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Abstract: Let G be a graph, and let k¥ > 2 be an integer. A graph G
is fractional independent-set-deletable k-factor-critical (in short, fractional
ID-k-factor-critical) if G — I has a fractional k-factor for every independent
set I of G. In this paper, a Fan-type condition for fractional ID-k-factor-
critical graphs is given.
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1 Introduction

Many real-world networks can be modelled by graphs or networks. An
important example of such a network is a communication network with
nodes and links modelling cities and communication channels, respectively.
Other examples include a railroad network with nodes and links represent-
ing railroad stations and railways between two stations, respectively, or the
world wide web with nodes representing web pages, and links corresponding
to hyperlinks between web pages.

We study the fractional factor problem in graphs or networks, which
can be considered as a relaxation of the well-known cardinality matching
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problem. The fractional factor problem has wide-range applications in ar-
eas such as network design, scheduling and combinatorial polyhedra. For
instance, in a communication network if we allow several large data packets
to be sent to various destinations through several channels, the efficiency
of the network will be improved if we allow the large data packets to be
pertitioned into small parcels. The feasible assignment of data packets can
be seen as a fractional flow problem and it becomes a fractional matching
problem when the destinations and sources of a network are disjoint (i.e.,
the underlying graph is bipartite).

All graphs considered in this paper will be finite and undirected simple
graphs. Let G be a graph of order n with vertex set V(G) and edge set
E(G). For any z € V(G), the number of edges of G incident with z is called
the degree of z in G and is denoted by dg(z). We write §(G) = min{dg(z) :
z € V(G)}, which is the minimum degree of G; A(G) = max{dg(z) : z €
V(G)}, which is the maximum degree of G. Let k > 1 be an’integer. Then a
spanning subgraph F of G is called a k-factor if dp(x) = k for all z € V(G).
A fractional k-factor is a way of assigning weights to the edges of a graph G
such that for each vertex the sum of the weights of the edges incident with
that vertex is k. A graph G is fractional independent-set-deletable k-factor-
critical (in short, fractional ID-k-factor-critical) if G — I has a fractional
k-factor for every independent set I of G.

For S C V(G), Let G[S] be the subgraph of G induced by S. We write
G — S for G[V(G) \ S]. For z € V(G), the neighborhood of z is the set
Ng(z) = {y: y € V(G),yz € E(G)}. For two disjoint subsets S,T C V(G),
we write eg(S,T) for the number of edges in G with one end in S and the
other end in T. We define the distance dg(z,y) between two vertices x and
y as the minimum of the lengths of the (z,y) paths of G. We say that a
graph G is Fan-type, if every pair of vertices z,y € V(G) with dg(z,y) =2
satisfies max{d¢(z),dc(y)} > 5.

Fourtounelli and Katerinis [1] studied the existence of k-factors in graphs.
Bauer et. al. [2]proved the degree Sequences condition for the existence of
k-factors. Zhou [3] investigated the fractional k-factors in graphs. Chang,
Liu and Zhu [4] first introduced the concept of a fractional ID-k-factor-
critical graph, and obtained a minimum degree condition for a graph to be
fractional ID-k-factor-critical. Zhou [5] showed a binding number for the
existence of fractional ID-k-factor-critical graphs. Zhou, Xu and Sun [6]
gave an independence number and minimum degree condition on fractional
ID-k-factor-critical graphs. The following results on fractional ID-.-factor-
critical graphs are known.

Theorem 1 (Chang, Liu and Zhu [4]) Let k be a positive integer and G
be a graph of order n withn > 6k — 8. If §(G) > ZT", then G is fractional
ID-k-factor-critical.
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Theorem 2 (Zhou, Xu and Sun [6]) Let G be a graph, and let k be an
integer with k > 1. If

4k(6(G) ~ k + 1)
k2+6k+1 °

then G is fractional ID-k-factor-critical.

o(G) <

In this paper, we have established a new sufficient condition on the
existence of a fractional ID-k-factor-critical graph, it involves the order and
the Fan-type condition of the graph. Our result is the following theorem
which is an improvement of Theorems 1.

