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Amir Barghi* and Peter Winklert

Abstract

Let G be an infinite geometric graph; in particular, a graph whose
vertices are a countable discrete set of points on the plane, with
vertices u, v adjacent if their Euclidean distance is less than 1. A
“fire” begins at some finite set of vertices and spreads to all neighbors
in discrete steps; in the meantime f vertices can be deleted at each
time-step. Let f(G) be the least f for which any fire on G can be
stopped in finite time. We show that if G has bounded density, in the
sense that no open disk of radius » contains more than A vertices,
then f(G) is bounded above by the ceiling of -a universal constant
times A/r%. Similarly, if the density of Gis-bounded from below in
the sense that every open disk of radius r contains at least x vertices,
then f(G) is bounded below by x times the square of the floor of a
universal constant times 1/r.

Keywords: firefighting, geometric graph.

1 Introduction

The Firefighter Problem was introduced by Hartnell [5] in 1995. A fire
starts at a vertex in a graph G at time 0, and spreads to all neighboring
vertices in successive discrete time steps. Between each of these epochs,
f vertices are “protected” (equivalently, removed), where f is some fixed
positive integer representing the number of firefighters. When a vertex
is burning or has been protected, it remains in that state. The process
terminates when the fire can not spread any longer; the objective, when G
is infinite, is to determine the minimum number of firefighters needed to
stop any fire in finite time.
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For a survey of results, see [3]. For a connection between this problem
and the game of cops and robber on graphs, see Sec. 9.2 in [2]. So far,
most of the work done on infinite graphs has been on plane lattices such
as the square, triangular, and hexagonal lattice (4, 7, 8]. For fighting fires
in a forest, as opposed to an orchard, it is natural instead to consider
graphs whose vertices are distributed on the Euclidean plane according to
some density conditions. In the first model, due to limitations on space
and resources, we assume that there is an upper bound on the number of
vertices that are in any disk of fixed radius. In the second model, we are
interested in a forest that is not too thin, and consequently, we assume that
there is a lower bound on the number of vertices that are in any disk of
fixed radius. Moreover, in both models, we are assuming that vertices are
adjacent when they are close enough to permit the fire to spread from one
vertex to another, giving rise to geometric graphs studied here.

2 Preliminaries and Main Results

Definition 2.1. A graph G is geometric if its vertices are points of the
plane R?, with u,v adjacent just when their Euclidean distance p(u,v) is
less than one.

Let G be a fixed geometric graph. If S is a finite set of vertices in G, we
denote by fs(G) the minimum number of firefighters needed to stop a fire
that begins at (or has expanded to, by the time firefighting commences) the
vertices in S. Provided that it exists, let f(G) be the maximum of fs(G)
over all finite vertex sets S, i.e.,

G) = S).
HE) = 5oy B o 0 (5)
Note that if a graph G has no infinite component, then no firefighters are
needed, hence f(G) = 0.

Definition 2.2. Let r be a fized positive real number and A a fixed positive
integer. Let ®™> be the set of all geometric graphs G in which every open
ball of radius r contains at most A vertices.

As we shall see, for any G € ®™*, f(G) exists, and, in fact, there is a
finite value, denoted by f™*, representing the smallest number of firefighters
needed in order to stop any fire in any G € ®™*, In other words,

™A _
fr7 = max f(G).



Theorem 2.3. There exists a constant C such that for all r and ),
CA
A
|5
Theorem 2.4. There exists a constant C’' > 0 such that for all A,
(05
B
f’2[7?f

Definition 2.5. Let r be a fired positive real number and « a fized positive
integer. Let ®, . be the set of all geometric graphs G in which every open
ball of radius r contains at least k vertices.

In the case of lower bounded geometric graphs, we define
fr,n = Grenﬁnl.‘ f(G)
so that f, . is the minimum, over all G € &,. ., of the number of firefighters
needed to stop any fire in G.

Theorem 2.6. There exists a constant C > 0 such that for all r and &,

2
fr,n 2 i\'C"J K.
T

3 Proof of Main Results

3.1 Upper Bounded Density

We will prove Theorem 2.3 via Propositions 3.1 and 3.2. Let C.(z), B-(z),
and D.(z) denote, respectively, the circle, open disk, and closed disk of
radius r and center z. When z is the origin, we will simply denote them
by C., B,, and D,., unless stated otherwise.

Proposition 3.1. Whenr > 1,
4
T,/\ < -
f “[@—wﬂy
where v = ﬁg + 3.

Proof. Suppose G € ®™* and let us assume that the fire has started in a
finite set of vertices S of G. Let D be the smallest closed disk that contains
all the vertices of S. For simplicity of notation, we assume that the center
of this disk is the origin 0 and denote its radius by d. We will try to find
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Figure 1: An Efficient Covering of A with Open Balls of Radius r

circles Cy : 22 + y%2 = R? and C; : 2% + y2 = (R + m)? for a large integer R
and positive integer 0 < I < m < 2r such that the firefighters can defend
all the vertices in the annulus A; : (R+1)? < 22 + 4% < (R+1+41)2 by the
time the fire has reached C;. In order to find such an annulus, we will cover
A: R? < 2% + y? < (R 4+ m)?, the annulus between C; and C,, with open
balls of radius  efficiently (see Figure 1). Suppose n open balls are needed
to cover A. Since each open ball contains at most A vertices, there are at
most nA vertices in A. Since A = o</, Ai, We know that there exists
lo for which A;, contains at most 22 vertices. Since the fire cannot spread
radially at rate greater than 1, it will reach C; after R — [d] time units. As
a result, we need at most — A M firefighters per turn to defend all the
vertices in A;,. Since this annulus is of annular width one, the fire will not
spread beyond the inner circle of Ay,; therefore, fs(G) < IWAM]

