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Abstract

For a positive integers d > 1, an L(d, 1)-labeling of a graph G is an
assignment of nonnegative integers to V(G) such that the difference
between labels of adjacent vertices is at least d, and the difference
between labels of vertices that are distance two apart is at least 1.
The span of an L(d, 1)-labeling of a graph G is the difference between
the maximum and minimum integers used by it. The minimum span
of an L(d, 1)-labeling of G is denoted by Az(G). In [17], we obtained
that rA+1 < M(G(rF5)) < rA+2, M(G(rP;)) = rA+1for k > 6; and
MG(rPs)) < (A+ )r+1, MG(rPs)) £ (A +1)r + A for any graph
G with maximum degree A. In this paper, we will focus on L(d, 1)-
labelings-number of the edge-multiplicity-path-replacement G{(rP)
of a graph G for r > 2,d > 3 and k£ > 3. And we show that the
class of graphs G(rPx) with k > 3 satisfies the conjecture proposed
by Havet and Yu [7].

Keywords: channel assignment; L(d, 1)-labeling; (d, 1)-total label-
ing; the edge-multiplicity-path-replacement.

1 Introduction

In the channel assignment problem, we need to assign frequency bands

to transmitters, if two transmitters are too close, interference will occur
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if they attempt to transmit on close frequencies. In order to avoid this
situation, the separation of the channels assigned to them must be sufficient.
Moreover, if two transmitters are close but not too close, the channels
assigned must be different. In one such model, an L(d, 1)-labeling of G is
employed, which is an integer assignment f to the vertices of G such that
for all u,v in V(G), dg(u,v) = 1 implies | f(u) — f(v)| > d, and dg(u,v) =2
implies |f(u) — f(v)| = 1. The minimum span of an L(d, 1)-labeling of G is
denoted by Aq(G). In 1992, Griggs and Yeh introduced this labeling with
d = 2 in [3]. This notion has been studied many times and gives many
challenging problems (1,4, 5,8-12, 14, 19, 20].

In particular, in 1995, Whittlesty, Georges and Mauro [20] studied the
L(2,1)-labeling of the incidence graph of G, which is the graph obtained
from G by replacing each edge by a path of length 2. The L(2, 1)-labeling of
the incidence graph of G is equivalent to an assignment of integers to each
element of V(G) U E(G) of G such that: (i) any two adjacent vertices of G
receive different integers; (ii) any two adjacent edges of G receive different
integers; and (iii) a vertex and its incident edge receive integers that differ
by at least 2 in absolute value. This labeling is called (2,1)-total labeling
of G, which was introduced by Havet and Yu in 2002 [6,7] and generalized
to the (d,1)-total labeling of a graph G. They [7] obtained the bound
A+d-1<2T(G) <2A +d—1 and gave the conjecture as follows. It is
sufficient to prove the conjecture for A > d. Havet and Yu [7] completed
the proof of the conjecture for A < 3 by proving that A\I(G) < 6 if A < 3.

Conjecture 1.1 [7] For any graph G, MY(G) < A +2d - 1.

For r > 1 and k > 3, the edge-multiplicity-paths-replacement G(r Py)
of a graph G is a graph obtained by replacing each edge uv with r vertex-
disjoint paths Pi: uzi zi2 --- x5 2, where i = 1,2,---r. Note that the
vertices of G are called as the nodes of G(rP:). It is easily seen that
G(rPyp—,) is the incidence graph of G(rP;), and for rA > 2, the maximum



degree of G(rP;) is A where A is the maximum degree of G. We can
consider G(rP;) with r = 1 as the edge-path-replacement of a graph G.

In (13,15, 16], the authors worked on L(d,1)-labéling-number of the
edge-path-replacement G(P;) of a graph G, which is a graph obtained by
replacing each edge with a path P.. We [17] obtained that 7A + 1 <
MG(rPs)) < rA +2, M(G(rP)) =rA+1 for k > 6; and A(G(rPy)) <
(A+1)r+1, M(G(rP3)) < (A +1)r + A for any graph G with maximum
degree A.

In this paper, we will focuses on L(d, 1)-labeling-number of the edge-
multiplicity-path-replacement G(rP;) of a graph G for r > 2, d > 3 and
k > 3. The same bounds are also used to show that the class of graphs
G(rPy) with k > 3 satisfies Conjecture 1.1.