Theorem 3 Let k > 2 be an integer and G be a graph of order n with
n>6k>+3k—-9- 25, 6(G) >3 +k. If

max{do(z), do(v)} 2 5 )

for any two vertices x and y of G with dg(z,y) = 2, then G is fractional
ID-k-factor-ceritical.

2 The Proof of Theorem 3

For 8,T C V(G), write dg—s(T) = 3_ 1 do-s(z). We use heavily the
following lemma. to prove Theorem 3.

Lemma 1 (Liu and Zhang [7]) Let G be a graph. Then a graph G has a
fractional k-factor if and only if for every subset S of V(G),

8c(8,T) = k|S| + dg-s(T) - k|T| 20,
where T = {z:2 € V(G)\ S,dg-s(z) < k—1}.

Proof of Theorem 3. Let I be an independent set of G and H = G—1.
To prove Theorem 3, we only need to verify that H has a fractional k-factor.
In order to prove this by reduction to absurdity, we assume that H has no
fractional k-factor. Then from Lemma 1, there exists some subset S of
V(H) satisfying

6u(S,T) = k|S| +du-s(T) - k|T| < -1, (2)

where T = {z:z € V(H)\ S,dy-s(x) < k—1}.

Claim 1. [I| < 3.

Proof. The inequality obviously holds for |I| = 1. Hence, we may
assume that |I| > 2. We consider two cases.
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Case 1. dg(u,v) = 3 for any u,v € I.

In this case, for any = € V(G) \ I, there exists at most one vertex u in
I satisfying zu € E(G). (Otherwise, there exist two vertices u,v in I such
that zu,zv € E(G), then dg(u,v) = 2, which contradicts the condition of
Case 1.) Thus, we obtain

max{dg-1(z), de-1(y)} = max{du(z),dn(y)} > 2571 -1

for any two vertices z,y of H = G — I with dy(z,y) = 2. It is easy to see
that

n > max{dy(z),dn (@)} +2+ (1 -1) 2 3 +11],

which implies n
1] < 3

Case 2. There exist u,v € I with dg(u,v) =2.
In terms of the condition of Theorem 3, we have

n > max{d(w), de(v)} + 1| > 2-3—” +111,

which implies
<

wl3

The proof of Claim 1 is complete.

Claim 2. |T| > k+1.

Proof. Assume that {T| < k. Then by Claim 1 and the fact that
§(H) 2 6(G) = |I| = 3 + k — |I], we obtain

6u(S,T) = k|S|+du-s(T) —k|T| 2 |T||S| + du-s(T) - k|T|
D (S| +du_s(z) — k) = Y _(8(H) — k)

]

z€T zeT
n n
2 D (3H+k=lll-k) =3 (3-1)=20,
z€T z€T

which contradicts (2). This completes the proof of Claim 2.
Claim 3. k|T| > k|S|+1, that is, |T| > |S| + 1.
Proof. Using (2), we get

—1264(S5,T) = k|S| + du-s(T) - k|T| 2 k|S| - k[T,

that is,
KIT| > kS| +1,
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and so
T > |8+ 1.

This completes the proof of Claim 3.

Claim 4. |S|>1.

Proof. Note that T = {z:z € V(H)\ S,duy—_s(z) < k—1}. It follows
from Claim 1, H = G — I and §(G) 2> § + k that

1814k ~12 IS| +dy_s(z) > do(e) ~ 1| 2 6(G) ~ || > 5 +k = 1| 2 &
for each z € T. Thus, we have |S| > 1. The proof of Claim 4 is complete.

Claim 5. |S|+I| < %.
Proof. In terms of Claim 1, Claim 3 and |S| +|T|+|I| < n, we obtain

k
kn > k|S|+kIT|+k|I| > 2k|S|+k|I| = 2k(|IS|+1))—k|I| 2 2’€(|~'3|+III)——‘,;—1,
which implies

2n
IS|+ 1] < 3

This completes the proof of Claim 5.