Let B be a disk of radius  whose center is on the circle C, : 22 + 32 =
(R + sm)? for some 0 < s < 1. We assume that B intersects C; at distinct
points p; and q; and C; at distinct corresponding points ps and go. Our
objective is to make p;, p2, and O (similarly, ¢;, g2, and 0) collinear hy
adjusting s. For simplicity of computations, let us assume that the center
of B is the point (0, R+ sm). In order to find p; = (x;,¥;), we need to solve
the following system of equations:

22 +y2=R? 22+ (g — (R+sm))2 =12, y, = tzy,

:L‘% + y% = (R +m)?, :c% +(y2— (R+ sm))2 =172, yo = tz,.
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By doing so, we have

(z1,91) = R 4r2 —m? 2R? + mR
LV = SV Ry mB+ 2 VB rmR+ 2 )

Since p1, p2, and 0 are collinear, we can cover A with [27] copies of B
where 6 is the central angle of the sector of C; that is inside B. We know
that § = 2arcsin(%). Having the Taylor expansion of arcsin in mind, we

have
4r2 —m?
0> ———,
~VR24+mR+r?
and, as a result, we can cover A with at most

o R?2+mR+ 7?2
4r? —m?

copies of B. Since n is the least number of open balls of radius r to cover
A, we have
R2+ mR+ r2'|

ns [2# 4r2 —m?

Returning to our earlier argument, we have

nA R%2 4+ mR 4 r? A
7)< |y | < ”2” T ] (R - [cﬂ)]

It follows that

4r2 — m? 2m

1
R—[d] 4r2 —m? R—[d]'

1 R2 + mR + 72 1
R—Td (1-<2” W» SRo[ar

{% R2+mR+'r2] 1 R2 4+ mR 412

where (z) is the fractional part of z. As a result, we have

VRZ+ mR+ 12 4+ 4r2 —m? 27T\
MG)S[ R d] 'mm]'

Suppose 7 denotes v/4r?2 — m?2 and we have

(VR +mR+ 7 +n) < (VR +2mR+ 7% +1)
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= (\/(R+m)2+ (r2 —m2) +n) < (ﬂRer)2+(4r2 —m2)+n) <

(\/(R+m)2+\/4r2—m2+17) = (R+m)+2n.

Given that R is greater than m + 27+ 2[d], we have

VRZ +mR+ 72 + V4r2 — m? < R+m+2q
R —[d] R—{d]

<2.

It follows that
47\ ]

fs(G) £ [m .

For mg = v/2r, mv/4r2 — m? is minimized for real values of m with the
minimum value 2r2. To make m an integer, we will use the closest integer
to mg = V/2r for this purpose. We now compute the error bounds that
arise from doing so. We may assume that mp is not an integer. Two cases
arise: 3 > (mo) and 1 > (mg) > 1. We know that |z] = z — (z) and when
z is not an integer, [z] = |z] + 1.

When —21- > {(my), the closest integer to mp = V2r is its floor, so we want
to find an upper and a lower bound for

|v2r) ( 4r? — [\/51']2) — 22 =

1V2r] (\/21‘2 +(Var - (ﬁr))(ﬁr)) —or? =

2
[V2r] (\/(\/51” + <\/2§T)> - %(\/-2_1')2) —2r2,

On one hand, we have v/2r — 3 < [v2r] < +/2r. On the other hand, we
have the following upper bound for the expression under the radical:

\/(\@r+ (\/257')) - %(\/ﬁr)z <Vor+ (\/257') <Vor+ -‘li

Since (v/2r) < 1, it follows that (v/2r) > (v/2r)2. By assumption, r > 1
which implies that v/2r > 1. Putting these two ohservations together, we
conclude that (v/2r — (v/27))(v2r) > 0. As a result, we have the following
lower bound for the expression under the radical:

Var < \J2r2 + (Var — (VEr)(Var).
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We conclude that

2r? — \/Tir < |V2r| \/47‘2 - (V2r — (V2r)2 < 2r? + -\2—2-1'

which implies that

‘L\/ﬁrj (\/m) -2r? < gr.

Now assume that 1 < (mo) < 1. In this case, the closest integer to
mo = V/2r is its ceiling, and, as before, we want to find a lower and an

upper bound for
[Var] (\/41'2 - [\/51']2) —2r? =

[V2r] (\/w —2V2r(1 = (V2r)) - (1 - (ﬁr))z) — 272
On one hand, since 0 < 1—(/2r) < -;-, we have v2r < [V2r] < \/§r+%. On

the other hand, since 0 < 2v/2r(1—(v2r)) < v2rand 0 < (1—(v2r))2 < 1,
we have the following bounds for the expression under the radical:

\J2r? = Var - % < \/2r2 = 2var(1 = (V2r)) — (1 - (V)2 < Vor.
The expression on the left can be rewritten as \/(\/i'r - %)2 - é—. Since

V22 —y? > \/( — y)? when z > y > 0, we have

ﬁr—ﬁ—%< (\/51'—%)2—%.

Putting these observations together, we have

[Vr] (\/41’2 —(V2r+1- (\/57'))2) < 2r? + %—ir

and

2t - 2 (14 ) < (var] (Vart = (Vo 41— (VB

which implies that

I[‘@] (\/m) - 2r?

(1),
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In either cases, the closest integer to mp gives us an approximation for

mov4ar? — mg = 2r2, and we have
dmt 47
LL|l—7-—| £ | ——
fs(G) < [27’2 - u'r-l = [(2 - u)rz-l '

where v = ﬁg + % Since the right hand side of the inequality is an upper
bound for fs(G) for any finite subset S of vertices in G where G is an
arbitrary member of ™*, we have

A 4
s | g2l °

~ )2

Proposition 3.2. Whenr < 1,
27
A
<L [T—z'/\] .

