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Abstract

The crossing number of a graph G is the minimum number of
pairwise intersections of edges in a drawing of G. The n-dimensional
locally twisted cubes LT Q,, proposed by X.F. Yang, D.J. Evans and
G.M. Megson, is an important interconnection network with good
topological properties and applications. In this paper, we mainly

obtain an upper bound on the crossing number of LTQ, no more
Be( — ok SN
than 2884n=4 _ (n? 4 154077 yon-3,

Keywords: Drawing; Crossing number; Locally turisted cube; Hyper-
cube; Interconnection network

1 Introduction

The crossing number cr(G) of a graph G is the minimum number of
pairwise intersections of edges in a drawing of G in the plane. The notion
of crossing number is a central one for Topological Graph Theory and has
been studied extensively by mathematicians including Erdés, Guy, Turén
and Tutte, et al. (see 7, 23, 24]). In the past thirty years, it turned
out that crossing number has many important applications in discrete and
computational geometry (see (2, 14, 19, 20, 22]).

On the other hand, the immediate applications in VLSI theory and
wiring layout problems (see {1, 11, 12, 17]) also inspired the study of crossing
number of some popular parallel network topologies such as hypercube
and its variations. Among all the popular parallel network topologies,
hypercube is the first to be studied (see [3-6, 13, 21]). An n-dimensional
hypercube Q,, is a graph in which the nodes can be one-to-one labeled with
0-1 bhinary sequences of length n, so that the lahels of any two adjacent
nodes differ in exactly one bit.

Computing the crossing number was proved to be NP-complete by
Garey and Johnson [8]. Thus, it is not surprising that the exact cross-
ing numbers are known for graphs of few families and that the arguments
often strongly depend on their structures (see for example {10, 15, 16, 27]).
Even for hypercube, for a long time the only known result on the exact
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value of crossing number of @,, has heen cr(Q3) =0, er(Q4) = 8 [3]. Con-
cerned with upper bound of crossing number of hypercube, Eggleton and
Guy [4] in 1970 established a drawing of @,, to show

5 n?+1
. < e - | ——

(@) < 54" = 15
However, a gap was found in their constructions. Erd8s and Guy [7] in
1973 stated the above inequality again as a conjecture. In fact, Erdés and
Guy further conjectured the equality of (1) holds. With regard to the latest
progress of this conjecture, the interested readers are referred to [5, 6, 28).

J2n2. (1)

The n-dimensional locally twisted cube LT'Q, proposed by X.F. Yang,
D.J. Evans and G.M. Megson [26] in 2005 is an important variation of Qn.
The locally twisted cube keeps as many nice properties of hypercube as
possible and is conceptually closer to traditional hypercube, while it has
diameters of about half of that of a hypercube of the same size. Therefore, it
would be more attractive to study the crossing number of the n-dimensional
locally twisted cubes.

The n-dimensional locally twisted cube LTQ.(n > 2) is defined recur-
sively as follows.

(a) LTQ: is a graph isomorphic to Q».

(b) For n > 3, LTQ,, is built from two disjoint copies of LT@pn_, ac-
cording to the following steps. Let 0LTQ,—_; denote the graph obtained
by prefixing the label of each vertex of one copy of LTQ,—, with 0, let
1LTQ, -1 denote the graph obtained by prefixing the label of each vertex
of the other copy LTQ,—1 with 1, and connect each vertex z = Oxzoxz3...2n
of 0LTQ,—, with the vertex 1(z2 + Zn)Z3...z, of 1LTQ,_; by an edge,
where + represents the modulo 2 addition.

The graphs shown in Figure 1.1 are LTQ3 and LTQg, respectively.