Note that A\y(G(rPs)) 2 rA +d — 1, since G has a subgraph which is

a star Kj ,.a. In the following section, suppose > 2 and d > 3.

2 k27
21 rA>dand k> 7

Theorem 2.1 Suppose r > 2 andrA > d. Then M\(G(rPx)) =rA+d—1
fork>11, rA+d—1< A(G(rF)) < rA +d for 7 < k < 10.

Proof. It suffices to give an L(d, 1)-labeling f of the edge-multiplicity-
path-replacement G(r P;) with span rA+d—1 for k > 11 and 7A > d. we
give an L(d, 1)-labeling f of the edge-multiplicity-path-replacement G(rP)
with span 7A + d — 1 as follows. Label its nodes with 0, And label their
adjacent vertices i1, and xvs? in G(rP:) in [d+ (i — 1)A,d +iA — 1] for
each i € {1, 2, .-+, r}. Similar to the proof of theorem 2.2 in (16], it is
easily to prove that all the paths P can be labeled in [0,7A + d — 1}, since
rA+d—1>2d for A > d. Then f is obviously an L(d, 1)-labeling of the
edge-multiplicity-path—replaéement G(rP;) with span rA+d—1for k > 11
and rA > d. Hence A\g(G(rP)) =rA+d—1for k> 11 and rA > d.



For 7 < k < 10, we give an L(d, 1)-labeling f of the edge-multiplicity-
path-replacement G(rP;) with span rA + d as follows. Label its nodes
with 0, And label their adjacent vertices i1, and zi% in G(rP) in [d +
(t—1)A+1,d+iA] for each i € {1, 2, ---, r}. Similar to the proof of
theorem 2.3 in [16), it is easy to prove that all the paths P, can be labeled
in [0,7A + d], since TA +d > 2d + 1 for rA > d. Then f is obviously
an L(d,1)-labeling of the edge-multiplicity-path-replacement G(rP;) with
span TA +d for 7 < k < 10 and 7A > d. Hence Ag(G(rP)) =rA+d—1
for 7< k<10 and rA > d. [ |

22 rA<dand k>7

Theorem 2.2 Suppose G is a graph with order n and mazimum degree
TA < d. Then A\g(G(rP:)) > d+rA.

Proof. Suppose f is an L(d,1)-labeling of the edge-multiplicity-path-
replacement G(rP,) with span d + rA — 1. Then any one vertex = with
degree A must be labeled with 0 or d + rA — 1. Without loss of gen-
erality, label z by 0. Then in its adjacent vertices in G(rP), there must
exist one vertex y whose label is d. So the adjacent vertex of y can’t be
labeled in [0,d + 7A ~ 1], since TA < d <= rA+d -1 < 2d. Thus
M(G(rPy)) 2 d+rA. [ |

Theorem 2.3 Suppose r > 2 and rA < d. Then M\y(G(rP;)) = rA+d for
oddk>9, and rA +d < M(G(rPp)) < rA+d+1.

Proof. On the one hand, by theorem 2.2, A4(G(rPy)) > rA +d.

On the other hand, we give an L(d, 1)-labeling f of the edge-multiplicity-
path-replacement G(rP;) with span rA +d as follows for odd k > 9. Label
its nodes with 0, And label their adjacent vertices zi and z7? in G(rPy)
in[d+ ({ ~1)A +1,d+iA] for each ¢ € {1, 2, ---, r}. Similar to the
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proof of theorem 3.2 in [16}, it is easy to prove that all the paths Py can
be labeled in {0,7A + d]. Then f is obviously an L(d,1)-labeling of the
edge-multiplicity-path-replacement G(rP;) with span rA + d for rA < d.
Hence A\g(G(rP;)) =rA +d for odd k& = 9 and rA < d.

For k = 7, we give an L(d, 1)-labeling f of the edge-multiplicity-path-
replacement G(rP;) with span 7A +d + 1 as follows. Label its nodes with
0, And label their adjacent vertices z%, and zt%* in G(rP;) in [d + (i —
1)A +2,d+iA +1] for each i € {1, 2, ---, r}. Similar to the proof of
theorem 3.3 in (16], it is easy to prove that all the paths P; can be labeled
in [0,7A +d + 1]. Then f is obviously an L(d,1)-labeling of the edge-
multiplicity-path-replacement G(rP;) with span rA +d + 1 for rA < d.
Hence A\y(G(rP;)) <rA+d+1 for rA <d. |

Theorem 2.4 Suppose r > 2 and rA < d. ThenrA +d < M\(G(rFPr)) <
2d for even k > 12, and rA +d < M\a(G(rP:)) £ 2d + 1 for k = 8,10.