Proof. Suppose G € ™ and let us assume that the fire has started in a
finite set of vertices S of G. Let D be the smallest closed disk that contains
all the vertices of S. For simplicity of notation, we assume that the center
of this disk is the origin 0 and denote its radius by d.

Suppose H, is the hexagonal lattice whose faces are regular hexagons of
side . Moreover, let us assume that the origin is a vertex of H,. Suppose
H is an arbitrary closed face of H,. For a fixed 8 € (—m, 7], let £o(H) be
the set of all lines that intersect  and have tan(@) as their slope. Suppose
£y and Ly are two extremal elements of £9(H), i.e, with the largest and
smallest y-intercept when § € (—w, 7) or the largest and smallest z-intercept
when @ = 7. Then £; and £, intersect H at two opposite corners or at
two opposite sides of 1. Let p and ¢ to be two antipodal points on the
boundary of H. Clearly, p(p,q) < 2r.

Now we want to demonstrate that when R is large enough, provided
that Cr N'H # 0, the difference between p(p,q) and the arc length of the
sector they mark on Cg is negligible. Suppose these two points have a
distance of 2r which is the maximum distance between any two points on
the boundary of H. We know that the arc length between them is equal to

2R arcsin(). For € > 0, provided that R > y/2(arcsin(r) — r), we have
€ ( )n p2n+l
27 (Z (2n + 1)n
( )11 2n+1 _ . T _
(Z @n+ D! ( ) ) = Raresin () -1,
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where (), = z(z —1)--- (z — n+ 1); hence, € > 2Rarcsin(f) — 2r > 0.

Define g;(R) and g2(R) to be number of hexagons intersecting and con-
tained in the interior of Dg, respectively. Let k(R) be the number of
faces of H, that is in the annulus Ag : R?2 < z2 + 942 < (R+1)2. We
choose Rg > [d] so that Cg, has negligible curvature relative to the dis-
tance r and choose R; > Ry such that the number of hexagons that in-
tersect the (Rp, R; + 1)-annulus R;"; < 22 + 42 < (Ry + 1)2 is less than
am((Ry + 1)%2 — R2)/(3v/3r2%). This radius exists because on average an
(Ro, R + 1)-annulus contains 27((R + 1)? — RZ)/(3+/3r2) hexagons.

Let us assume that the hexagons covering the (Rp, Ry + 1)-annulus are
indexed by i. Denoting the characteristic function by x, we have

[RO k(R) dR</ ZX(ARn’H,)dR Z/ x(Ar N H:)dR

where H; is the i-th hexagon in the aforementioned annulus. But

Ry
/ (AR N H)dR
Ro

is equal to the difference between the maximum and the minimum value of
R such that Ap intersects H;. In other words, since the annular width of
each Ag is one, this difference is equal to one plus the width of #H; in the
particular direction that circles centered at the origin sweep through H;.
On the other hand, we know that the diameter of each H; is 2r, and, as a
result,

Ry
/R., k(R)AR < (g1(Ry + 1) — ga(Ro))(1 + 27),

where g, (R; +1) — g2( Ro) is number of hexagons covering the (Ro, Ry +1)-
annulus. We want (g1(R; + 1) — g2(Ro))(1 + 2r) to be at most

4m((R1 + 1)2 - R%)_
3v3r2 '

therefore,
4m((Ry +1)% — R2)

3v/3r2(1 4 2r)
Let « be the right hand side of this inequality divided by (R?— R3)/2(1+2r).

We claim that for some R’ € [Rp, Ry}, k(R’) < vR'. Assume the contrary,
and we have

91(R1 + 1) — g2(Ro) <

7R2 41r((R1 +1)2 — R3)
2 Ro 3\/§T2

k(R)dR > =
Ro
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which is a contradiction; hence, there is R’ € [Ry, R;] such that there are

at most
27 (R + 1)2 R2) , 2 ( 2R1 + 1)
R = 1 R
3/3r2 ( R} —~ RZ Wi TR’

hexagons covering Ag:. Given that R— 1> Ry > 1, —2{2{‘-}%3 is a strictly
decreasing function of R which is bounded from above by 2. Its value at
R = Rop+1isequal to (2Rg+3)/(2Ro+1) which is less than 2. Consequently,
there are at most 23’:_2 R’ hexagons covering Ap.

On the other hand, each hexagon is circumscribed in a closed disk of
radlus r which contains at most A vertices. As a result, there are at most
\/5 5 R’ vertices in Ap:. Since the fire cannot spread radially at rate greater

than 1, we have

2wAR’
G
9O = -1y
Provided that v/3([d] 4 1) < (v/3 —1)| Ro, we have U?T?l’—-rﬂ < /3, and

consequently,
27
rs@ < |2,

Since the right hand side of the inequality is an upper bound for fs(G) for
any finite subset S of vertices in G where G is an arbitrary member of &,

we have 9
A m
o< (2] .

In order to‘ prove Theorem 2.4, we will prove the following proposition.
Proposition 3.3. Assuming A > 1,

1. frr > I_—)‘gj , for 1 <r;

2 frr>d|5], fori<r<y;

S fAZA22| 2], for E<r<d;

4. A >4 > 4|2 Jfor£<'r .

2
5. fr-xzquj A2 |2y, foro<r < L.

In the proof of this proposition, we use the following lemma whose proof
can also be found in [1].

Lemma 3.4. When r > 1, the number of points in Z? inside an open ball
of radius r is bounded from above by nr? + 4r + 11.
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Proof. (Proposition 3.3) Let s - Z?2 be the square lattice with side length s.
In this proof, by a lattice point we mean a point in s - Z2, unless stated
otherwise.