In this paper we mainly obtain an upper hound of the crossing number
of LTQ,, for n > 6,

265
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on—3,
6 )

89



LTQs

Figure 1.1: Locally twisted cubes LT Q3 and LT'Qu

2 Upper bound for cr(LTQ,)

A drawing of G is said to be a good drawing, provided that no edge
crosses itself, no adjacent edges cross each other, no two edges cross more
than once, and no three edges cross in a point. It is well known that the
crossing number of a graph is attained only in good drawings of the graph.
So, we always assume that all drawings throughout this paper are good
drawings. For a good drawing D of a graph G, let vp(G) be the number
of crossings in D. In what follows, vp(G) is abbreviated to vp when it is
unambiguous.

Letz =225 -z, and y = y1y2 - - - Yn be two vertices of LTQ,,. Denote
D(x120 - 2p) = 2" 12y + 2" 2y + - 4+ 202,
to be the corresponding decimal number of z1z5 - - - z,,. Let
Oi(z) =z; forie{1,2,...,n}.

Let A(z,y) be the smallest positive integer i € {1,2,...,n} such that
0:(x) # 0:(y). We define

A(z,y). if =z and y are adjacent;

Dim(z,y) = {

00, otherwise.

In particular, for an edge e = zy, let Dim(e) = Dim(z,y) and say the edge
e lies in the Dim(e)-dimension. We call z an odd vertez if |{1 < i < n:
z; =1}/ =1 (mod 2), and an even vertez if otherwise.

For the clearness of composition, in the rest of this section, any vertex
x € V(LTQ,) in figures will be represented by the corresponding decimal
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number 2(z). We first give a drawing of LTQ, with 10 crossings and a
drawing of LT'Qs with 68 crossings as shown in Figure 2.1. Hence, we have

Proposition 1. er(LTQ4) < 10 and er(LTQs) < 68.

2 10

r - TR A
14 .;!

3 15 / ( ) J[
4 13 _z"J ]

,.

(WLTQq (ALTQ,

Figure 2.1: Drawings of LTQ4 with 10 crossings and LTQs with 68 crossings

Before proving the upper bound of er(LTQ,,) for n > 6, we need to
introduce some technical notations. We define two structures M* and M,
called “meshes” which will be used in counting the number of crossings.
Consider the canonical geometry of the real plane R2. By [0, 1] we denote
the closed interval joining the points (0,0) and (1,0) of the horizontal real
axis. Let r and s be a non-horizontal pair of parallel straight lines in the
real plane R?, such that the point (0,0) belongs to = and the point (1,0)
belongs to s. For a positive integer n, let &, = {(r;,s;) : i € {1,2,...,n}}
be a set of non-horizontal pairs of parallel straight lines in the real plane
R2, such that the point (0,0) belongs to 7; and the point (1,0) helongs to

Si.

A mesh with index n, denoted M™, is the set of points of the plane
consisting of the points of the n-element set %, plus the points in the
interval [0,1]. In Figure 2.2, we show as an example a drawing of each M1,
M2, M3 and MS.

A chopped mesh with index n, denoted M?P, is the set of points of M™
without a pair of parallel semi-straight lines of the left-most lower semi-
plane. In Figure 2.3, we show a drawing of each M}, M2, M2 and M?.
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Figure 2.2: Drawings of M!, M?, M* and M®
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Figure 2.3: Drawings of M}, M2, M2 and M?

Lemma 2.1. [6] For any positive integer n, there is a drawing of M™ with
n(n — 1) erossings.

Lemma 2.2. [6] For any positive integer n, there is a drawing of M} with
(n—1)2 crossings.

To prove the general upper bound of er(LT'Qy,), we need to construct a
drawing D, of LTQ,, with the desired number of crossings. The philosophy
is putting the obtained drawing D,—; of LTQ,,—, on the given coordinate
systems (see Figure 2.5), then replacing each vertex of LTQ,_; by two
vertices of LTQ,, and replacing each edge of LTQ,_ by a bunch of two
edges of LT'Q,,. Hence, we need the following definitions.