Proof. On the one hand, by theorem 2.2, A\y(G(rP)) > rA +d.

On the other hand, label its nodes with 0. And for even k > 12, label
their adjacent vertices zil, and ze5 2 in G(rP) in [d+ (i —1)A,d +1A — 1]
for each i € {1, 2, ---, r}. Similar to the proof of case 1-3 of theorem 2.2
in section 2 in [16], it is easy to prove that all the paths P can be labeled
in [0,2d]. Then rA 4+ d < Ag(G(rPx)) < 2d for even k > 12.

For even k = 8, 10, label their adjacent vertices z!, and %% in G(rP:)
in [d+ (i — 1)A + 1,d + iA] for each i € {1, 2, ---, r}. Similar to
the proof of case 1 and case 3 of theorem 2.3 in section 2 in [16], it is
easy to prove that all the paths P can be labeled in [0,2d + 1]. Then
rA+d < M(G(rPy)) < 2d + 1 for k = 8,10. [ |

Theorem 2.5 Suppose r > 2, and rA < d. If G is a bipartite graph, then

M(G(rP:)) = A +d for even k > 8, otherwise, Ay(G(rPi)) = 2d for even
k>12, 2d < M(G(rPy)) <2d+1 for k =8,10.
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Proof. If G is a bipartite graph with bipartition X, Y, label all the vertices
in X with 0 and their adjacent vertices in G(Pg) in [d+ (i —1)A+1,d+iA).
label all the vertices in Y with d + A and their adjacent vertices in G(Px)
in [(z-1)A,iA - 1].

Similar to the proof of theorem 3.4 in section 3 in [16], it is easy to
prove that all the paths Py can be labeled in [0,d+7rA]. So for even k > 8,
A(G(rP:)) = d 4+ rA when G is a bipartite graph.

If G is not a bipartite graph, then there must exist an odd cycle in G.
Note that A;(Ci) = 2d for odd {. So Ag(G(rPx)) > 2d, since there must exist
an odd cycle in G(rPy) for even k > 8. By theorem 2.4, A\y(G(rP)) < 2d
for k > 12, and A\g(G(rP:)) < 2d + 1 for k = 8,10. Thus we obtain that
Ad(G(rPy)) = 2d for k > 12, and 2d < M\y(G(rPy)) < 2d + 1 for k = 8, 10.
[ |

3 k=5
In this section, we give an upper bound for k = 5 by the result as follows.

Theorem 3.1 (7] A\J(G) < x+x'+d—2, where x and X' are the chromatic

number and the edge chromatic number of the graph G, respectively.

Theorem 3.2 Suppose G is a graph with mazimum degree A. Then d +
rA—1< M(G(rPs)) <d+rA, and \y(G(rPs) =d +rA for rA < d.

Proof. Since that G(rPs) is the incidence graph of G(rPs), \g(G(rPs)) =
AL(G(rPs)). By theorem 3.1, A\T(G(rPs)) < x + x' +d — 2, where x and
X’ are the chromatic number and the edge chromatic number of the graph
G(rP3), respectively. Note that G(rP3) is bipartite. Then we have x = 2
and x’' = rA by Koénig’s Theorem. Thus A;(G(rP5)) < d+rA. By theorem
2.2, A\g(G(rPs) =d +rA for rA < d. |
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4 k=4,6

We first consider L(d, 1)-labeling-number of the edge-multiplicity-path- re-
placement of regular graph for k = 4,6.

A factor of a graph G is a spanning subgraph of G. A k-factor of G
is a factor of G that is k-regular. Thus a 2-factor of G is a factor of G
that is a disjoint union of cycles of G. A graph G is k-factorable if G is an

edge-disjoint union of k-factors of G.

Theorem 4.1 [18] Every regular graph with positive even degree has a 2-

factor.

Theorem 4.2 Suppose that G is a regular graph with positive even degree
rA. Let k = 4,6. Then M\(G(rP)) = d+rA —1 for I& > d, and
Ai(G(rPy)) < 2d+ % —1 for I < d.