Let 1 £ r. For a sufficiently small positive real number €, consider
(1 —¢€)-Z?% . Since the Euclidean distance between any pair of consecutive
horizontal or vertical lattice points in (1 — €) - Z? is slightly smaller than 1,
as a geometric graph, Z2 is isomorphic to Z2. By Lemma 3.4, we also know
that any circle of radius 7 > 1 contains at most 77%(1—e)~2+4r(1—€) " +11
points in Z2.

Centered at each lattice point, consider an open ball of radius ¢/2, and
for a fixed positive integer m, distribute m points in each ball at random.
Let the these points to be the vertices of a geometric graph G. For every
lattice point p, the vertices in B/3(p) form a clique. Moreover, if p and ¢
are two lattice points that are adjacent in Z2, then any vertex in B¢/3(p)
is adjacent to any vertex in B./(g). Assuming that e < 1 — v2/2, these
are the only adjacencies that we have in G. We know that 2 firefighters
are necessary and sufficient to stop any finite fire in the square lattice [4].
Considering all the vertices that we distributed around each lattice point
as a mega-vertex and the edges that join the vertices in one mega-vertex
to another mega-vertex as a mega-edge, we will have a graph isomorphic
to Z2. In order to protect a mega-vertex from catching and spreading the
fire, we need to protect all the m vertices it contains. Let

= [(wr2(l —€)~2 +21'(1 —€)~ 1+ 11)J

and construct G as above for this particular value of m. It follows that each
circle of radius r has at most A vertices. Since 2m firefighters are needed
to stop the fire, we have

A1 —¢)? >2[ A1 —¢)? J

R} M-
7022 | e 22 e

Since r > 1, assuming that € = (0.1), we have

81)A A
LI (—_ > (1. A
frz2 lwr2+4r+11J > (1.62) | 772 4+ 4r 411 2

A > A
ar2 +4r+11] T [1972 )

Suppose § < 7 < 1 andlet 0 < ¢ < r — 1. In this case, consider
(-,:; +€) - Z%. Assuming that a vertex of a graph is present at each lattice
point, then (3 + €) - Z2, as a geometric graph, is isomorphic to the strong
square lattice Z&. By Proposition 3.4, we also know that any circle of

73



radius 7 contains at most wr?(3 + €)% + 4r(3 + €) + 11 lattice points in
(3 +¢)- 22

As in the previous case, construct a geometric graph G where centered
at each lattice point we consider an open ball of radius ¢/2 and distribute
[M/(7r?(% +€)2 +4r(} +€) + 11)] vertices in each open ball at random. We
know that 4 firefighters are necessary and sufficient to stop any finite fire in
the square lattice [7]. Considering all the vertices distributed around each
lattice point as a mega-vertex and the edges that join the vertices in one
mega-vertex to another mega-vertex as a mega-edge, we will have a graph
isomorphic to Z%. It follows that

A
F(G) 24 [—}ﬂ(l +2€)2 +2r(1 + 2¢) + 11J '

Assuming that 0 < e < -;-, we have (1 + 2¢) < 2, and consequently,

A
T,A>4 _ .
2 wre 4+ 4r + 11

On one hand, we have f™ > 4[%;,—] since r < 1. On the other hand, since
r? > 1, we have % > 727. It follows that

A
A
iz |_76r2J )

Let 32@- <r< % and let 0 < € < 1 — 2r. Centered at every lattice
point in (1 — €) - Z2 consider open balls of radius ¢/2. Denote the set of all
these open balls by 8. In each of these open ball, we randomly choose A
distinct points and we let G to be the geometric graph whose vertices are
these randomly chosen points for all open balls in B. We will show that
G € ®™*. Clearly, every open ball of radius r centered at one the lattice
points contains A vertices. Since the distance between any two elements
in B is at least 1 — ¢ and the diameter of an open ball of radius r is less
than 1 — ¢, any other open ball of radius 7 can only contain vertices that
belong to exactly one of the open balls in 9. Consequently, any open ball
of radius r has at most A vertices and G € ™,

For every lattice point p € (1 — ¢) - Z2, the vertices in B, s2(p) form a
clique. We know that, as a geometric graph, (1 —¢)-Z? is isomorphic to Z2.
As a result, if p and g are two lattice points that are adjacent in (1 —¢) - Z2,
then any vertex in Bg(p) is adjacent to any vertex in Bg(g). Assuming
that € is sufficiently small, these are the only adjacencies that we have in
G. Considering all the vertices that we distributed around each lattice point
as a mega-vertex and the edges that join the vertices in one mega-vertex
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to another mega-vertex as a mega-edge, we will have a graph isomorphic
to Z2. In order to protect a mega-vertex from catching and spreading the
fire, we need to protect all the A vertices it contains. Since two firefighters
is the necessary condition to stop any finite fire in the square lattice (4], we
have f™ > 2. It is not hard to check that in this interval 2A > 2|5 ].

When -\Q <r< %2:, the proof of the inequality is similar to that of the
previous case. The only differences are: 0 < € < -\gj — 2r; instead of Z2, we
use the square lattice with side length ﬁg — €. As a geometric graph, this
lattice is isomorphic to the strong square lattice Z. We know from [7] that
4 firefighters is the necessary condition to stop any finite fire in the strong
square lattice; therefore, f™* > 4\. It is easy to check that 4\ > 4[%,
in this interval.

