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Abstract

The crossing number of a graph G is the smallest number of
pairwise crossings of edges among all the drawings of G in the plane.
The pancake graph is an important network topological structure for
interconnecting processors in parallel computers. In this paper, we
prove the exact crossing number of pancake graph P; is six.
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1 Introduction

The notion of crossing number is a central one for Topological Graph
Theory with long history, which means the minimum possible number of
edge crossings among all the drawings of graph G in the plane. Because of
its various applications, such as VLSI theory and wiring layout problems,
the crossing number problem has been studied extensively by mathemati-
cians including Erdés, Guy, Turdn and Tutte, et al (see [9, 11, 14, 15]).
However, the investigation on the crossing number problem is extremely
difficult. In 1973, Erd6s and Guy wrote, “Almost all questions that one can
ask about crossing numbers remain unsolved.” Actually, Garey and John-
son in [10] proved that computing the crossing number is NP-complete.
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Thereby, it’s not surprising that the exact crossing numbers are known
only for a few families of graphs (see [7, 13]). In most cases, to give the
upper and lower bounds is a more practical way (see [12, 16, 17]). As to a
nice drawing of a graph with the number of crossings that can hardly be
decreased, it is very difficult to prove that the number of crossings in this
drawing is indeed the crossing number of the graph we studied.

The pancake graph was proposed by Akers and Krishnameurthy in [8]
as a special case of Cayley graphs. It not only possesses several attractive
features just like hypercubes, such as symmetry properties and high fault
tolerant, but also offers three significant advantages over hypercubes: a
lower degree, a smaller diameter and average diameter. Therefore, there
are more and more research about pancake graphs recently. In [1], Lin,
Huang and Hsu proved that the n-dimensional pancake graph P, is super
connected if and only if n # 3. In addition, Deng and Zhang proved
that the automorphism group of the pancake graph P, is the left regular
representation of the symmetric group S, for n > 5 in [3]. More research
about pancake graph can be found in [2-6].

In [18], Sykora and Vrt’o proved an approximative value of the crossing
number of the n—dimensional pancake graph. However, their results are
valuable only when the dimension n is large enough. Yet there is little
study of the exact crossing number of pancake graphs when n is small,
which is of theoretical importance and practical value. In this paper, we
prove that the crossing number of pancake graph P, is exactly six.

2 Notations and basic lemmas

Let G be a simple connected graph with vertex set V(G) and edge set
E(G). For S C E(G), let [S] be the subgraph of G induced by S. Let
Py v,...v, be the path with n vertices vy,--- ,v, and let Cy,4,...v,,», be the
cycle with n vertices vy, -+, vn.

A drawing of G is said to be a good drawing, provided that no edge
crosses itself, no adjacent edges cross each other, no two edges cross more
than once, and no three edges cross in a point. It is well known that
the crossing number of a graph G, denoted by cr(G), is attained only in
the good drawings of the graph. So, we always assume that all drawings
throughout this paper are good drawings.

For a drawing D of a graph G, let ¥(D) be the number of crossings in
D. In a drawing D, if an edge is not crossed by any other edge, we say that
it is clean in D.



For two disjoint subsets of an edge set F, say A and B, the number of
the crossings formed by an edge in A and another edge in B is denoted by
vp(A, B) in a drawing D. The number of the crossings that involve a pair
of edges in A is denoted by vp(A). Then vp(AU B) = vp(A) + vp(B) +
vp(A, B) and v(D) = vp(E).

Definition 2.1. (Pancake Graph) The n-dimensional pancake graph, de-
noted by P,, is a graph consisting of n! vertices labelled by distinct permu-
tations on {1,2,---,n}. There is an edge from verter v; to verter v; if
and only if v; is a permutation of v; such that v; = i1ia- - ikiks1 -~ - in and
Vj =ik 928 8ky1 ** in, where 2< k < 0.

The pancake graphs P, P3 and P4 are shown in Figure 2.1 for illustra-
tion.