Definition 2.1. Let = be a vertex of LTQ,, and let e € E(LTQ,) be an
edge incident with x. Assume that x is drawn precisely on some axis A.
We call e an a-arc or b-arc with respect to z, provided that the edge e is
drawn to be upward from A (based upon the positive direction of the axis
A) or to be downward from A, respectively. In particular, let

a(z) = |{e € E(LTQ,) : ¢ is an a-arc with respect to x}|
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and
B(x) = |{e € E(LTQ,) : e is a b-arc with respect to x}|.

For example, as shown in Figure 2.5, the three edges joining vertex 23
and vertices 17, 27,21 are a-arcs with respect to vertex 23, and the three
edges joining vertex 23 and vertices 22, 39, 15 are b-arcs with respect to
vertex 23.

Definition 2.2. Let z and y be two vertices of LTQ,, with Dim(z,y) =
n — 1. Assume that z and y are drawn next to each other on some axis.
Now we define the forward direction of = as follows: (1) if (z) = 1 and
z is an odd vertex, then the forward direction of x is coincident with the
direction from y to x; (2) otherwise, the forward direction of z is coincident
with the direction from x to y. (see Figure 2.{)

- N TN

T Y z v

(1)0.(z)=1 and =z is an odd vertex (2)otherwise

Figure 2.4: The forward direction of vertex =

Definition 2.3. Let x and y be two adjacent vertices of LTQ,. Fori €
{1,2}. we define €; = €;(x,y) and §; = (i(z,y) satisfying that {(1,(1), (€2,
¢2)} = {(0,1),(1,0)} if Dim(z,y) = n—1 and 6,(z) = 1, and that
{(1,¢1), (e2,¢2)} = {(0,0),(1,1)} otherwise.

In what follows, &;(z,y),(i(z,y) are abbreviated to ¢;,(; respectively
when it is unambiguous. Let £ = z 12 - 2, be a vertex of LTQ,. We
define

.’E6 =Tix9-" -:cn_,éa:n

to be a vertex of LT'Q 41, where § € {0,1}.

Observation 2.1. Let x and y be two adjacent vertices of LTQ,. Then
z% and y% are adjacent vertices of LTQn41, in particular,

Dim(z,y), if Dim(r,y)<n-1

D' €r', Gi =
im(z®, y*) {n+1, if Dim(z,y) =n;
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Observation 2.2. Let x,y,u,v be four vertices of LT Q,, with Dim(z,u) =
Dim(y,v) =n—1. Ifz and y are adjacent, then u and v are adjacent, in
particular, Dim(u,v) = Dim(z,y).

Now we are in a position to prove the general upper hound of er(LTQ5,).

Theorem 2.1. Forn > 6,

265 .,

er(LTQn) < —=4"~ B4+ (=t

n—3
5 )2n-3,

— (n2 +
Proof. To prove the theorem, we shall construct a drawing D,, of LTQ,
for any n > 6, which satisfies the following five properties.

Property 1: vp, = 285474 — (n2 4+ 15_*(%‘&)271—3_

Property 2: Every vertex x of LTQ,, is drawn precisely on some axis,
and moreover, la(z) — B(z)| £ 1.

Property 3: Let z,u be two vertices of LT Q,, with Dim(z,u) =n-1.
Then = and u are drawn next to each other on the same axis. Moreover,

a(z) = a(u) and B(z) = B(u).

Property 4: Let x,y,u,v be four vertices of LTQ, with Dim(z,u) =
Dim(y,v) =n—1. Assume that x and y are adjacent. Then zy is an a-arc
(b-arc) with respect to x if and only if uv is an a-arc (b-arc) with respect
to u.

Property 5: Let x,y,u,v be four vertices of LTQ,, with Dim(z,u) =
Dim(y,v) = n — 1. If Dim(z,y) < n then vp, (zy,uv) = 0.

Assume first n = 6. The drawing Dg is given in Figure 2.5. It is not
hard to check that Properties 2, 3, 4 and 5 hold for Dg. We verify that the
number of crossings is 400 = 288 . 46-4 — (62 + lﬁi—;”ﬁ) -26-3 and so
Property 1 holds for Ds.

