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Abstract

A planar graph is called Cy-free if it has no cycles of length four.
Let f(n, C,) denote the maximum size of a Cy-free planar graph with
order n. In this paper, it is shown that f(r,Cs) = [2(n —2)] — u
for n > 30, where u = 1 if n = 3(mod 7) or n = 32,33,37,and p =0
otherwise.

1. Introduction

All graphs considered in this paper are finite, undirected graphs without
loops and multiple edges. Let G = (V(G), E(G)). For v € V(G), Ng(v)
denotes the neighbors of v in G and Ng[v] = Ng(v) U {v}. The degree of
v, written as dg(v), is |[Ng(v)|. We write N(v), N[v] and d(v) for Ng(v),
Ng¢[v] and dg(v), respectively, if there is no danger of confusion. The
minimum degree of G is denoted by d(G). A cycle of length n is denoted
by C,. For U C V(G), we use G[U] to denote the subgraph induced by
Uin G. A graph G is called k-colorable if there is an assignment of colors
{1,2,...,k} to V(G) such that adjacent vertices receive distinct colors and
the chromatic number of G, denoted by x(G), is the minimum integer & such
that G is k-colorable. We say that G is k-choosable if for any prescribed list
L(v) of k colors associated with v, there exists an assignment of colors to
its vertices such that each vertex v receives a color from L(v) and adjacent
vertices receive distinct colors. The choice number of G, denoted by ch(G),
is the minimum integer k such that G is k-choosable. A planar graph is
one that can be drawn in the plane so that its edges intersect only at their
ends. We say G is a plane graph if G has been embedded in the plane.
A nonincreasing sequence of positive integers 7 = (d;,ds, . ..,d,) is called
planar graphical if there exists a planar graph with order » having = as its
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vertex degree sequence. We use df:di: df’; to denote 7 consisting of {;

di’s, ..., I di,’s, where ijl ; = n. A graph G is called Cj-free if it has
no cycle of length I. Let f(n,C|) denote the maximum size of a Cj-free
planar graph with order n.

Let G be a plane graph with n vertices, m edges and f faces. There is an
important result on plane graphs by Euler [2] who proved that n+f—m =2
if G is connected. The formula is known as Euler’s formula which can be
found in many text books on graph theory, see for instance [1], and it is still
a main tool in dealing with problems on plane graphs. Another interesting
topic is the vertex colorings of plane graphs. Let G be a planar graph.
Thomassen [11, 12] showed that G is 5-choosable and if the girth of G is at
least 5, then G is 3-choosable, where the girth is the length of the shortest
cycle in G. Lam et al. (4] showed that G is 4-choosable if G is Cy-free and
Lam et al. [5] conjectured that G is 4-choosable if G has no two triangles
sharing one edge. Steinberg [10] conjectured that G is 3-colorable if G has
no 4- and 5-cycles. These results and conjectures support the idea that
x(G) and ch(G) are related to the cycles of short lengths such as Cs, C,
and so on and their distribution in G, so it is of interest to consider the
structural properties of a graph without some cycles of given lengths. One
of such properties is the maximum size of a graph without a cycle of given
length, which is also a classical problem in extremal graph theory. Turan
[13] showed that the maximum size of any Cs-free graph on p vertices is at

most [lﬁj Reiman (8] showed that the maximum size of any C,-free graph
on p vertices is at most £(1 + /4p—3) and Fiiredi [3] showed that the
maximum size of a 04-free graph equals to —-q(q +1)2 if ¢ is a prime power
greater than 13 and p = ¢% 4+ ¢ + 1. For planar graphs, we can deduce that
m < 3n — 6 by Euler’s formula, and the equality holds if and only if G is
maximal, that is, each face is a triangle. Furthermore, if the girth of G is g,
then m < g(n — 2)/(g — 2). In particular, m < 2n—4 if G is C3-free and a
complete bipartite graph K ,,_» is an extremal graph with 2n —4 edges for
each n > 3, that is, f(n,C3) = 2n —4. If G is Cy-free, how many edges can
G have? In this paper, we consider the maximum size of a Cy4-free plane
graph with order n, n > 30.

The main result of this paper is the following.

Theorem 1. Let n > 30 be an integer. Then f(n,Cyq) = [2(n —2)] — p,
where p =1 if n = 3(mod 7) or n = 32, 33,37, and ¢ = 0 otherwise.