Finally,let 0 < r < @. Suppose 3? -Z? be the square lattice with sides

of length 3?. For (i, j) € Z2, define
V2 V2 V2 V2 }

. 2,. 2. 2.
S,-,,-={(:c,y) TZSfBST(Z"'l)aTJSyST(J'Fl)

which are the square faces of J4Q .Z2. Let G be the set of all these squares.
Inside each square S; ;, consider the square 7;; whose distance from the
houndary of S; ; on each side is 7, i.e., 7; ; is a square centered inside S; ;
of side length ‘/TE —2r. Let 5{;—5- —2r > € > 0 be a very small real and let
n be the largest positive integer such that (n — 1)2r + ne < % - 27, ie.,
n= [ﬁ%] This means that we can construct a n x n grid of open balls
of radius € inside 7; ; such that distance between any two of these open balls
is at least 2. Denote the set of all these open balls inside 7; ; by B, ; and
we will randomly choose A distinct points in each of them. Let G be the
geometric graph whose vertices are these randomly chosen points in each
open ball in B, ;, for all 4,5 € Z. We will show that G € ™. Since the
distance of 7; ; from the boundary of S; ; from either side is r, the distance
between any open ball in B;; and an open ball in any other By ;- is at
least 2r. Moreover, the distance between any two open ball in B, ; is at
least 2r, and as a result, around each open ball in 8™ there is an annulus
of annular width 2r that is empty of any vertices in G. It follows that any
open ball of radius r can only contain vertices that belong to exactly one
of the open balls in B; ;. Consequently, any open ball of radius  has at
most A vertices and G € &™.

Since the side of each square is 342, every vertex in S; ; is adjacent to
every vertex in Sy, where l € {i —1,4,i+ 1} and k € {j — 1,5,5 + 1},
i.e., any vertex in S; ; is adjacent to any other vertex in S; ; and the eight
squares touching it. Note that these are not all the possible adjacencies in
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G. Based on our construction of G, we know that each S;; contains n?X
vertices. Considering all the vertices in S; ; as a mega-vertex and the edges
joining these vertices to the vertices in S; ;4 (also, to S;;_1, Si—1,;, and
Si+1,;) as a mega-edge, we have a mega-graph that is isomorphic to the
strong square lattice Z%. Again, we must protect all the vertices in the
mega-vertex. Since four firefighters are necessary to stop any finite fire in

the strong square lattice [7), we have f™ > 4n2). Since W > ;,/,,_, we

have f™* > 4|¥2|2\. It is not hard to prove that when = > 1, |z] > 2
Since v/2/(97) > 1 in this interval, we have

4{£J3>LA4AJ. .

9r = 81r2 8172

3.2 Lower Bounded Density
Before we proceed to prove Theorem 3.6, we will prove the following lemma.

Lemma 3.5. For all n, let £, be the circle centered at 0 and of radius
n(1 + €) where § > € > 0. We divide every &, into

o = "211'(& + l)n"

€

equal arcs, as shown in Figure 2. If B denotes the set of endpoints of these
arcs for all n, then any open ball of radius (-% + €) must contain at least &
elements in ‘P.

Proof. (of Lemma 3.5) Let B be an open ball of radius (-12- +€) and center c.
We know that c is either on one of the £,’s or is between two consecutive
circles. Without loss of generality, we assume that ¢ is equidistant from &,
and £, 41 for some m. If not, it would be closer to one of these circles, and,
as a result, it will separate a larger sector from the closer circle. Suppose
L and L£” are line segments connecting the intersection points of B with
Em41 and &, respectively. Also, let £’ be the line segment tangent to &,
parallel to £ and L£” (see Figure 3).

Let z be the distance between ¢ and £, and let y be half of the length
of £. Then 2% +¢y* = (1 + 6)2 On the other hand, we have z < e
These two facts imply that 32 > s(1+ e) > £(14¢). Buty< 3 + € < 1
which enables us to write y > y% > £(1 + €). Let K be the sector of Emt
inside B and k its the arc length. Since a line segment between two points
has the shortest arc length among all possible curves connecting the two
points, then > y. As a result, £ 3 > £(1 + €) which implies

2r(m +1)(1+¢) < 2r(m +1)
k €
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(3+¢)

Figure 2: A Circle of Radius (} + ¢) Containing at Least x Points in B

or, equivalently,

2m(m +1)(1 +€) < 2n(k + 1)(m + 1).

*_

w+1
The denominator of the left-hand side of this inequality is the arc length
of the smaller sectors we get from dividing K into k + 1 equal arcs. This
guarantees that B contains at least x endpoints of these arcs. Dividing the
perimeter of &£,,+1 into sectors of arc length ﬁ_—l, gives us a lower bound
for the number of equal arcs we need to divide £,,+; so that at least k of
these endpoints is in B. Since

[2w(m +1)(1+ e)] < [271'(& +1)(m+ 1)]

[]
x+1 €

if we divide £,,41 into s,,41 equal arcs, B is guaranteed to contain at least
& of the endpoints of these arcs.

Similarly, define z’, ¥’ and z”, y” for L' and L, respectively. We will
first show that 2/ > 1. Suppose the converse is true. This implies that
l+e—1<1+e—2', and, as aresult, we have § + e+’ < 1+e. Since
(1 + ¢€) is the distance between &, and £y 41, this inequality implies that
Em+1 and OB can intersect in at most one point. This is in contradiction
since ¢ is equidistant from both circles and the diameter of B is slightly
bigger 1 + ¢ which forces 8B to intersect £,, and &,,41 in two points each.

For some t,s, 2’ +t =} + € and 2 = 2’ + 5. It follows that ¢ < € and
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s < §. Consequently, z” < § + 2¢. Since (z”)% + (y")? = (4 +¢€)?, we have

/
L;— >y > (¥")? > el + 3¢) > %(1 +¢),

where &’ is the arc length of the sector of £, inside B. As a result, we have

2rm(1 +¢€) < 2tm
k! €

or, equivalently,
2rm(1 + €) < 2n(k + 1)ym
K p :

K41

Similar to the argument we gave for &,,41, dividing &, into s,, equal arcs
guarantees that B contains « endpoints of these arcs on &,.