Proof. By theorem 4.1, G(rP;) can be decomposed into Lz,é- 2-factors.

For k = 4, label all the nodes of G(rP,) with 0. For 22 > d, the
replacement of each 2-factor from one node to the other can be labeled as
follows: 0 (d+ 5)(d + %£ +4) 0 for j € {0,1,-- —1}. For Z& < d, the
replacement of each 2-factor from one node to the other can be labeled as
follows: 0 (d +j)(2d +7) 0 for j € {0,1,--- , & — 1} Then /\d(G(rP4)) =
d+rA—1for 22 > d, and A\(G(rPy)) < 2d+ 2 —1 for 22 < d.

For k = 6, label all the nodes of G(rF;) w1th 0. For %é > d, the
replacement of each 2-factor from one node to the other can be labeled as
follows: 0 (d + j)pq(d + % +j)0forje {0,1,---, % — 1}, where p=2d
and g = 1 for j = 0, otherwise p = 1 and ¢ = 2% + 1. For & < d, the
replacement of each 2-factor from one node to the other can be labeled as
follows: 0 (d + j)(2d + j)1(d + & + 1+3)0for j € {0,1,--+,78 — 1}.
Then )\d(G(rPs)) =d+rA-1 for 8 >d, and \gy(G(rPs)) <2d+ 8 —1
for & < d. |
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Theorem 4.3 Suppose that G is a regular graph with positive odd de-
gree TA. Let k = 4,6. Then A\g(G(rP:)) < d+rA for I8t > d, and
Aa(G(rP)) < 2d+ 4L -1 for T4 < d.

Proof. we structure a graph H by connecting each pair vertices z and
z’ in G(rPp), G(rP,)’, where G(rP,)’ is the copy graph of G(rP,), and z’
corresponding to z. It is easy to see that H is a regular graph with positive
even degree 7A + 1. Since G(rPy) is a subgraph of H(rP), the proof is
over by theorem 4.2. [ |

Theorem 4.4 Suppose that G is a graph with the mazimum degree A. Let
k = 4,6. Then If A is even, then \y(G(rP:)) =d+rA —1 for % > d,
and \g(G(rPe)) < 2d+ 8 —1 for T8 < d. If A is odd, then Ay(G(rPy)) <
d+7(A+1) -1 for 284 > d, and \g(G(rPe)) < 2d + &) 1 for
ZH0A g,

Proof. Note that we can obtain a regular graph with the maximum degree
rA such that G(rP;) is its subgraph. If there exist two vertices u and v
whose degrees are less than rA, then we add the edge uv. Lastly, we obtain
a new graph Gj in which there exists at least one vertex whose degree is
less than rA.

If there exists only one vertex = in G; whose degree is a(< rA), then
we structure a graph H by adding all the edges between any two copies
of zin G1,G}, -+ ,G;27°*!, where G},--- ,Gj27%*! is the copy graph of

G). So we obtain a regular graph with degree rA such that G(rP,) is its

subgraph.
By theorems 4.2 and 4.3, the proof is over. |
5 k=3

Theorem 5.1 Forr > 2, \y(G(rP3)) <rx'+ x+rd—1 — 1, where x is

the chromatic number and the edge chromatic number of the graph G.
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Proof. Let ¢ be a vertex colouring of G with the x integers in [0, x — 1].
Let ¢’ be a edge colouring of G with the x’ integers in [0,x’ — 1]. Then
label all the nodes of G(rP3)) by c. For each i € {1, 2, ---, r}, label the
inserted vertices ¥}, as x — 1+ (i—1)(x’ — 1) +id +c/(uv). Thus we obtain
an L(d, 1)-labeling of the edge-multiplicity-path-replacement G(rP3) with
spanrx’' +x+rd -7 —1. So M(G(rP3)) <rx'+x+rd—r—1. B

Theorem 5.2 A\(G(rP3)) < r(Ma(G(P3)) +1) +7—2.

Proof. Note that G(rP;) — {zi}, : 2 < i < r,uwv € E(G)} = G(Ps).
Let f be an L(d,1)-labeling of G(rPs) — {z&, : 2 <i < r,uv € E(G)}
with the Ay(G(Ps)) + 1 integers of [0, \a(G(P3))]. For 2 < i <7, label £},
with f(z0s ") + A\y(G(P3)) + 1 +i — 2. Then the labeling is obviously
a L(d,1)-labeling of G(rP3) with span r(Ay(G(Ps)) + 1) + 7 — 2. Thus
Ad(G(rPs)) < r(Xa(G(P3)) +1) +7 — 2.

|

6 Some graphs

In this section, we consider the edge-multiplicity-path-replacement of paths
and cycles with k = 3,4, 6.