It is known that 6(G) < 5 for any planar graph G of order n and
3(G) = 5 can be achieved for all n, n > 12 and n # 13, see [6]. By Theorem
1, 6(G) < 4 for any Cy-free planar graph G of order n. If §(G) = 4, then
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4n/2 < 15(n—2)/7 by Theorem 1 and hence n > 30. One natural question
is whether there is a Cy-free planar graph G such that §(G) = 4 for all n,
n 2> 30. However, the answer to this question is negative for some integers n
by the following Corollary 1. Let §(n, C4)=maz{d(G) | G is C,-free planar
graph of order n}. Based on Theorem 1, we have the following.

Corollary 1. If 31 < n < 38 and n # 36, then §(n,C,) = 3.

2. Upper bounds

In this section, our main task is to establish that f(n,Cy) < I_l.,é(n -
2)] — p for » > 30. In order to do this, we need the following two lemmas.

Lemma 1(Schmeichel and Hakimi [9])) The sequences 6'5'2 and 6!5!* are
not planar graphical.

The following lemma can be easily obtained by computer using software
“Plantri” written by Brinkmann and McKay, see [7].

Lemma 2. Let G be a maximal planar graph of order 13. If n(G) =
6251041 then G = T13 and if 7(G) = 635842, then G = T}, for some
i € {2, 3,4}, where Tj; (1 < i < 4) are shown in Figure 1.

A\ A\ A\ A\

Figure 1
Theorem 2. f(n,C,) < 22 (n—2) forn > 4.

Proof. Let G be a Cy-free plane graph of order n and size m. We use f; to
denote the number of the faces of degree ¢ in G. Let 7 be the degree of the
largest face in G. Assume that G has k edges not covered by triangles. Since
G is Cy-free, each edge can be covered by at most one triangle and f; = 0.
Thus we have m = 3f3 + k = 5f5 + -+ +rf, — k. Hence f3 = 3(m — k)

and f5 = H(m - 6fs — -+« —rf. 4+ k). By Euler formula, we know that
n—m+ fs+ fs + -+ f = 2. Replacing f3 and f5 with 1(m — k)
and 1(m 6fs — -+ — rfr + k), respectively, in the equality, we have
n—-m+i(m- k)+ (m 6fe — - —rfr+k)+ fo+ -+ fr = 2. Hence,
we have

m= 2 -2 (g s TR
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By (), we have f(n,Cq) < 28 (n—2). |

Theorem 3. Let n be a natural number and n = 3 (mod 7). We have
f(n,C) < [B(n-2)) -1

Proof. By Theorem 2, we have f(n,Cy) < [1—.,5 (n—-2)]. If n =3 (mod 7),
then %(n—2) = [-1.,3(71—2)_|+=}. By (*), we have m = [-1-.-,5- (n—2)J+=l,-—
R S T
% is an integer not exceeding 1 and since it cannot be 0, we see that the
result follows.

Theorem 4. f(32,C,) < 63.
Proof. By Theorem 2, f(32,C;) < 12 (32 —2) = 642. If f(32,C4) = 64,

then by (%), we have k = 1 and fg = --- = f, = 0. Suppose that G is a
C,-free plane graph of order 32 and size 64. By the proof of Theorem 2, G
consists of 3(m — k) = 21 triangles and }(m —6fs —--- —rf, + k) =13
pentagons. Let v € V(G) and d(vw) = 6(G). If d(vp) = 1, then G — vy has
63 edges, which contradicts Theorem 2. If d(vp) = 2, then since k = 1, the
two edges incident to vg are contained in a triangle, which implies that G
has a face of degree at least 6, a contradiction. Hence we have 6(G) > 3.
Let zy be the edge not covered by a triangle. If v € V(G) — {z,y}, then
since each edge incident to v is covered by exactly one triangle and the
triangle covers exactly two edges incident to v, we see that d(v) is even
and d(v) > 4. For the same reason, d(z) and d(y) are odd not less than
3. Because G has 64 edges and }_ .y d(v) = 64 x 2 = 128, we see
that m(G) = 5143°3! or 6142932, Now, we construct a graph G* as follows:
take each pentagon of G as a vertex, two vertices are adjacent if the two
pentagons share exactly one vertex or zy in G. Let A and B be the two
faces of degree 5, which share zy.

