a+b. Thus a2 = b? = 2ab = 0.
Now, in this situation we have m = {ra + sb+tab | ,s,t € R}, and it is
easy to see that |m| < 8. Therefore |R| < 16.

Now since |m/n| = 4, we have that |m| = 8 and |R| = 16. [

Now it is enough to investigate the planarity of rings R with |R| < 16.

Proposition 2.6. If (R,m) is e local ring such that |R| = 2™ < 8, then
I'"(R) is planar.

Proof. The result is obvious as IV(R) has |m| — 1 < 3 vertices. O

Proposition 2.7. Let (R,m) be a local ring with 16 elements. ThenI'(R)
is planar if and only if R is isomorphic to one of the following rings:

Fi6, F4[X]/(22), Z2[X]/(X?),
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Zo|X,Y)/(X? - Y2, XY), Z2[ X, Y]/(X?,Y?), Z4[X]/(X* + X + 1),
Za[X)/(2X, X® — 2), Z4[X]/(X? - 2), Z4[X]/(X*? - 2X - 2),
Z4(X,Y]/(X?=2,XY,Y?-2,2X),Z4[X,Y]/(X? XY -2,Y?),Z4[X]/(X?),
Z4[X)/(X? - 2X), Zs[X]/(2X, X2 — 4), Zs6.

Proof. In [11], Corbas and Williams showed that the non-isomorphic local
rings with identity of order 16 are precisely the following 21 rings:
Fi6,Fa[X]/(2%), Z2[X]/(X*),

Zo[X,Y]/(X3, XY, Y?),Z[X,Y])/(X? - Y?,XY),Z,|X,Y]/(X?,Y?),
Z2[X,Y, Z)/(X,Y, 2)*, Za[X)/(X? + X + 1), Z4[X]/(2X, X? - 2),
Z4[X]/(X? - 2), Za[X]/(X® = 2X - 2), Z4[X,Y]/(X? - 2, XY, Y?,2X),
Z4[X,Y]/(X2 - 2)X},!Y2 - 2)2X)1Z4{X7Y]/(X23XY - 2,Y2)’
Z4|X)/(2X, X?), Za| X]/(X?), Z4[X)/(X? - 2X),
Z4|X,Y)/(2, X, Y)?, Zs[X]/ (2X, X?), Zs[ X]/(2X, X2 — 4), Zs6.

If R is one of the rings Fy6, F4[X]/(22), Z4[X]/(X2+ X +1), Z4[X] /(X2 -
2X —2),Z4[X]/(X%—2), then |m| < 4 and I'(R) is planar. Also, if R is one
of the rings Z1g, Z2[X]/(X*) or Z4[X]/(2X, X3 — 2), then m is principal
and by Theorem 2.2, I'(R) is planar. Now, a simple verification shows
that all of the following rings have isomorphic planar cozero-divisor graph,
which is presented in Figure 1.

(Zof X, Y /(X2 =Y, XY),m={0,X,Y, X +Y, X2, X + X2,Y + X2, X +
Y + X?%}),

(Zo|X,Y)/(X2,Y?),m = {0, X, Y, X+ Y, XY, X + XY, Y + XY, X +Y +
XY}),

(Z4[X,Y)/(X2-2,XY,Y2-2,2X),m = {0,2,X,Y, X +Y,2+ X,2+Y,2+
X+Y},

(ZaX, Y]/ (X%, XY -2,Y%),m = {0,2,X,Y,2+ X,24Y,2+ X +Y, X +Y}),
(Zo[X]/(X?),m = {0,2, X,2 + X,2X,2+ 2X,3X,2 + 3X}),

(Zo[X)/(X? - 2X),m = {0,2, X,2+ X,2X,2 4+ 2X,3X,2 + 3X}),
(Zs|X)/(2X, X2 — 4),m = {0,2,4,6,X,2+ X, 4+ X,6 + X}),

X +Y + X2

X+Y

X2 4y X2 X2 4+ X
®
Figure. 1, IV(Z5[X, Y]/(X2 - Y2,XY))
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In the other remaining six rings, the cozero-divisor graphs contain a
subdivision of K5, and they are not planar. O

Now, we have the following conclusion which completely characterizes
all finite commutative rings with planar cozero-divisor graphs.