6.1 Py(P:) with k = 3,4,6

Note that the graph with order n and maximum degree A = 1 is the path
P, For k > 3, /\d(P2(2Pk)) =rA+d=r+d, since that P2(2Pk) > Cop—2.

We next consider r > 3 for A =1.

Theorem 6.1 Suppose r > 3. Then Ay(P2(rPs)) =r+d—1 forr—1>d,
M(Po(rPs)) =r+d forr—1<d.

Proof. For r—1 > d, Label one node » with 0, the other one v with r+d—1.
And label the 7 paths as 0(i + d)1(i + d + 1)(i + 1)(r + d — 1), where i =
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1,2,---,r-2, and 0d(d+r~1)(r—1)0(r+d-1), 0(r+d—1)d0(r—1)(r+d—1).
Then A\g(Pe(rPg))=r+d—-1forr—1>d.

For r — 1 < d, suppose that g is an L(d,1)-labeling of the edge-
multiplicity-path-replacement P(rPs) with span r + d — 1. Then the two
nodes must be labeled with 0 or » + d — 1. Let the node labeled with 0
be u, and its adjacent vertex labeled with d and d +r — 1 be = and y,
respectively. If 7 < d, then the adjacent vertex of z cannot be labeled in
0,7 +d —1]. If r < d + 1, then the replacing path including y cannot
be labeled in [0,7 + d — 1]. Thus Ag(P2(rPs)) = r + d. It suffices to give
an L(d, 1)-labeling of the edge-multiplicity-path-replacement P2(rPs) with
span 7 + d for » > 3. Label one node u with 0, the other one v with r + d.
And label the r paths as 0(i + d)1(d +r — 1)(i — 2)(r + d), where i € [2,7],
otherwise, 0(d + 1)1(d + r — 1)(r — 1)(r + d). Hence Ag(P2(rPs)) =7 +d
for r > 3. [ |

Theorem 6.2 Suppose r > 3. Then Ay(Pa(rPy)) =r+d—1 forr > 2d,
and Ag(Pa(rPy)) =r+d+1 forr < 2d.

Proof. It suffices to give an L(d, 1)-labeling of the edge-multiplicity-path-
replacement P»(rP;) with span r +d —1 forr > 2d. Label one node with 0,
the other one with 7+d—1. And label the r paths as 0(i+d~1)(i+2d—1)0
fori=1,2,---,r—d,and O(r +i—1)(r+i—1~d)0 fori =1,2,--- ,d.
Hence A\g(P2(rPy)) =r7+4+d—1 for r > 2d.

For r < 2d, suppose that g is an L(d, 1)-labeling of the edge-multiplicity-
path-replacement P;(rP4) with span r + d. Then the two nodes must be
labeled with 0, 1, » +d — 1 or r + d. By exhaustive case discussion on the
labels of two nodes, the graph P;(rP,) cannot be labeled in (0,7 +d]. Thus
Ad(Pa(rPy)) 2 r+d.

It suffices to give an L(d, 1)-labeling of the edge-multiplicity-path- re-
placement P,(rP;) with span r+d+1 for r < 2d. Label one node u with 0,
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the other one v with 7 +d+ 1. And label the r paths as 0(i +d)i(r +d +1),
where i = 1,2,--- ,7. Hence Ag(P2(rPy)) =r+d+1 for r < 2d. ]

Theorem 6.3 Suppose r > 3. Then Ag(Pa2(rP3)) =7 +d.

Proof. Suppose that g is an L(d, 1)-labeling of the edge-multiplicity-path-
replacement P,(rP;) with span r + d — 1. Then one node must be labeled
with 0, and the other one must be labeled with r +d — 1. The reader may
prove that the graph P,(rP3) cannot be labeled in [0,7 + d ~ 1}. Thus
M(Po(rP3)) > r + d. It suffices to give an L(d,1)-labeling of the edge-
multiplicity-path-replacement P,(rP3) with span r+d for r > 3. Label one
node u with 0, the other one v with 1. And label the r paths as 0(i + d)1,
where i = 1,2,--- ,r. Hence \g(P2(rP3)) =7 +d for r > 3. |

6.2 P,(P,) withn>3and k=3,4,6

Note that the graph with order n and maximum degree A = 2 is the path
P, or the cycle C,, where n > 3.