Now assume that n > 6 and that there exists a drawing D, of LTQ,
satisfying Properties 1, 2, 3, 4 and 5. It suffices to construct a drawing
Dpyy of LTQpyy for which the above properties hold. The process of
constructing D, is as follows. Replace each vertex z of LTQ,, in the

0 .1

“small” neighhorhood of z in the drawing D, by two vertices 2°,z! €
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Figure 2.5: The drawing of Ds

V(LT Q1+1), both of which are drawn precisely on the same axis as x such
that the direction from z° to z! is coincident with the forward direction
of x. Then join z° and z! by an a-arc or b-arc with respect to z° (z!)
according to «(z) < fA(z) or not. By Observation 2.1, we need to replace
each edge incident with x in LTQ,, denoted e = zy € E(LTQ,), by a
bunch of two edges 21y, z%2y%? € E(LTQn+;) which are “parallel” or
crossed each other at “infinity” (compared to the “small” neighborhoods
of z and y), and drawn along the original edge e.

To illustrate the process above, we give in Figure 2.6 the extracted
local drawing on vertices 9, 11, 7, 5 in Dg and the corresponding extended
drawings in D; and Dg. Notice that in Figure 2.6(1) the vertices 11 and
7 are odd vertices, and that Dim(9,11) = Dim(5,7) = 5 = n — 1. Hence,
the forward direction of the vertex 11(7) is from 9(5) to 11(7).
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(1) extracted local drawing in Dy

(2) extracted local drawing in b,

* Figure 2.6: The extracted local drawings

By the process described as ahove, we conclude that Properties 2, 3
and 4 hold for D,;;. Because that D, has Properties 3, 4 and 5, we
can verify that vp,_, (z'y%',2%2y%?) = 0 for any edge zy € LTQ, with
Dim(zy) < n — 1 (see Figure 2.7, where u,v € V(LTQ,) such that
Dim(u,z) = Dim(v,y) = n — 1) and that vp, (2514, z2y%) = 0 for
any edge vy € LTQ, with Dim(zy) = n — 1 (see Figure 2.8). Combining
with Observation 2.1, we conclude that Property 5 holds for Dyt1.

et Sl
£ v :{’ ‘." ".‘24': z Y
1 = [ =
u v I . w '} ’.""\\_
(1)84(z)=1 and z is an odd vertex (2)8n(z)=0 OF = i$ an even vertex

Figure 2.7: The case for Dim(zy) < n -1

It remains to show that Property 1 holds for D,, ;1.

Claim A. For any vertex & of LT Q,,, the number of crossings produced
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T Yy z y

(1)8.(z)=1 and z is an odd vertex

z v z0 z! vy

(2)6.(z)=1 Or z is an even vertex

x Yy xor :clr-. vy

(3)0n(z)=0

Figure 2.8: The case for Dim(zy) =n —1

in the “small” neighborhood of the new edge z°x! in D, are equal to
2
=1" for odd n and ™" for even n.

Proof of Claim A. Since D, 4+ has Properties 2, 3 and 4, we conclude

1

that+ I:he neighborhood of the new edge z°z' corresponds to a drawing of

M2 for odd n, and a drawing of M 2 for even n. Then the claim follows
from Lemma 2.1 and Lemma 2.2.

Claim B. |{zy € E(LTQ,) : Dim(zy) = n and vp, _, (z*y*!, 2°2y%?) =
1} =272,

Proof of Claim B. By Observation 2.2, there exists a partition Ej,...,
Egu-2 of {e € LTQ,, : Dim(e) = n} with |E;| = 2, say