Claim 6. |S|+|I| < & — (k—1).

Proof. We may assume that |S| + |I| > & — (k — 1). It follows from
(2), IS]| +|T| + |I] £ n and Claim 1 that

di-s(T) < KT~ kS|~ 1<k(n~|S| - I~ k|S| - 1
k
= kn—2K(1S| + 1))+ KlI| = 1 < kn — 2K(IS| + 1) + 5 — 1

= UCTn—2k(|S|+|I|)—15f%—%(%n—(k—l))—l
= 2%(k-1)-1.

Combining this with n > 6k? + 3k — 9~ 27, Claim 1 and Claim 3, we have

di-s(T) _ 2k(k—1)—1_ _ 2k(k—1)—1

T - ISI+1 (SI+1D)+1-|]
2k(k—-1)-1 _ 2k(k—-1)-1 <1_l
T o _(k-1)+1-3 Z2—-(k-1+1"" K
Combining this with Claim 2, we obtain
1 1
dy-s(T) < (1= PIT| = 7| = £IT| < [T - 1. 3)

Let To = {z : ¢ € T,dy-s(z) = 0}. Note that |To| > 2 holds by (3). For
any z € Ty, dg(z) < dpu(z)+|I| < |S|+|I| < 3 by H = G-I and Claim
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5. Since Tp is an independent set of G and G satisfies the hypothesis of
Theorem 3, the neighborhoods of the vertices in Ty are disjoint. Hence, we
have
n
IS +111 2| | Ne(@)] 2 6G)ITol 2 (3 + k)| Tol. (4)
z€To
According to (3) and the definition of To, we have that (1 — £)|T| >
du-s(T) > |T| — |Tol, that is, {To| > %|T|. Combining this with (4),
we obtain n n
1S1+ 111 2 |(3 +BITol 2 (5 + DITI- (8)

Using (5), Claim 1 and Claim 2, we have
n n
151 2 (g + DITI = W = T| + 52|71 = 111 > |T1,

which contradicts Claim 3. The proof of Claim 6 is complete.

Claim 7. ey(S,T) < k|S|.

Proof. Note that dy_s(z) < k—1 for each z € T. According to
H =G — I and Claim 6, we have

de(z) < dy(z) + [I|ldg-s(z) + |S| + | <k -1+ 2?11 —(k-1)= %n (6)

for each = € T. Using (6) and the hypothesis of this theorem, G[Ng(s)NT]
is a complete induced subgraph of G for each s € S. Note that H = G —I.
Hence, H[Ng(s) N T) is a complete induced subgraph of H for any s € S.
Obviously, S # 0 by Claim 4. It follows from dy_s(z) < k — 1 for any
z € T that ey(s,T) < A(H[T]) +1 < k. Hence ey(S,T) < k|S] holds.
The proof of Claim 7 is complete.

In terms of Claim 7 and §(H) > §(G) — |I| > (§ + k) — § = k, we have

6u(S,T) = k|S|+du-s(T) —k|T| = k|S|+ du(T) — k|T| — en(S.T)
2 k'SI - eH(Sv T) > 0’

which contradicts (2). Finally, Theorem 3 is proved.

3 Remark

The lower bound on the condition (1) is best possible in the sense that
we cannot replace 3.03—‘ by 2—3'1 — 1, which is shown in the following example:

We construct a graph G = ktK, V ktK; V (kt + 1)K, where k > 2 is
an integer and ¢ is sufficiently large positive integer. Then it follows that
n=3kt+1 and

2 2
?n > max{dg(z),dc(y)} > "32 -1
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for any two vertices vertices  and y in (kt + 1)K, with de(z,y) = 2. We
choose I = V(ktK;). Let H = G — 1. It is easy to see that H has no
fractional k-factor, and so G is not fractional ID-k-factor-critical.
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