By theorem 6.8, we obtain the results as follows for k = 4,6, since
P,(rP) C Cp(rFy).

Theorem 6.4 Supposer > 2 and k = 4,6. Then Ag(Pnp(rP)) =2r+d-1
forr > d, and \y(Pp(rP)) =r+2d -1 forr <d.

Theorem 6.5 Suppose r > 2. Then M(Pp(rPg)) =2r+d—1 forr <d <
2r, and Ag(Pn(rPs)) = 2r +d for 2r < d.

Proof. For r < d < 2r, it suffices to give an L(d,1)-labeling of the edge-
multiplicity-path-replacement P, (r Ps) with span 2r+d—1. Label its nodes
with 0 and 27 + d — 1, alternately. And label the r paths as 0d(2d)0(2r —
1)(2r+d—1) and 0(d +i)1(2r +d —2)(2r —i = 1)(2r + d — 1), where i =
1,2, ,r—1,0r (2r+d—-1)(i—1)(d+7)p(r+d+1)0, wherei =1,2,..- ,7,
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and p = 2 for 7 = 2, otherwise p = 1. Hence Ay(Pn(rPs)) = 2r +d — 1 for
r<d<?2r.

For 2r < d, suppose that g is an L(d, 1)-labeling of the edge-multiplicity-
path-replacement P,(rPs) with span 2r + d — 1. Then all the nodes with
degree 2r must be labeled with 0 or 2r +d — 1. Suppose that u is the
node labeled with 0, and its adjacent vertex labeled with d is . Then
the adjacent vertex of z cannot be labeled in [0,2r + d — 1], since 2r < d.
Thus Ag(P,(rPs)) > 2r +d. It suffices to give an L(d,1)-labeling of the
edge-multiplicity-path-replacement P,(rPs) with span 2 4 d for 2r < d.
Label its nodes with 0 and 2r +d — 1, alternately. And label the r paths as
0(d+i)1(2r+d)(r+i—1)(2r+d—1) or (2r+d—1)(i—1)(d+r—1)1(r+d+1)0
, where i = 1,2,--- ,r. Hence A\g(P.(rPs)) = 2r +d for 2r < d. [ |

Theorem 6.6 Suppose T > 2. Then Ay(Pn(rP;)) = 2r+d—1 forr =d-1,
and Ag(Pp(rPy)) =2r+d forr <d-—1.

Proof. For r = d — 1, it suffices to give an L(d,1)-labeling of the edge-
multiplicity-path-replacement P, (r P;) with span 2r+d—1. Label its nodes
with 0,0,2r 4+ d — 1,2r + d — 1, alternately. And label the r paths from 0
to 0 as 0d(2d)0 or 0(2d + i — 1)(d + i — 1)0, where i = 1,2,--- ,7 — 1; the
r paths from 0 to 2r +d — 1 as 0(2d + ¢ — 3)(d + i — 3)(2r + d — 1), where
t=1,2,---,7r+1and i #3; the r paths from 2r +d—1to 2r+d —1 as
(2r+d—1)d0(2r+d—1) and (2r+d—1)(i—1)(d+i—1)(2r +d—1), where
i=1,2,---,7~1; the r paths from 2r + d —1 to 0 as (2r +d — 1)i(d + )0,
where i = 1,2,--- ,7. Hence A\y(Pp(rPy)) =2r+d—1forr=d—1.

For r < d — 1, suppose that g is an L(d,1)-labeling of the edge-
multiplicity-path-replacement P,(rP,) with span 2r +d — 1. Then all the
nodes with degree 2r must be labeled with 0 or 2r +d — 1. Suppose that
u is labeled with 0, and its adjacent vertex labeled with d and d +7 — 1
is z and y, respectively. If 2r < d, then the adjacent vertex of = cannot
be labeled in [0,2r +d —1]. For r +1 < d < 2r and n > 4, let v be the
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neighbouring nodes of u and degree 2r. Then the node v cannot be labeled
by 2r +d — 1. Thus the label of v is also 0. It is not difficult to see that
the replacing paths between u and v cannot be labeled in [0,2r + d — 1],
since r < d — 1. Thus A\g(Pn(rP)) 2 2r+dforn>4. Forr+1<d<2r
and n = 3, the node v can be labeled in [0,d — 1).Similarly, the replacing
paths between u and v cannot be labeled in [0,2r +d — 1], since r <d —1.
Thus Ag(P3(rP;)) > 2r +d. So it suffices to give an L(d, 1)-labeling of the
edge-multiplicity-path-replacement P,,(rP,) with span 2r + d.

