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Abstract. The Harary spectral radius p(G) of a graph G is the largest
eigenvalue of the Harary matrix RD(G). In this paper, we determine graphs
with the largest Harary spectral radius in four classes of simple connected
graphs with n vertices: with given matching number, vertex connectivity,
edge connectivity and chromatic number, respectively.
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1. Introduction

All graphs considered in this paper are finite, undirected and simple.
Let G = (V,E) be a simple connected graph with vertex set V(G) =
{v1,v2,...,v,} and edge set E(G). The distance d;; is defined as the
length of the shortest path between v; and v; in G. The diameter d of a
graph is the maximum distance between any two vertices of G. The Harary
matrix RD(G) [3] of G, is an n x n matrix (RD; ;) such that

&, if i#4,
RD.; = { 0, if i=j.
The Harary spectral radius p(G) of a graph G is the largest eigenvalue
of the Harary matrix RD(G). In [4], Ivanciuc et al. have shown that
p(G) is able to produce fair QSPR models for the boiling points, molar
heat capacities, vaporization enthalpies, refractive indices and densities for
Cs — Cio alkanes. Hence it is an interesting topic to study the maximum
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eigenvalue of RD(G). Note that RD(G) is a real symmetric matrix, its all
eigenvalues are real. Further by the Perron-Frobenius theorem, we know
that there is a unique positive eigenvector corresponding to p(G) whose
entries sum to 1 if G is connected.

In order to state our results, we introduce some notation and terminol-
ogy. For other undefined notation we refer to Bollobés [1].

Two edges of G are said to be independent if they are not adjacent in
G. A set of pairwise independent edges in G is called a matching in G.
A matching of maximum cardinality is a maximum matching in G. The
matching number 8(G) (or just S, for short) of the graph G is the number of
edges in a maximum matching. Let &, g be the set of graphs on n vertices
with matching number 8. Let M be an arbitrary matching in G. A path
in G which starts at an unmatched vertex and then contains, alternately,
edges from E(G)\ M and from M, is an alternating path with respect to
M. An alternating path P that ends are unmatched vertices is called an
augmenting path.

The vertex connectivity of a graph G is the minimum number of ver-
tices whose deletion yields a disconnected graph, and the edge connectivity
of a graph G is the minimum number of edges whose deletion yields a dis-
connected graph. The components of a graph are its maximal connected
subgraphs. Components of odd (even) order are called the odd (even)
components. Denote by G, . the set of graphs with n vertices and ver-
tex connectivity «, and G, . the set of graphs with n vertices and edge
connectivity «’.

Two vertices of G are said to be independent if they are not adjacent
in G. The chromatic number of a graph G is the smallest number of colors
needed to color the vertices of G such that any two adjacent vertices have
different colors. A subset of vertices assigned to the same color is called a
color class, every such class forms an independent set. The Turdn graph
Tnr is a complete r-partite graph on n vertices for which the number of
vertices of vertex classes are as equal as possible. Let %, . be the set of
graphs on n vertices with chromatic number 7.

Let G; = (W, E1) and G; = (V,, E;) be two graphs. The union G;UG,
is defined to be G, UG, = (VUV}, E; U Ey). The join G \/ G; of G; and
G5 is obtained from G, U G2 by joining edges from each vertex of G; to
each vertex of G3. We denote by K, the graph on n vertices with no edges.

Let J,xp be the a x b matrix whose entries are all equal to 1 and I, be
the n x n unit matrix. For simplicity, if a = b, we write J, instead of J, .-

In this paper, we determine graphs with the largest Harary spectral
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radius in four classes of simple connected graphs with n vertices: with given
matching number, vertex connectivity, edge connectivity and chromatic
number, respectively.

We list some known results which will be used in this paper.

Let o(G) be the number of odd components of G.