Y, F2
P\ /F
A & R 1 2F
6 3
Fs Fa Fs\F,

(1)

Figure 2

If 7(G) = 5'4303!, we may assume that d(z) = 3 and d(y) = 5. Suppose
that C is the third face of degree 5 incident to y. Let F' be a face of degree
5. fF ¢ {A,B,C}, then Ng-(F) = {Fl,Fz,...,Fs} and F1F;.--F5 is a
Cs in G* since F; and F;,; share exactly one vertex (F; and F; share v),
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the subscripts are taken modulo 5, as shown in Figure 2(1). For the same
reason, we see that A and B have degree 5 in G* and C has degree 6 in
G*, as shown in Figure 2(2). Thus, G* is a maximal plane graph of order
13 with #(G*) = 61512, which contradicts Lemma 1.

If 7(G) = 614%°32, then we must have d(z) = d(y) = 3. Let z € V(G)
and d(z) = 6. If z ¢ V(A) UV(B), then A and B have degree 4 in G*, as
shown in Figure 2(3), the three faces of degree 5 containing z have degree 6
and form a K3 in G* as shown in Figure 2(4) and any other face of degree 5
has degree 5 in G*. In this case, G* is a maximal planar graph of order 13,
7(G*) = 635842 and the three vertices of degree 6 form a K;. By Lemma
2, such a graph does not exist. If 2 € V(A4) U V(B), we may assume that
z € V(A). Thus, A has degree 5 and B has degree 4 in G*, the other
two faces of degree 5 incident to z have degree 6 and form a K, in G*
and any other face of degree 5 has degree 5 in G*. Thus, G* is a maximal
planar graph of order 13, m(G*) = 625!°4! and the two vertices of degree
6 form a K2. By Lemma 2, such a graph still does not exist. Therefore,
f(32,C4) < 63.

Theorem 5. f(33,C,) < 65.

Proof. By Theorem 2, f(33,C4) < ¥ (33 -2) = 663. If (33,C,) = 66,
then by (%), we have k = 0 and fs = 1. Suppose that G is a Cy-free
plane graph of order 33 and size 66. By the proof of Theorem 2, we see
that G consists of 22 triangles, 12 pentagons and 1 face of degree 6. If
0(G) < 2, then we have f(32,C,) > 64, which contradicts Theorem 4.
Thus, §(G) > 3. Since k = 0, we see that for any v € V(G), each edge
incident to v is covered exactly by one triangle and the triangle covers
exactly two edges incident to v, and hence d(v) is even and d(v) > 4.
Because G has 66 edges, we see that m(G) = 433. Now, Let G* be a graph
obtained from G as follows: take each face of degree at least 5 of G as
a vertex, two vertices are adjacent if the two vertices share exactly one
vertex in G. By a similar argument as that in the proof of Theorem 4,
we see that G* is a maximal plane graph of order 13 with n(G*) = 6!5!2,
which contradicts Lemma 1. Therefore, f(33,C4) < 65. |

Theorem 6. f(37,C4) < 74.

Proof. By Theorem 2, £(37,C,) < 3 (37-2) = 75. If f(37,C4) = 75,
then by (), we have k = 0 and fg = -+ = f, = 0. Suppose that G is a
Cy-free plane graph of order 37 and size 75. By the proof of Theorem 2, G
consists of 25 triangles and 15 pentagons. If §(G) = 1, then f(36,C4) > 74,
which contradicts Theorem 2. If §(G) = 2, then since k = 0, the two edges
incident the vertex with minimum degree vy are contained in a triangle,
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which implies that G has a face of degree at least 6, a contradiction. Thus,
0(G) = 3. Since k = 0, we see that for any v € V(G), each edge incident
to v is covered exactly by one triangle and the triangle covers exactly two
edges incident to v, and hence d(v) is even and d(v) > 4. Because G has 75
edges, we see that 7(G) = 4366!. Now, Let G* be a graph obtained from
G as follows: take each pentagon as a vertex, two vertices are adjacent if
the two vertices share exactly one vertex in G. By a similar argument as
that in the proof of Theorem 4, we see that G* is a maximal plane graph
of order 15 with m(G*) = 63512 and the three vertices u;, us,u3 of degree
6 form a triangle in G*. Delete the edge v us from G*, then G* — ujus is
a planar graph with m(G* — ujuz) = 6!5', which contradicts Lemma 1.
Hence f(37,C,) < 74. 1

3. Lower bounds

Let n > 30 be an integer. In this section, we will establish the lower
bounds for f(n,C4) by constructing some extremal graphs whose sizes are
exactly the values given in Theorem 1.

We first consider the case when n =2 (mod 7).