Theorem 2.8. Let R be an arbitrary finite commutative ring. Then I''(R)
is planar if and only if R is a local ring with principal maximal ideal, R is
a local ring of order eight, or R is isomorphic to one of the following rings:

Zo[X, Y] /(X2 = Y2, XY),Z,[X,Y])/(X?,Y?),Z4X)/ (X% + X +1),
Z4[X,Y)/(X? - 2,XY,Y? - 2,2X),Z4(X,Y]/(X?, XY - 2,Y?),
Za[X)/(X?), Zo[X) /(X*? - 2X), Zs[X]/(2X, X2 —a),
Zy x Ly x Ly,
Zy x F,Zy x Tg,Zy x (Z2[X]/(X?)),
Zs x F,Z3 x Ly, Z3 x (Z2[X)/(X?)),
where IF is a finite field.

Let G be a graph with n vertices and g edges. We recall that a chord is
any edge of G joining two nonadjacent vertices in a cycle of G. Let C be a
cycle of G. We say that C is a primitive cycle if it has no chords. Also, a
graph G has the primitive cycle property (PCP) if any two primitive cycles
intersect in at most one edge. The number frank(G) is called the free
rank of G and it is the number of primitive cycles of G. Also, the number
rank(G) = g — n + r is called the cycle rank of G, where r is the number
of connected components of G. The cycle rank of G can be expressed as
the dimension of the cycle space of G. By [12, Proposition 2.2], we have
rank(G) < frank(G). A graph G is called a ring graph if it satisfies in one
of the following equivalent conditions (see [12]).

(i) rank(G) = frank(G),
(ii) G satisfies the PCP and G does not contain a subdivision of K4 as
a subgraph.

Also, an undirected graph is an outerplanar graph if it can be drawn in the
plane without crossings in such a way that all of the vertices belong to the
unbounded face of the drawing. There is a characterization for outerplanar
graphs that says a graph is outerplanar if and only if it does not contain a
subdivision of K4 or K3 3.

Clearly, every outerplanar graph is a ring graph and every ring graph is a
planar graph.

The following two theorems were proved in (3].
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Theorem 2.9. (3, Theorem 3.1] Let R be a non-local ring. Then I''(R) is
a ring graph if and only if R is isomorphic to one of the following rings:

Zg X Z2 X Zg,Zz X ]F,Zg X Z4,Z2 X (Zz[X]/(XZ)),Z;g X Zs3.

Theorem 2.10. (3, Theorem 3.2] Let R be a non-local ring. Then I''(R)
is outerplanar if and only if R is one of the following rings:

Zo x F,Zs x Ly, Za x (Z2[X]/(X?)),Z3 x Zs.

Now since we determined all finite commutative rings with planar cozero-
divisor graphs, we can characterize all finite commutative rings such that
their cozero-divisor graphs are ring graph and outerplanar. Note that, all
local rings of order 16 with planar cozero-divisor graphs, such that their
maximal ideal is not principal, contain a subdivision of K33, and so they
are not outerplanar, while one can easily check that they are ring graphs.

Now, by Theorem 2.8 in conjunction with Theorems 2.9 and 2.10, we
have the following result.

Theorem 2.11. Let R be an arbitrary finite commutative ring.

(i) T'(R) is ring graph if and only if R is a local ring with principal
mazimal ideal, R is a local ring of order eight, or R is isomorphic
to one of the following rings:

Za[X,Y]/(X? = Y2, XY), Zo[X, Y)/(X2,Y'2), Z4[X] /(X2 + X + 1),
Zg[X,Y)/(X? -2, XY,Y? - 2,2X), Z4[X, Y]/(X2, XY —2,Y?),
Z4[X]/(X?),Z4[X)/(X? - 2X), Zg[ X/ (2X, X* - 4),

Zy x Ly x Ly, Ty x F, Zy x Zs,

Zz x (22[X]/(X?)), Z3 x Zs.

(i) T'(R) is outerplanar if and only if R is a local ring with principal
magzimal ideal, R is a local ring of order eight, or R is isomorphic
to one of the following rings:

F16,I"(Z2[X]/(X*)), " (Za[X)/(2X, X® - 2)),T(Zss),
Zy x F,Zy x Zyg, Ly x (ZoX]/(X?)), Zs x Zs.

Acknowledgments. The authors are grateful to the referee for careful
reading of the manuscript and helpful suggestions.
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