Lemma 1.1. (The Tutte-Berge Formula)[2, 5, 7] Suppose G is a graph on
n vertices with matching number 8. Then there exists a subset So C V(G)
on s vertices in G such that n — 28 = max{o(G — S) —|S|: S C V(G)} =
o(G — Sp) — |So| = g — s, where ¢ = o(G — Sp).

Lemma 1.2. [6] Let G be a connected graph with n > 2 vertices, m edges
and diameter d. Then p(G) > %? + i(n —-1- -gnﬂ), with equality if and
only if G is a complete graph K, or G is a regular graph of diameter 2.

2. Main results

Let vg,v; € V(G) and vv; ¢ E(G), adding edge vk to G does not
increase distance, while it does decrease at least one distance; the distance
between v and v; is one in G + vy, and at least two in G. Let RD(G’) be
the Harary matrix of G’, then RD(G');; > RD(G); ; for all v;,v; € V(G).
Moreover, 1 = RD(G")x,; > RD(G)i,, by the Perron-Frobenius theorem,
we conclude that

p(RD(G")) > p(RD(G)) (2.1)
Lemma 2.1. Let G = K, \/(UL_, Kx;) and

T(G) = (T1ye 0oy T1, T2y 2y 00, Tgy oo Ty Yy e e oy Y)

ny na ng H]

be a unit eigenvector of RD(G) corresponding to p(G), if ng > n; > 2,1 <
t < q—1, then ngzy — niz; + z; > 0.

Proof. By RD(G)z(G) = p(G)z(G), we have

1 1 1
PGz = Pl +-+ 5 Ni-1%i-1 + (ni — )z + 3 Mi+1Zi+1 ++
1 1
§nq_1xq_1 + -2-nq:z:., + sy;
1 1 1 1
PGlzg = smTi+gmaTa+ gnasat e+ ongaZem1 +

(ng — 1)zq + sy.
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Then

PG —F +1
PO A1
Hence

PG -5 +1
p(G) - F +1
ngTi — T +x; > 0.

I

nq:rq - N;T; + T; NgZi — NT; + Z;

v

O

Lemma 2.2. Let G be a graph with mazimal Harary spectral radius in
Y..8, then there exist positive odd numbers ny,ny,...,n, such that G =
K V(UL Kn,) withs=q+28—nand Y}_ni=n-—s.

Proof. Let M be a maximum matching in G, then |M| = 8. By Lemma
1.1, there exists a subset Sp C V(G) on s vertices in G such that

n—28=max{o(G-S)—|5|:SCV(@)}=qg-s,

where ¢ = o(G — Sp). Let G1,Ga,...,G, be the odd components in G — Sp
with [V(G;)|=n; > 1fori=1,2,...,q. Clearly,n > s+q=n+2s—28.
Thus s < 8.

Case 1Ifs=0,then G—-So=Gandn+s-28=n-28=¢q<1
since G is connected. If g =0, thenn=28;Ifqg=1,thenn=28+1. In
both case, by (2.1), we have G = K.

Case 2If s > 1,theng=n+5s—28 > 1 since n > 28.

First, we claim that G — Sy contains no even component.

In fact, if it doesn’t hold, let W be an even component of G — Sp. Then
by adding an edge to G between a vertex v;, of W and a vertex v, of an
odd component of G — Sy, we obtain a graph G’, for which

n—28(G") = o(G — So) — |So| = o(G — So) — |So| = n — 2B(G),

note that 3(G) < B(G’) since G C G'. So B(G) = B(G’), then G’ € ¥, 5.
Let D’ be the Harary matrix of G'. Obviously, RD(G);; < RD(G'); ;
and RD(G)iy,jo0 < RD(G')iyj, for the new edge v;,v;,. Then by Perron-
Frobenius theorem, we conclude that p(G) < p(G’), a contradiction.

Second, we claim that G; & K,,,.