Label its nodes with 0, 2r +d —1, 1, 27 +d, alternately. And label the r
paths from 0 to d+2r — 1 as 0(d+2r)r(d+2r — 1), and 0(d+1)i(d+2r —1),
wherei =1,2,.-- ,7—1; the r paths from d+2r—1to 1 as (d+2r—1)0(d+
2r)1 and (d+2r—1)(r+i—1)(d+r+i—1)1, where i =1,2,-.- ,7—1; the
r paths from 1 to d + 2r as 1(d + 1)0(d + 2r),1(d + 2r — 1)(2r — 1)(d + 2r)
and 1(d +1)i(d + 2r), where i = 2,3,-- ,r — 1; the r paths from d + 2r to
0 as (d+2r)1(d + 2r — 1)0 and (d + 2r)(r + i — 1)(d + r + ¢ — 1)0, where
i=1,2,...,7 — 1. Hence A\g(Pn(rPy)) =2r+dforr <d—1. [ |

Theorem 6.7 Supposer > 2. Then A\g(Pn(rPs)) =2r+d—1for3<n<
4, and Ag(Pnp(rPs)) =2r +d forn > 5.

Proof. Suppose that g is an L(d, 1)-labeling of the edge-multiplicity-path-
replacement P,(rP;) with span 2r +d — 1 for n > 5. Then all the nodes
with degree 2r must be labeled with 0 or 2r +d —1. The reader may prove
that the graph P,(r P;) cannot be labeled in [0, 2r +d — 1] for n > 5. Thus
Ad(Pn(rP3)) > 2r + d. It suffices to give an L(d,1)-labeling of the edge-
multiplicity-path-replacement P,(rP3) with span 2r + d for r > 2. Label
its nodes with 0 and 1, alternately. And label the  paths as 0(2i +d — 1)1
or 1(2i 4+ d)0, where i = 1,2,-.. ,r. Hence Ay(Pn(rPs)) =2r+d forr > 2.

For 3 € n < 4, it suffices to give an L(d, 1)-labeling of the edge-
multiplicity-path-replacement Py(r P;) with span 2r +d — 1. Orderly label
its nodes wit 1, 0, 2r+d —1 and 2r +d—2. And if r < d, then we label the
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inserted vertices between 1 and 0 in [d+r,d + 2r — 1], the inserted vertices
between 0 and 2r +d —1 in [d,d+r — 1], and the inserted vertices between
2r+d—-1and 2r+d—2in [0,r — 1]. If r > d, then we label the inserted
vertices between 1 and 0 in [d,r — 1)U [2r,d + 2r — 1], the inserted vertices
between 0 and 2r +d — 1 in [r,2r — 1], and the inserted vertices between
2r+d-1and 2r +d—2in [0, — 1]. Hence Ag(Pn(rPs)) = 2r +d —1 for
3<n<d. i

6.3 C.(rP,) withn >3 and k= 3,4,6

By theorem 4.2, we obtain the results as follows for k = 4, 6.

Theorem 6.8 Supposer > 2 and k = 4,6. Then A\g(Cr(rP)) = 2r+d-1
Jorr > d, and \j(Cr(rP)) <7 +2d -1 forr < d.

Thus we only need to consider the case 2 < r < d for Cp(rP;) with
k=4,6.

Theorem 6.9 Suppose 2 < r < d. Ifn is even, then A\y(Cr(rFs)) = 2r+d
Jor2r < d, and A\g(Cn(rPs)) =2r+d—1 forr <d < 2r. Ifn is odd, then
Ad(Cn(rPs)) = 2r+d for 2r < d, and A\y(Cn(rPs)) < 2r+d forr < d < 2r.