Finally, if we divide each &, into s, equal arcs, any open ball of radius
% + € must contain at least x of the endpoints of these arcs. O

To prove Theorem 2.6, we will prove the following proposition. One can

easily check that for C = ‘/Ti, the statement of Theorem 2.6 gives smaller
lower bounds than the ones given for each particular interval in Proposition
3.6.

Proposition 3.6. Assuming that £ > 1,
L fux=0, for <r;

2

2 fre21, forg<r<

N

3. frm 235, for ¥ <r< iy
2
4. fr,n22|.f§J K,forlsésr<3§;

2
5. fr,K>4I_{§J n,for0<r<38é.

Proof. For % < r <1, we can use the following graph: let £, = C, where
mn =n(1+¢€) and § > € > 0. We divide every &, into [m"—:'—l)-’l] equal
sectors, and suppose the vertices of the graph G are the origin and the
endpoints of each sector marked on each &,. By Lemma 3.5, we know
that every open ball of radius % < r < 1 contains at least x vertices of
G; therefore, G € &, .. Moreover, the origin is not adjacent to any of the
vertices in &; since their distance is more than one. Similarly, no vertices in
&, are adjacent to a vertex in £,,41. Consequently, the vertices that belong
to a component of G are on the same circle. Since there are finitely many

78



Figure 3: B, &n, and &, 1

vertices on each circle, each component is finite. As a result, no firefighters
are needed to stop a finite fire in G and we have f(G) = 0. This proves that
frx = 0. Note that this construction also works in the case when r > 1
since every open ball of radius r contains an open ball of radius one.

When ;11- <r< -%, we will demonstrate that each vertex of G € ™"
belongs to an infinite component. Let vg be an arbitrary vertex in G, and
let £ be a fixed line that goes through vo. Let Fp be an open ball of radius
r whose center is on £ and has vg on its boundary. Since G € &, ., Fo
must contain at least a vertex v, different than vo. Since the diameter of
open ball circle is 2r, the distance between vg and v, is less than one, and,
as a result, they are adjacent vertices. Let £; be the perpendicular line to
L that goes through v;. In the half plane that does not contain vg, consider
the open ball F; of radius r which is tangent to £, at v; (see Figure 4).
Recursively, we find an infinite path in G: For all ¢ > 1, we assume that
we have a vertex v; and a line £; perpendicular to £ that goes through
v;. In the half plane that does not contain vj, for 1 < j < %, consider the
open ball F; which is tangent to £; at v;. It follows that F; must contain
a vertex v;4; which will be adjacent to v;. This construction shows that G
contains an infinite path, and, as a result, f(G) > 1. Since this is true for
any G € &, «, we have f, . > 1.

Now let ¥3 <r< %. Let T, be the triangular lattice whose faces are

10
equilateral triangles with side t. Consider Ty. We will pack the plane

using open balls of radius 2 7 Whose centers are the vertices of faces of T 1
Let us denote the set of all these open balls by 8. On one hand, every
open ball in B contains an open ball of radius r, and, as a result, it must
contain at least x vertices. On the other hand, all the vertices in B, € ‘B

are adjacent to the vertices in By € 8, provided that the centers of B; and
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Fa

Figure 4: Finding an Infinite Path in G

B; are the two endpoints of an edge in T;. Considering all the vertices in
an open ball in B as a mega-vertex and the edges joining these vertices to
the vertices of a neighboring open ball as a mega-edge, we have a mega-
graph that is isomorphic to the triangular lattice. We know from [4, 7] that
three firefighters are necessary and sufficient to contain any finite fire in
the triangular lattice. In order to protect a mega-vertex from catching and
spreading fire, we need to protect all the vertices it contains. Since each
mega-vertex contains at least x vertices, we need at least 3 firefighters to
stop any finite fire in G. It follows that f, . > 3k.

Now let ﬁg <r< 31%. For (i,j) € Z2, define

_\/_5in< \/g(i+1),§j5y< -?(141)}-

Sij = {(m, ) 5 -

Since the side of each square is 3?, every vertex in §; ; is adjacent to every
vertex in S; 41, Sij—1, Sit+1,j, and S;_1 ;. Let & be the set of all these

squares. Now each square in & contains at least [f{éjz squares of side
length 2r. We know that each square of side length 2r circumscribes a
circle of radius r, and, as a result, it contains at least « vertices. It follows
that every square in & contains at least L%Jzn vertices. Considering all
the vertices in S;; as a mega-vertex and the edges joining these vertices
to the vertices in S; ;41 (also, to &;j—1, Si-15, and S;41;) as a mega-
edge, we have a mega-graph that is isomorphic to the square lattice. In
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order to protect a mega-vertex from catching and spreading fire, we need
to protect all the vertices it contains. Since two firefighters is the necessary
and sufficient condition to stop any finite fire in the square lattice (4], we

have f, . > 2[{%]25.
Finally, let 0 < r < ¥2. For (i, 5) € Z?, define
V2 V2 V2 V2

) . : 2.
Tij = {(z,y) TIS$<T(1+1),T]$y< T(J"'l)}-

Since the side of each square is 3?, every vertex in 7 ; is adjacent to every
vertex in 7jx, where l € {i — 1,i,i+1} and k € {j — 1,4,7 + 1}, i.e, any
vertex in 7; ; is adjacent to any other vertex in 7;; and the eight squares
touching it. Let ¥ be the set of all these squares. We know that each square
in ¥ contains at least [#]2 squares of side length 2r. Also, each square of
side length 27 circumscribes a circle of radius r, and, as a result, it contains
at least « vertices. It follows that every square in ¥ contains at least [gjzn
vertices. Considering all the vertices in 7; ; as a mega-vertex and the edges
joining these vertices to the vertices in the eight squares touching it as a
mega-edge, we have a mega-graph that is isomorphic to the strong square
lattice Z%. In order to protect a mega-vertex from catching and spreading
fire, we need to protect all the vertices it contains. Since 4 firefighters is
the necessary and sufficient condition to stop any finite fire in the strong

square lattice [7], we have fr . > 4[584.2]25. O

We observed in the first statement of Proposition 3.6 that if » > 1/2
then f.,. = O, that is, we might not need any firefighters. But a critic
might complain that the graphs constructed in the proof have arbitrarily
large components, so that there is no bound on how far an unchecked fire
might spread. We conclude this work by computing the value of  at which
this ceases to be an issue.