It is obvious for n; = 1, now we assume that n; > 3 in the following. If
G 2 Ka,, then there exist two vertices v;,v; € V(Gy) with v;v; ¢ E(Gy).
Then by adding the edge v;v; to G, we obtain a graph G, for which

n —2B(G) = o(G — So) — |So| = o(G — So) — |So| = n — 2B(G),
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then B(G) > B(G). Further, we have B(G) = B(G) and p(G) < p(G), alsoa
contradiction. Similarly, we have Ga,...,G,, the subgraph induced by So
are all complete, and any vertex of G;(i = 1,2,...,q) is adjacent to every
vertex in Sp. So G = K, \/(UL, Kx.)- < O
Lemma 2.3. Ifn, >n; 22,1<i<qg-1,G=K,\( 3‘=1 Ky,;),G' =
Ko V(UjZi Kn; U Kn-1 U (UIZi4s Knj) U K1), then p(G') > p(G).

Proof. Without loss of generality, let i = 1, then RD(G') =

Jing=1) = Baety - 2Jm—nyx1 %{(n,-l)an Jny-1)xs
'2"Jn3x(n;-1) v §Jn3x1 ‘2'Jn3xn., ngxs
’;‘Jlx(n,—l) 0 Jlan Jlxs
’2'an><(11.,—1) tee Jn.,xl an - En,, anxs

Jsx(n;—l) Jsx1 Jsan Jaxs "Es
and RD(G) =

Jony-1) = E(ny—1y -+ Jsm—l)xl Hm-xn,  Jmi-1)xs
% nz2x(n3—1) 3Jnzx1 %anan na2xs

Jix(ny-1) 0 3 J1xn, Jixs
§anx(n;—1) %-]nqxl an "En,, Jn.,xs
Jsx(n;—l) e Jaxl Jsan Jaxs - Es

So RD(G') - RD(G) =

0 0 o+ —3Jme-pxa O O
0 o .- 0 0 0
_%Jlx(nq—l) 0 0 ’;‘Jlan 0
0 0 %anxl 0
0 0 0 0 0

Let

Z(G) = (T1, .. .y T1, T2y o1 T2y ooy Tgely oo oy Tg1, L1, Lqy - - 1 Zqs Y v - -1 Y)

n;—1 na Tg—1 ng s
be a unit eigenvector of RD(G) corresponding to p(G), then

z(G)(RD(G') — RD(G))z(G)T = z1(ngzq — maz1 + 1),
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by Lemma 2.1, we have z1(nqzq — n1z1 + 21) > 0. So

p(G") 2 z(G)RD(G")z(G)T > z(G)RD(G))z(C)T = p(G).

Theorem 2.4. Let G € ¥4, g, then

() If n=28 orn=28+1, then p(G) < p(K,) with equality if and only
if G = Ky
(ii) Ifn > 28+2, then p(G) < p(K1 V(K1 U--- UKy UKpp_1)) with equal-

n—28
ity if and only if G 2 K, /(K1 U--- U K1 UKgg_1).

n—28

Proof. (i) If n =28 or n =28+ 1, by (2.1), it is easy to see p(G) < p(Kn)
and the equality holds if and only if G = K,,.

(ii) If n > 28 + 2, let G* be the graph with maximal Harary spectral
radius, by Lemma 2.2, we know that G* has the form of the following:
Ko V(Ui Kr,) with s = ¢+ 28 —n and }.7_,n; = n — s. Repeated
by Lemma 2.3, we know that G* = K, \/(K1 U ---U K; UK, ), where g =

g—1
n+s—28, Ng = 28 —2s+1, thatis, G* & K V(K] U.---UK, UK2ﬂ-23+1).
s, e

n+4s-28-1
Note that
K, \/(Kl U UK UKo 241) C K1 V(Kl U-- UK UK2g_2543),
n+s—-28-1 n+s—285-2
then
p(Ks \/(K1U---U K1 UKzp_041))
n+s—28~1
< p(Kaoy \/(E1U- - UKy UKag_243)).
n+s-28-2
Further we have G* = K \/(K1 U --- UK, UKog_;). |
n—-28"