E; = {@'iyi,uivi},
such that
Dim(z;,u;) = Dim(y;,v;) =n — 1,
where i € {1,2,...,2""2}. To prove Claim B, it suffices to show that
VD (2595, 252Y07) + vp,, (0] ut0) = 1 (2)

foralli € {1,2,...,2""2}. Assume without loss of generality that 8,(y;) =
6,(v;) = 1 and v; is an odd vertex, i.e., O(z;) = 0,,(u;) =0 and y; is an
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even vertex. Since D,, has properties 3 and 4, we can verify (2) immediately
by two cases vp, (x;y;, uiv;) = 0 and vp, (z:y:, wiv;) = 1, which are shown

in Figure 2.9. This proves Claim B. g
Ay S
z yi ‘el ? W) i e v
= N =
u, v .-'1':']"‘-‘ ‘."l';?‘.. ug "
W B L
(1) vp, (£ uay)=0 (2) vp, (riyiuan)=1

Figure 2.9: Two cases of vp, (Tiyi,uivi) = 0 and vp,, (z:y:, wiv:) = 1

By the process of constructing D,,+1, we conclude that
YDy =4-vp, +Tn+|{zy € E(LTQ,) : vp,,, (z7'y%,2%y%) = 1}| (3)

where I';, denotes the total number of crossings produced in the “small”
neighborhoods of all new edges z%z!. By Claim A, we have that

Fn={ 2"~5%L2, if n=1 (mod2); (a)

2"-#2, if n=0 (mod 2).

Recall that D,,, has Property 5. It follows from Observation 2.1 that
{zy € E(LTQ,) : Dim(xy) < n—1and vp,,, (z51y%,229%) = 1}| = 0.
By Claim B, we have that

Hry € E(LTQ.) : vp.,, (rE1ybr, xf29%2) = 1} = n—2, (5)

By (3), (4) and (5), we conclude that

4-vp, +2"- S.";‘!lz 4 9n—2 — 4dvp, + (n2 —-2n 4+ 2)2n—2’
if n=1 (mod 2);

4-vp, +27 228 L o2 — yp 4 (n? - 204+ 1)2772,
if n=0 (mod2).

YDy =

Since D,, has Property 1, it is easy to verify that Property 1 holds for D,, 4.
This completes the proof of Theorem 2.1. a
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For the convenience of the reader, we offer in Figure 2.10 and 2.11
drawings for LTQ- and LT Qg obtained according to the process of con-
structing D,,. In the subsequent section, we shall just apply the same tech-
nique of congestions proposed by Leighton [11] to obtain a lower hound
of the crossing number cr(LTQ,) of locally twisted cubes greater than
£ (n2 4 1)2n-1
20 :

Figure 2.10: The drawing Dz

3 Lower bound for cr(LTQ),)

We begin this section with the following observation.

Observation 3.1. Let u be a vertezx of LTQ,. For anyi € {1,2,...,n},
there exists exactly one vertex u; € V(LTQy) such thet v and u; are adja-



Figure 2.11: The drawing Dg

cent with A(u,u;) = 1.

Let v be a vertex of LTQ,. Let 7, : V(LTQy) \ {v} — V(LTQ,) be
a map defined as follows: for any vertex v € V(LTQ,) \ {v}, let 7,,(u) be

the vertex of LTQ,, such that u and 7,(u) are adjacent with A(u, 7, (u)) =
Alu, v).

It is easy to see that either 7,(u) = v or A(u,v) +1 < M7 (u),v) < n.
Hence, we can define the following.

Definition 3.1. For any two vertices u,v € V(LTQ,), let P, ., = (uo,u1,
..., ug) be the unique path of LTQ, such that ug = u, u¢ = v and 7,(u;) =
u;yy for any i€ {0,1,...,6—1}.
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Note that
Aluo,v) < Mug,v) < -+ < AM(ue—1,v). (6)

For any two vertices v,w € V(LTQy) and integers 1 < t; <tz <, let
Dy(t1,t2) = {u € V(LTQxn) \ {v} : t1 < A(u,v) < t2},
and let
F(v,wity, t2) = Dy(t1,t2) N {u € V(LTQy,) \ {v}: wisin Py}

Lemma 3.1. Let v,w be two vertices of LTQ,,, where d = Mw,v). Let k
be an integer such that 1 < k <d. Then

|F (v, w; k,d)| = 9d—k,

Proof. By induction on d—k. If k = d, it follows from (6) that F (v, w;d,d) =
{w}, done. Hence, we assume

k<d.