Theorem 3.7. For r < 333, G € ®, . has arbitrarily large components.

On the other hand, when r > %—5, G € 6, . might have components whose
size is uniformly bounded.

We prove the first statement of this theorem by contradiction. Suppose
{C:}ien in the set of all components of G and we assume that the number of
vertices in each component is bounded by some fixed number M > 0. First,
we will justify the fact the set of components of G is countably infinite: If
‘C; is a component in G and z; a vertex in C;, By(z;) can only contain
vertices from C;. To each component C; of G, we assign a unit open ball
centered at a vertex z; in C;. Based on the above observation, none of
these balls intersect at a vertex. If we assume that there are uncountably
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many components in G, there will be uncountably many open balls. Since
there are uncountably many of these centers, a subset {y;}jen of them
must have an accumulation point yo. Then for some N > 0, |yo — y;| < 3
for all j > N. Since they are all in the same component of G, we have a
contradiction. Since we can put infinitely many non-intersecting open balls
of radius r with centers along a line, the vertex set of G has to be infinite.
Since each component has finitely many vertices, the set of components of

G is countably infinite.
Now define

Vi={peR?|p(p,C:) < p(p,C;),Vj # i}
to be the open Voronoi cell associated to C;, and let
V=R}\(|J V)
ieN
be the Voronoi diagram associated to the components of G. Similarly, define
Ve = {p| p(p:z) < p(p,y), Yy € G\{z}}

to be the open Voronoi cell associated to a vertex z and let
Ve =RA\(|J Va)
zeG

be the Voronoi diagram associated to the vertices of G. Given these defi-
nitions and the assumption that the cardinality of each component is uni-
formly bounded, the following facts are not hard to prove:

1. For all i, the Euclidean diameter of V; is uniformly bounded.
2. For all i, CI(V;) = {p € R? | p(p, C:) < p(p,C;),Vj # i}.

3. For all 4, V; and Cl(V;) are path-connected, and, as a result, con-
nected.

4. For all 4, V; is open.

5. For all 4, V; = {p € CI(Vi) | 3j # i,p(p.Ci) = p(p,C;)} and
V= UiEN V.

6. For all 4, there exists some j # i such that 3V, NV, # @.

7. Any bounded region R in the plane contains finitely many vertices in
G.

8. For all z € G, CI(V,) is a convex polygon.
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9. For all 4, 8V; has finitely many connected topological components.

10. For all 7, the complement of Cl(V;) has a unique connected topological
component &; that contains infinitely many vertices.

Before we proceed to prove Theorem 3.7, we need to prove the following
lemma which we will use in proving the first statement of this theorem:

Lemma 3.8. There ezist distinct i, j, k such that 3V; NOV; N8 Vg is not
empty.

Proof. Suppose not. Since CI(V;) is a convex polygon, dV; is a finite
union of line segments which we call the Voronoi edges. It can be shown
that these Voronoi edges are line segments on the perpendicular bisector
of exactly two vertices of G. If we call the nonempty intersection of any
two of these edges a Voronoi vertex, then the Voronoi vertices are where
the perpendicular bisector of three or more vertices intersect; hence, the
Voronoi vertices in Vg are equidistant from at least three vertices in G.
Moreover, every Voronoi edge contains exactly two Voronoi vertices, namely
its endpoints (see Proposition 5.3.2 in [6] on p. 87).

For all £ € G and i, if x € C;, then label V,, i. Let e be a Voronoi
edge in 8&; C 8 CI(V;)¢ = OCIV;) = 8 V. It follows that there exist j # i
and y € Cj such that e is a line segment on the perpendicular bisector
of y and some 2 € C;. Consequently, e has the label i on one side and
j on the other. Let v and u be the two endpoints of e. Suppose v is
equidistant from x, y, and at least one other vertex z. Then z has to be
either in C; or Cj; otherwise, v € 8V; N 8V; N 0V for some k distinct
from i and j. Consider the closed disk D(,,z)(v) which has all the vertices
that are closest to v on its boundary. Starting at = and writing the labels
of the cells which have v on their boundary in a counterclockwise order,
we have a finite sequence of the form (t1,%2,...,tn), where t; € {i,5}. We
will show that (¢1,t2,...,tm) = (4,%,...,%,3,4,-.-,). Suppose not and the
subsequence 1, j, %, j must occur. Let the vertices z1, y1, T2, y2 be the vertices
in Cp(v,z)(v) associated to this subsequence. Since p(z1,y1) and p(y1,2)
are greater than one, by looking at the sectors they mark on C,(,,z)(v), we
know p(z1,z2) > 1. Similarly, p(y1,y2) > 1. Both C; and C; are connected
graphs, but since ; and z; prevent ¥; and ys to be connected to each other
via the vertices in C; N Cpyy,z)(v), ¥1 and y2 are connected via a path not
in Dpy(y,z)(v). The same is true about z; and z3. But this forces the two
paths to intersect at a point, which is a contradiction since V; N V; = @.