Theorem 2.5. Let G € Gp x, then p(G) < p(K. V (K1 U Kpo1-x)) with
equality if and only if G = K\ (Ki U Kn—1-4).
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Proof. Let G* be the graph with maximal Harary spectral radius in Gy, «,
by (2.1), we know that G* = K, \/(Kn, UK,,) with K +ny +ng = n
and n; < ng. If ny > 2, let G = KV (Kny—1 U Kpy41), by Lemma
2.3, we have p(G') > p(K, \V(Kn, U Ky,)), a contradiction. Hence G* =
K. V(K1UK —1—r)- a

Theorem 2.6. Let G € G, «, then p(G) < p(Kwr V (K1 U Kn_1-x)) with
equality if and only if G = Ko \| (K1 U Kp—1-4/)-

Proof. Let G be a graph in G, and & its vertex connectivity. It is
well known that £ < «’. If kK = k', by Theorem 2.5, we have p(G) <
p(Ke V(K1U Kn_1-x)). If & < &/, by Theorem 2.5 and (2.1), we have
p(G) < p(Kn V (Kl UK -l-n)) < p(Kn' V (Kl U Kn—l—r:’))' o

Theorem 2.7. Let G € G,,r, then p(G) < p(T,,») with equality if and only
fG=T,,.

Proof. Let G* be the graph with maximal Harary spectral radius in %, ,
by (2.1), we know that G* & K, n, .. n, With ny +--- +n, = n. If there
exist 4,5 € {1,2,...,7} such that n; —n; > 2, let

!
G = Kﬂt.m,m-1,m‘—l,ﬂi+1y---»nj-l.ﬂj+1,7‘lj+1w-,"r'

Without loss of generality, set i = 1,j = 2, thatis, G’ = Ky, _1,n,+1,n3,...,nr+
Note that RD(G') =

%(Jnl—l —Em—-l) J(nl—l)xl J(ﬂ.l—l)xng J(n,—l)xn,.
Jix(ni-1) 5J1xn, Jixn,
anx(n]—l) %anxl ‘%(Jng - ng) T anxn, )
Jn,x(nl—l) Jn,xl Jn,xnz e %(Jn,. - En,.)

and RD(G) =

%(Jf;1~l _Em—l) ’%J(nl-l)xl J(m—l)an J(n;—l)xn,-
’2'J1x(n1-l) 1xng Jlxn,
anx(n;—l) Jngxl %(J‘nz - Eng) ter Jng XNy
Jn,.x(nl—l) Jn‘.xl Jn.-xng A ';‘(Jn.- - En,.)

then
. 0 2Jni—1)x1 1 0 0
51 (n1—1) 0 —3J1xn, 0
RD(G') - RD(G) = 0 —3Jnax1 0 01,
0 0 0 oo 0
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By symmetry, we can set £(G) = (T1,.--,T1,Z2y+++ T2y, T2, Tryerny Tp)L
N e’ ey’ (AR

n n n,
be a unit eigenvector of RD(G) corresp:mding to /;(G), then RD(G)z(G) =
p(G)z(G). Hence

1
§(n1 —1)z) + noxa + n3xz+ - + 0z, = p(G)xy
1
mT + 5(712 — 1):1:2 +n3x3+ -+ nrr, = p(G)za,
ny+1
then zo = %% z;. Note that

p(G')-p(G) 2 =z(G)"(RD(G') - RD(G))z(G)

1 n 1
P + m2il [(n1 —n2 — 1)p(G) + ?1 —ng — ilxg
2
2
| n 1
> ——1 m_ 1
2 oymal (p(G) + 5 ~n2~3)

By Lemma 1.2, we have

2m 1 2m
> o4 (n—-1-—-"2
p(G) 2 —+5n-1-—)
n—1 n—1
> —_— .
> 1+ 2 >1+4 )
Hence p(G') — p(G) > ,,TZ‘L'*';_T("I —ny) > 0, a contradiction. Hence G* =
Tn,ro D
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