By (6), we have F(v,w;k,k) = {u € Dy(k,k) : 1o(u) € F(v,w;k +
1,d)}. Combining with Observation 3.1, we conclude that |F(v,w; k, k)| =
| F (v, w; k+1,d)|. It follows from the induction hypothesis that | F(v, w; k, d)|
= |F(v,w; k, k)| + |Fv,w; k + 1,d)| = 2 x 29-(k+1) = 2d-k The lemma
follows. 3

Let G; = (V1, E1) and G2 = (Va, E2) be graphs. An embedding of G
in Gy is a couple of mapping (¢, k) satisfying

p: V12V,
is an injection
& : By — {set of all paths in G,},

such that if uv € E; then x(uv) is a path between ¢(u) and ¢(v). For any
e € Fy define
cge(p k) = |{f € Er: e € s(f)}|
and
cg(ip, &) = max{cge(, )}
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The value cg(yp, k) is called congestion.

Let 2K,,, be the complete multigraph of m vertices, in which every two
vertices are joined by two paralle] edges.

Lemma 3.2. [11] Let (p, k) be an embedding of Gy in G with congestion
cg(p, k). Let A(G2) denote the mazimal degree of Go. Then

C’I‘(Gg) > C’I‘(Gl)

_ Vel y
2 (o) T 2 O (Ga)

According to Erdd&s [7] and Kainen [9], the following lemmas are held.

Lemma 3.3. [7] cr(Kan) 2 2"(2"-1)(2;';_2)(2"_3).

Lemma 3.4. /9} CT(2K2u) = 4CT(K2n)

Now we are in a position to show the lower bound of er(LTQ-).

Theorem 3.1. er(LTQ,) > -‘%-'(;- — (n2 +1)2n" L,

Proof. By Lemma 3.2, Lemma 3.3 and Lemma 3.4, we need only to con-
struct an embedding (y, &) of 2K2» into LT'Q,, with congestion cg(yp, k) at
most 2". Let ¢ be an arbitrary bijection of V(2K,n) onto V(LTQ,,). We
define the mapping « as follows. For any two vertices u and v of LTQ,,
take &2, , and 2, . to he the images (paths) of the two parallel edges
hetween ¢~ !(u) and ¢~ }(v) under x.

Let e = zy be an arbitrary edge of LT'Q,, where d = Dim(e). It suffices
to show
cge(p, K) < 27

Consider first the number of paths £, ,, traversing  previous y, denoted
p(z,y). Let Vo = {v € V(LTQn) \ {2} : 7v(z) = y}. Note that

pley)= D HueV(LTQn)\{v}:zisin Py}l ()

vEV,

We see that v € V,, if and only if,

A(v,7) =d, (8)
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or equivalently,
6:(v) = 0;(z) for all i € {1,2,...,d — 1} and 64(v) = ba(z).

This implies that
|V;c,y| = 2n—d. (9)

Combined with (6), (8) and Lemma 3.1, we have that for any v € V4,
Hu € V(LTQn) \ {v} : z is in Py u}| = |F(v,2;1,d)| =247 (10)
By (7), (9) and (10), we have

p(z,y) =2"""

Similarly, the number p(y, z) of paths &, , traversing y previous z is
9n=1_ Therefore,

cge(p, k) = p(z,y) + Py, x) = 2™

This completes the proof of Theorem 3.1. ]

4 Concluding remarks

We recall that computing the exact values of the crossing number of the
hypercubes and its invariants is a NP problem as stated in the introductory
section. In fact, still there exists a gap between the upper bound and the
lower hound given in this paper. One may refine them by applying some
other methods. The interested readers is referred to {18, 25, 28].
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