If n = 37, then f(37,C,4) > 74 is shown by the graph G37 in Figure 3.
The graph Gz consists of 1 face of degree 6, 14 faces of degree 5, 24 faces
of degree 3 and has two edges, the bold ones, not covered by triangles. By
(%), the size of G37 is 74.

If n # 37, we will show f(n,C4) > 1—75-(71 — 2) by constructing a graph
with order n and size £(n—2). Let Hy, Ha and Hj be the graphs of order
5, 11 and 36, respectively, as shown in Figure 4.
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H

Figure 4

Let p,g > 0 be integers, p+q > 1 and (p,q) # (1,0). Take p copies
of Hy and g copies of Hj, identify all z into one vertex z* and all y into
one vertex y*. Let G(p,q) be the resulting graph and G(p,q) a planar
embedding of G(p, g) as shown in Figure 5. By the construction of G(p, ),
we see that é(p, g) has p + 2q faces of degree 10 and ¢ faces of degree 14.
Each boundary of any face of degree 10 has 4 edges not covered by triangles
and each boundary of any face of degree 14 has 5 edges not covered by
triangles, that is, the bold ones in Figure 5. -

Put a copy of H; into each face of degree 10 and 14 of G(p,q) and
connect the vertices of H; to the vertices in the boundary of the face of
degree 10 and 14 with dotted edges in the way as shown in Figure 5.

Let G be the final graph and |V (G)| = n. Since H; for 1 < ¢ < 3 are Cy-
free and G(p, ¢) has no C, containing =* or y*, G(p, q) is C4-free. Noting
that G has no C; containing the dotted edges, we see that G is Cy-free. By
the construction, n = 11p+36¢—2(p+q—1)+5(p+2g+q) = 14p+49g+2.
Since each edge of G is covered by a triangle and a pentagon, by (*), G has
% (n —2) edges. Take p > 2 and ¢ = 0, then we have n = 30 + 14(p — 2),
and take ¢ = 1 and p > 0, then n = 51 + 14p. This is to say that for any
n > 30, n =2 (mod 7) and n # 37, we have f(n,Cy) > £ (n —2).

Face of degree 10 Face of degree 14
Figure 5
Next, we consider the case when n = 3 (mod 7).

If n = 38, then f(38,C,4) > 76 is shown by the graph G3g in Figure 3.
The graph G3g consists of 14 faces of degree 5, 24 faces of degree 3 and has
four edges, the bold ones, not covered by triangles. By (%), the size of Gag
is 76.
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If n # 38, thenn—13# 37and n— 1 = 2 (mod 7). Thus, by the
construction given in the case when n = 2 (mod 7), there exists a Cy-free
plane graph G of order n — 1 and size 33((n — 1) — 2). By (), k =0 and
fo=-:-+=fr =0. Since k = 0, d(v) is even. Since fo =--- = f, =0,
we have 6(G) > 4. By Theorem 2, §(G) = 4. If v € V(G) and d(v) = 4,
then because k = 0 and G is Cy-free, we see that G[N[v]] = H;, where
H, is the graph shown in Figure 4. Assume that N(v) = {vy,vs,vs,v4}
and vjvg,v3v4 € E(G). Now, let G* be a graph obtained from G by
splitting v into two vertices v/,v” such that v’ is adjacent to vy, vq, v" is
adjacent to vs, v4 and v'v"” is an edge in G*. Since G is Cy-free, G* — v'v"
is still Cy-free. Noting that v;v; ¢ E(G) for i € {1,2} and j € {3,4},
G* has no C4 containing v'v” and hence G* is Cy-free. Because G* has
$((n—1)-2)+1 = | 18(n—2)] ~1 edges, we have f(n,C;) > | ¥ (n—-2)}-1.
Therefore, we have f(n,Cy) > |43 (n—2)] — 1 for n =3 (mod 7).

Thirdly, we consider the case when n =4 (mod 7).

If n = 32, then f(32,C,) > 63 is shown by the graph G3; in Figure 3.
The graph G3; consists of 1 face of degree 6, 12 faces of degree 5, 20 faces
of degree 3 and has three edges, the bold ones, not covered by triangles.
By (*), the size of G3s is 63.

If n € {39,46,53,67}, then f(n,C,s) > |22(n — 2)] are shown by the
graphs G, for n € {39,46,53,67}, respectively. Each of the four graphs
consists of faces of degree 3 and 5, and has exactly one edge, the bold one,
not covered by triangle. By (), the size of each graph is |3(n — 2)].