Proof. Since P,(rPs) C Cn(rPs), and for even n, the labeling for r < d <
2r in theorem 6.5 also works on Cp(rPs). So for even n, Ag(Cn(rPs)) =
2r+dfor 2r < d, and Ag(Cr(rPg)) =2r+d—1forr <d < 2r.

If n is odd, then we modify the labeling for 2r < d in theorem 6.5 as
follows: change just one node labeled 0 by 1, and for all the vertices labeled
with 1 which are distance two to the modified node, modify all the labels
with 0. Then the modified labeling works on C,(rP;). Thus for odd n,
Ad(Cr(rPs)) = 2r+d for 2r < d, and Ay(Cn(rPs)) < 2r+dforr < d < 2r.

|
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Theorem 6.10 Suppose 2 < r < d. Ifn =0(mod 4), then \g(Cn(rPy)) =
2r+d—1 forr =d—1, and A\g(Cpn(rPy)) =2r+d forr <d—1. If n # 0(
mod 4), then Ag(Cp(rPy)) < min{2r +d+1,7r+2d—1} forr <d -1, and
M(Cn(rPy)) <7 +2d-1=2r+d forr=d-1.

Proof. Since P,(rP;) C C,.(rP;), and for n = 0( mod 4), the label-
ing in theorem 6.6 also works for Cp(rP;). Then for n = 0( mod 4),
M(Cn(rPy)) = 2r +d -1 for r = d — 1, and Ag(Cn(rPy)) = 2r + d for
r<d-1.

If n # 0( mod 4), A\g(Cn(rPy)) <r+2d—1=2r+dforr=d—1by
theorem 6.8.

For n # 0( mod 4) and 7 < d — 1, label its nodes with 0 and 2r+d+1,
alternately. Label the r paths as 0(d + %)i(2r +d +1) or (2r +d + 1)(r +
1)(d +r +1)0 for ¢ = 1,2,--- ,7. And change just one node u labeled 0
by 1, and modify the labels of all the vertices which are labeled by 1 and
distance two to u with 0. Then the modified labeling works on Cy(rPs).
Thus Ag(Crn(rPy)) <min{2r +d+1,7+2d -1} forr <d—1. | |

We next study the L(d, 1)-labeling of C,(rP3).
Theorem 6.11 Forr > 2, A\g(Cr(rPs)) = 2r + d for even n.

Proof. On the one hand, the labeling f in Theorem 6.7 also works for the
cycle C,, with even n. Then Ay(Cn(rPs)) < 2r +d. On the other hand,
Ad(Cn(rP3)) > 2r +d. Suppose that g is an L(d, 1)-labeling of the edge-
multiplicity-path-replacement C,(rP3) with span 2r + d — 1. Then all the
nodes must be labeled with 0 or 2r +d — 1. The reader may prove that the
graph C,,(rP;) cannot be labeled in [0,2r +d — 1]. |

Theorem 6.12 Forr > 2 and odd n 2> 3, A\g(Cn(rPs)) < 2r +2d — 1 for
r>d. M(Cn(rP3)) <3r+d—1 forr <d.
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Proof. We give an L(d, 1)-labeling f of the edge-multiplicity-path- replace-
ment C,(rP;) with span 2r + 2d — 1 as follows for » > d. Label orderly
its nodes with 0(2r +d — 1)(2r + 2d — 1). And label the inserted vertices
between 0 and 2r +d — 1 in [d,r + d — 1], the inserted vertices between
2r+d—-1and 2r+2d—1in {0,1,---,r—1}, the inserted vertices between
2r+2d—1and Oin [r +d,2r +d—1]. Hence A\g(Cn(rP3)) =2r+2d—1
for r > d.

For r < d, label orderly its nodes with 0(2r 4+ d)(3r +d — 1). And
label the inserted vertices between 0 and 2r +d in [d, 7 +d — 1], the inserted

vertices between 2r+d and 3r+d—1in {0,1,--- ,7—1}, the inserted vertices
between 3r+d—1 and 0 in [r+d,2r+d—1]. Hence A\y(Cp(rP3)) < 3r+d—-1
forr < d. [ |
7 Note

In [17], we shown that the class of graphs G(rP;) satisfies Conjecture 1.1
for d = 2 and k > 3. We close by noticing that Conjecture 1.1 is true for
the class of graphs G(rPy) for d > 3 and k > 3 from Theorem 3.2, and the

theorems in section 2, Since the incidence graph of G(rPy) is G(rPy—1).
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