Figure 2.1: Some drawings of P,

There are four 6-cycles C;(1 < i < 4) in Py, For 1 < i < 4, the subgraph
of P4 induced by V(Fy) — V(C;) is homeomorphic to graph G2 shown in
Figure 2.2.
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Figure 2.2: A drawing of G2

Lemma 2.1. ¢r(Gy2) =2.
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Proof. We give a drawing of G2 with two crossings in Figure 2.2 and then
we have er(G12) < 2. Let m be the smallest number of the edges of G2
whose deletion from G2 results in a planar subgraph G}, of Gi2. Gi,
has 12 vertices and 18 — m edges. Let Dj, be a planar drawing of G},
and p denote the number of faces in D},. Then, according to the Euler
Polyhedron Formula,

12-(18—m)+p = 2,
p = 8—m.

Since all cycles in G2 have length at least six except for three disjoint 4-
cycles, and ¢r(Gy2) < 2, we could remove at most two 4-cycles in Gy2. By
considering the number of 4-cycles remaining in G},, we have three cases:

three 4-cycles: 3x4+(8-m—-3)x6 < |E(G},)| =2 x (18 —m),
two 4-cycless 2x4+(8—-m—-2)x6 < [E(GL;)|=2x (18 —m),
one 4-cycle: 1x4+(8—-m—-1)x6 < |E(G};)| =2x (18—m).

It follows
three 4-cycles: 4m > 6,
two 4-cycles: 4m > 8,
one 4-cycle: 4m > 10.
Hence, we know m > 2. With ¢r(Gi2) < 2, we have or(Gy2) = 2. O
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Lemma 2.2. Let D be a drawing of G2, where at least one pair of 4-cycles
crosses each other, then v(D) > 3.

Proof. By contradiction. Suppose v(D) < 2. Then there is exact one
pair of d-cycles, say C§ and C3, crossing each other. Since v(D) < 2,
there is no 4-cycle crossing itself, and edges vjvg, v3v11, vsv19 and vgvyg
are all clean. Consider the sub-drawing S of C{ and C§ in D. By hy-
pothesis, there is no crossing in S. Assume that C{ is inner the region
defined by C§ in D. Hence, C{, C$ and the edges vevio and vguvz de-
fine 4 regions of the plane: R, = (5,6,7,8), R, = (9,10,11,12), R3 =
(5,6,10,11,12,8), Ry = (7,8,12,9, 10, 6) in a first case (see Figure 2.3 (1)),
or R; = (5,6,10,9,12,8), Ry = (7,8,12,11,10,6) in a second case (see
Figure 2.3 (2)). By hypothesis, since that vsv; and vyve are not crossed
in D, vertex v3 belongs to R3 and vertex v; belongs to R4 in the first case,
while vertex vs belongs to R4 and vertex v; belongs to R in the second
case. Since there are 2 edge disjoint paths in C{ joining vertices v; to v,
there are at least four crossings along the edges vsvs, vsvus, vgv7 and vyug,
a contradiction. O



Figure 2.3: Some drawings of G2

Lemma 2.3. Let D be a drawing of G12, where any pair of 4-cycles does
not cross each other and any two 4-cycles lie in the same side of the third
4-cycle, then v(D) > 3.

Proof. By contradiction. Suppose v(D) < 2.

Case 1. There is at least one 4-cycle, say Cf, crossing itself. Without
loss of generality, we may assume that v,v4 crosses vous. We show this
situation in Figure 2.3 (3). Since ¥(D) < 2, at least one of the edge dis-
joint cycles Cv;vngvnggv, and Cu;;vuvuusvsu,avax say cycle Cvguouxovsvwzul ’
does not cross itself. And at least one of the cycles Cy,yguy,v10vpv104 8Nd
Clusvevsvevrvavs S8Y €¥cle Cy uzuiiviovevive, d0€S NOL cross itself, since they
only have one common edge. By considering the possible locations of vertex
v12, we could find at least one edge of {v12v11, v12V9, V12vs, vs¥7} is crossed,
since edges v11v12, vov12 and path P,,,.ev, can not be in the same region.
Hence, cycle Cyyu,usvgvrvavs €20 Mot cross itself. Since v(D) < 2, path
P, vgu1zv1, can be crossed at most once, and edge vsv12 has to lie outside
of cycle Cugvavgviviovevs- 1t follows edges v12vg9 and vguy are both crossed,
and v(D) > 3, a contradiction.