Figure 6

Ifn ¢ {32,39,46,53,67}, then n~30>30,n—30# 37and n—30 =2
(mod 7). By the arguments in the case when n = 2 (mod 7), we see that
there exists a Cy-free plane graph G with order n — 30 and size 32((n —
30)—2). By (¥), k=0and fg = = f =0. Let C = Cs be a face of
degree 5 in G and H, a graph of order 30 which is shown in Figure 6(1).
Embed H, into the face C, connect the vertices of Hy to the vertices of
C with dotted edges in the way as given in Figure 6(2). Denote by G*
the resulting graph. Since G is Cy-free, Hy is Cy-free and G* has no Cj
containing dotted edges, G* is still Cy-free. Because each face of G* is a

38



triangle or a pentagon and G* has only one edge, the bold one, as shown
in Figure 8(2), which is not covered by a triangle, by (x), the size of G* is
[3(n — 2)). Thus we have f(n,Cy) > |28(n — 2)| for n = 4 (mod 7) and
n # 32,

Finally, we consider the cases when n =5,6,0,1 (mod 7).

For n = 33, 34, 35, the lower bounds of f(n,C,) are shown by the graphs
Gs3, G34 and G35 in Figure 3, respectively. If n = 36, then put a vertex
into a face of degree 5 whose boundary has one edge not covered by triangle
in G35 and connect the new vertex to the ends of the edge not covered by
triangle. The new graph obtained from G35 has 36 vertices and |43(35 —
2)] +2 = [%2(36 — 2)] edges and hence f(36,C;) > |4(36 — 2)]. Now,
assume that n > 40 and n = ¢ (mod 7), where i = 5,6,0,1. Obviously,
n—1,n-2n-3,n—4=4 (mod 7) for i = 5,6,0,1, respectively. By
the arguments in the case when n = 4 (mod 7), we see that there exists a
Cj-free planar graph G with order n — I and size [%((n — 1) — 2)], having
only one edge not covered by a triangle, where 1 < ! < 4. Let G be a
planar embedding of G and C a face of degree 5 whose boundary has one
edge not covered by a triangle. Put [ new vertices into C and connect the
new vertices to the ends of the bold edge with dotted edges in the way as
shown in Figure 7(1)-(4) for [ = 1,2, 3, 4, respectively, where the bold edge
is the only edge of G not covered by triangle. Assume that the resulting
graph is G*. Since G* has no Cy containing dotted edges and G is Cy-free,
G* is Cy-free and has |22 ((n—1) —2)] +2! = | 18(n - 2)| edges. Therefore,
we have f(33,Cy) > 65 and f(n,Cy4) > |%(n —2)| for n = 5,6,0,1 (mod
7) and n # 33.

Figure 7

4. Proofs of main results

Proof of Theorem 1. For each n > 30, the upper bounds for f(n,Cy)
given in Section 2 equals to the lower bounds for f(n,C4) given in Section
3, so the result of Theorem 1 follows. 1
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Proof of Corollary 1. Let G be a C,-free planar graph of order n and
size m with §(G) = §(n,C,). If n € {31, 32,33}, then we have §(n,Cy) < 3
since m < f(n,C4) = 2n—1 by Theorem 1. On the other hand, the Cy-free
planar graphs of order n € {31,32,33} given in Section 3 have minimum
degree 3 and hence §(n,Cy4) = 3 for n € {31,32,33}. If n € {34, 35,37, 38},
then since f(n,C4) = 2n by Theorem 1, we have §(G) < 4. If §(G) = 4,
then G is 4-regular and m = f(n,Cy4). By (¥), m = f(34,C,) if and only

ifk=2and fo¢ =:-- = fr = 0; m = f(35,Cy) if and only if k¥ = 1,
foe=land fr=---=f,=0;,m=f(37,Cy) ifandonly if k =2, fe =1
and fr = --- = fr =0; m = f(38,Cy) ifand only if k = 1, fy = 1 and
Je=fs=--=fr=00rk=1,fg=2and f=--- = f, =0. In each

case, G has a vertex v which is incident to exactly one edge not covered
by triangle. Since each other edge incident to v is covered exactly by one
triangle, we see that d(v) is odd which is a contradiction since G is 4-regular.
On the other hand, the Cy-free planar graphs Gaq4, G35, G37, Gag in Figure
1 have minimum degree 3 and hence §(n, Cy) = 3 for n € {34, 35,37, 38} 1
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