Let us assume that the pair ¢,7 in the middle of this cycle is the one
associated to e, with z on one side and y on the other. But there will he
another edge e; associated to the pair j,% at the end of this sequence, i.e.,
e has an i on one side and a j on the other. In other words, e; € V;NOV;
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and has v as an endpoint. Let v; be the other endpoint of e;. We continue
in this fashion and will have a sequence vg = v, e1, v, €3, v, . . . of vertices
and edges. Along this sequence, we do not return to any vertex; if we do,
we would have the forbidden subsequences 1, j,, j or 7,1, 7, at that vertex.
We know that 8V; C (,¢¢, O Vs, each Cl(V;) is a polygon, and each C;
has finite cardinality. Consequently, 8V; is made of finitely many Voronoi
edges and, as a result, the aforementioned sequence has to end. The only
possibility is u, the other endpoint of e, which implies that this sequence is
a cycle C with i’s on one side and j’s on the other.

By Jordan curve theorem, C separates the plane into two open and con-
nected regions, an interior region £ bounded by C and an exterior region
£, and any continuous path connecting a point of £ to a point of £ inter-
sects with C at some point along the cycle. Since any bounded region can
only contain finitely many vertices, &; is in £. Moreover, V; and V; are,
respectively, in the interior and the exterior region since they are open and
path-connected. Also, Cl(V;) does not intersect with the exterior region: if
it does, this happens at some point z € 8V;. We know every open neigh-
borhood of z intersect with V;. On the other hand, since £ is open, there
is a neighborhood of z that is entirely in £. This is not possible because
VinE CINE = 0. It follows that CI(V;) € C UZ and consequently,
& C CI(V;)°. Since T is bounded, it contains finitely many vertices in G,
and as a result, £ must contains infinitely many. It follows that £ is equal
to &; because £ is connected and &; is the unique connected component of
Cl(V;)¢ containing infinitely many vertices. Consequently, £F is compact (a
closed and bounded subset of R?) and V; C &;. Finally, 65 =0V;NaY;
since we have i’s on one side of C and 5’s on the other and 8&; =C.

Similarly, V; is in the interior of 8&; and for some k, Vi C &; is in its
exterior, i.e., 8&; = V; NG V. Based on our assumption, 8&;NIE; = 2.
Since the open set V; is in the exterior of 8€; and in the interior of 8&;,
0&; is in the exterior of 8&;, ie., £ C & and €F C &5. Since £F and &5 are
compact, dlam(EC) = p(p,q) for some p,q € 6&' and dlam(E“) = p(p q)
for some p’,q’ € 8E&;. Since 8E; is in the exterior of 9 &; and they do not
intersect, the line £ going through p and ¢ will intersect 8 &; at two points,
u and v, whose distance will be strictly greater than p(p, q). It follows that
diam(&5) = p(p,q) < p(u,v) < p(p ¢') = diam(£5). Consequently, there
will be a sequence ig = 4,4, = ],12, . such that 8° CE&LC&E,C-- and
diam(€f) < diam(£f,) < diam(&f,) < -

We will now show that for all l dlam(V,) = diam(&f). It is easy to
see diam(V;) < diam(£f). On the other hand, we know that diam(€f) =
p(p, q) for some p,q € 8&;, but 8& C 8V, C Cl(V,); therefore, p(p,q) <
diam(Cl(V})) = diam(V;). It follows that

diam(V;,) < diam(V;,) < diam(V;,) < ---.
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Finally, we will show that for every diam(V;,), there is some k > {
such that diam(V;,) + 1 < diam(V;,). If not, for all k£ > [, diam(V;,) <
diam(V;,) + 1. This is not possible since any bounded region contains only
finitely many vertices and | J;,; Vi contains infinitely many vertices. It
follows that there is a subsequence {i1,,} of the sequence {i;} such that
diam(V; ) +1< diam(V;, , ) which can not happen since the diameters
of V;'s are uniformly bounded. O

Proof. (Theorem 3.7) Let us assume that there exists M > 0 such that
the cardinality of each component is at most M. By using Lemma 3.8, we
will demonstrate that there is an open ball of radius r that contains no
vertices. We know that for some i, , k, there exists p € 8V; n9V; N3 V.
We will show that B.(p) is empty of any vertices. Suppose not. Since
p € AV;NAV; NIV, for some s < r, there exist z;, z;, and zx in Vi, Vj,
and Vg, respectively, which belong to the circle of radius s and centered
at p. Trisect this circle into equal sectors with z; being the dividing point
between two of the sectors. Then both z; and zx have to be in the sector
opposite to T;, otherwise their distance to z; will be less than one. But
this can not possible, because this forces the distance between z; and zx
to be less than one. Since there exists an open ball of radius » which is
empty of vertices, we have a contradiction. This proves the first claim of
the theorem.

Now we will show that r = 5§ is exact. We prove the claim for k£ = 1.

A similar construction works for £ > 1. Suppose r > 3? Recall that T,
is the triangular lattice whose faces are equilateral triangles with side t.
Now consider a graph G whose vertices are the triangular vertices in T;.
There are six vertices that are closest to a vertex v in G, but none of them
are adjacent to v since the Euclidean distance between v and any of these
vertex is equal to one. Consequently, each component of G is a singleton,
and, as a result, their cardinality is uniformly bounded.

We will now demonstrate that every open ball B,.(p) contains at least
a vertex in G. First, consider the case where p is on one of the triangular
edges. Since the distance between the vertices on the two endpoints of this
edge is one and B, (p) has diameter 2r > 1, B,(p) must contain at least one
of these vertices. On the other hand, since the length of each triangular
edge is one, we know that g, the intersection point of the perpendicular
bisectors of the three vertices of a triangular face, is equidistant from them
with this distance being %_5 If p = q, then B,.(p) will contain at least three
vertices. If not, p is closer to one of the vertices, and, yet again, B, (p) will
contain at least a vertex. a
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