Case 2. There is no 4-cycle crossing itself. Since v(D) < 2, at least one
of all the three pairs of 4-cycles, say C{ and Cj, satisfies the following
conditions: the edges between that pair of 4-cycles do not cross each other,
and they do not cross the pair of 4-cycles either. By symmetry, we may
assume v3, Vg lie inside of cycle Cy,v,vrvsusvev, (s€€ Figure 2.3 (4)). Since
any pair of 4-cycles does not cross each other and any two 4-cycles lie in
the same side of the third 4-cycle, 4-cycle C§ has to lie outside of cycle
Cuourvgusugusyy OF inside of cycle Cyyurvgusvavsv,- BY Symmetry, we may
assume 4-cycle C§ lies outside of cycle Cy,y,vgvsvsvsve- Then edges vavyy
and vgvyo are crossed. Since v(D) < 2, edges vyvy and vgv2 are clean. It
follows at least one of edges vav;; and vgvyg is crossed at least twice, and
v(D) 2 3, a contradiction. O
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3 Crossing number of P,

In Figure 3.1, we show a drawing of P, with 6 crossings. Hence, we
have:

Lemma 3.1. ¢r(P;) < 6.

Figure 3.1: A good drawing of Py with 6 crossings

In the rest of this section, we shall prove that the value of cr(P;) is
exactly equal to 6. We rename the vertices of Py as shown in Figure 3.1.

Fori=1,2,3,4, let

C;{q =Cvoi151161'-41’8-'-3"8:‘—206;'—1va“‘ve.'_57

g v

ED _ {uv PueVi A eVi}

Ef =B UUqccanis B
P4 Pa (1<i€HAj#i “pa?

Ej =E(P)-E".

For convenience, we abbreviate

G =0V =ViB =E,
—_ , ! R ! i
Ei,j = E;,‘f, E,- = EI,",E‘- = E",‘q.

Since [E!] is homeomorphic to G12 (see Figure 3.2), by Lemmas 2.1 -
2.3, we have

Lemma 3.2. Fori=1,2,3,4, _
1) Let D be an arbitrary drawing of [E}], then v(D) > 2.

2) Let D be a drawing of [Ef], where at least one pair of 6-cycles crosses
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Figure 3.2: [ff] is homeomorphic to G2

each other, then v(D) > 3.

3) Let D be a drawing of [E’], where any pair of 6-cycles does not cross
each other and any two 6-cycles lie in the same side of the third 6-cycle,
then v(D) > 3.

Proof. 1) Because [E7] is homeomorphic to G12, by Lemma 2.1, we have
cr([El]) = er(G12) = 2. It follows v(D) > 2.

2) Because [E}] is homeomorphic to Gi2, and every 6-cycle in [E]) is
homeomorphic to a 4-cycle in G2, by Lemma 2.2, we have v(D) > 3.

3) For the same reason as mentioned above, by Lemma 2.3, we have
v(D) = 3. O

Lemma 3.3. Let D be a drawing of Py, where at least two pairs of 6-cycles
cross each other, then v(D) > 6.

Proof. By contradiction. Suppose v(D) < 5. Since each pair of 6-cycles
crossing each other will produce at least two crossings, there are at most
two pairs of 6-cycles crossing each other. By symmetry, there are two cases:

Case 1. C; crosses Cy and C3. By Lemma 3.2, VD(E } > 2. It follows
v(D) 2 244 = 6, a contradiction.

Case 2. C; crosses Cy, and Cj3 crosses Cy. Notice that the four regions
formed by C; and C; are topologically equivalent (see Figure 3.3 (1)), we
only need to consider the case that C3 and Cy lie in the outer region. By
Lemma 3.2, vp(E}) > 3. Since »(D) < 5, C; does not cross itself, and
any edge of U i=2,3.4 E, ; should be clean. It follows edges v1v13 and vgvie
are clean. Now at least one edge of E, 4 is crossed, which contradicts any
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edge of (J;_5 3,4 E1,; is clean (see Figure 3.3 (2)). Hence v(D) > 6, a
contradmtlon a
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Figure 3.3: Some drawings of P,
where just two pairs of 6-cycles cross each other

Lemma 3.4. Let D be a drawing of Py, where just one pair of 6-cycles
crosses each other, then v(D) > 6.

Proof. Without loss of generality, let C; and C; be the cycles crossing each
other. We prove this lemma by contradiction. Suppose v(D) < 5. By
symmetry, we only need to consider the case that Cj3 lies outside of C; and
C; (see Figure 3.4 (1)). There are three cases depending on Cj’s position:

Case 1. Cj lies inside of C3 (see Figure 3.4 (2)). Then each edge of E,;
crosses the edges of E3 at least once, and each edge of E4 2 crosses the
edges of E3 at least once. It follows ¥(D) > 242+ 2 = 6, a contradiction.

Case 2. C, lies inside of C; (see Figure 3.4 (3) and (4)). Then each edge
of E4 3 crosses the edges of E» at least once. By Lemma 3.2, vp(E}) > 2.
It follows v(D) > 2 + 2 + 2 = 6, a contradiction.

Case 3. C, lies outside of C;, C; and Cj3 (see Figure 3.4 (5)). By Lemma
3.2, vp(EY) > 3. Since v(D) < 5, C; does not cross itself, and any edge
of U]_2 3.4 E, ; is clean. It follows vyu;3 and v4v,6 are clean. Now at least
one edge of Ey,4 is crossed, which contradicts any edge of ;. 3 4 E1,; is
clean.

By Cases 1-3, we have v(D) > 6. ]

Lemma 3.5. Let D be a drawing of Py, where there is no pair of 6-cycles:
C; and C; such that C; crosses Cj, then v(D) > 6.
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Figure 3.4: Some drawings of P;,
where just one pair of 6-cycles crosses each other

Proof. By contradiction. Suppose v(D) < 5.
Case 1. C; lies inside of C}, and both of C3 and Cj lie outside of C;.

Case 1.1. Cjy lies inside of C3. Then each edge of E3 4 crosses the edges of
E, and E; at least once, respectively. Meanwhile, each edge of E3 3 crosses
the edges of E, at least once, and each edge of Fy ; crosses the edges of E3
at least once. It follows v(D) > 4 4+ 2 + 2 = 8 (see Figure 3.5 (1)).

Case 1.2. Cj lies outside of C3. Then each edge of %_ 3 and E, 4 crosses
the edges of Ey at least once. By Lemma 3.2, vp(E}) > 3. It follows
v(D) 2 3+ 4 =7, a contradiction (see Figure 3.5 (2)).

Case 2. each C; lies outside of the other three C; (1 <j <4,j #1).

Case 2.1. Cj does not cross itself. Since v(D) < 5 and uD(Eg) > 3,
vp(E3) + vp(Es, EY) < 2. 1t follows that (vp(Ei3) + vp(Es, E13)) +
(vD(E2,3) + vp(E3, E23)) + (vp(E3,4) + vp(Es, E34)) < 2. Without loss
of generality, we may assume vp(E1,3) + vp(Es, E1,3) = 0 (see Figure 3.5
(3)). Then at least one edge of E3 2 crosses one edge of Ey U E3 U Ey 3.
Additionally, at least one edge of E3 4 crosses one edge of Ey UE3 U Ey 3
and at least one edge of E3 4 crosses one edge of E; U E3 U Es 3. It follows
vp(E}) + vp(E4, E}) > 3, which contradicts vp(E}) + vp(E}, E5) < 2.

Case 2.2. Cj crosses itself. Since v(D) < 5 and vp(E}) > 3, vp(Ej) +
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vp(E4, Ef) < 2. It follows that (vp(E1,3) + vp(Es, By 3)) + (vp(Ez2,3) +
vp(Es3, Ez3))+ (vp(Es,4)+vp(Es, E34)) < 1since Cj crosses itself. With-
out loss of generality, we may assume vp(E; 3)+vp(Es, E13) = vp(E2,3)+
vp(Es, Ea3) = 0. If C; does not cross itself, then the two edges of E; 4
will be crossed at least three times in total (see Figure 3.5 (4)). If C;
crosses itself, then each edge of E 4 will cross the edges of E; U E3U Ep 3
at least once (see Figure 3.5 (5)). By Lemma 3.2, vp(E}) > 3. It follows
v(D) 2 3+ 3 = 6, a contradiction. O
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Figure 3.5: Some drawings of Pj,
where any pair of 6-cycles does not cross each other

By Lemmas 3.1 and 3.3 - 3.5, we have
Theorem 3.1. cr(Py) = 6.
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