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Abstract In this paper, we have proved that if a contraction critical 8-connected
graph G has no vertices of degree 8, then for every vertex z of G, either z is ad-
jacent to a vertex of degree 9, or there are at least 4 vertices of degree 9 such
that every of them is at distance 2 from z.
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1 Introduction

In this paper, we only consider finite undirected simple graphs. For
notations and terminologies undefined here we refer the reader to [5). Let
G = (V(G), E(G)) be a graph with the vertex set V(G) and the edge set
E(G). For a vertex z € V(G), we write Ng(z) for the neighborhood of z
in G. By dg(z), we denote the degree of z in G. For a subset X C V(G),
Ng(X) = (Uzex No(z)) — X is the neighborhood of X in G, and G[X]
is the subgraph of G induced by X. Let G be a graph with connectivity
k. For T C V(G), if there are at least two components in G — T, then T

is said to be a cut-set of G. If |T| = k, we call T a smallest cut-set or a
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k-cut-set of G. The set of all smallest cut-sets of G is denoted by T¢. Let
M be a nonempty subset of G and let M = V(G) — (M UNg(M)). The set
M, or the subgraph induced by M, is called a fragment of G if Ng(M) is a
smallest cut-set of G and M # 0. Clearly, if M is a fragment of G, then M
is also a fragment of G. An inclusion-minimal fragment is called an end.
A fragment with minimum number of vertices is called an atom. Let T be
a smallest cut-set of G and let M be the union of at least one but not all
components of G —T. Clearly, M is a fragment of G, which is also called a
T-fragment. For a subgraph G’ of a graph G, when there is no ambiguity,
we write simply G’ for V(G').

The distance between two vertices x and y in G is the length of a
shortest path between z and y in G.

Let £ > 2 be an integer. An edge e of a k-connected graph G is k-
contractible or simply contractible if its contraction (i.e., deleting e, and
identifying its two end vertices, finally, replacing each of the resulting pairs
of double edges by a single edge) yields again a k-connected graph. An edge
that is not k-contractible is said to be a non-contractible edge. Clearly, an
edge of a non-complete k-connected graph is non-contractible if and only if
its two end vertices are contained in some smallest cut-set. A k-connected
non-complete graph G is contraction critical if G has no k-contractible
edges. Egawa [6] proved the following Theorem A which is about the rela-

tion between contractible edges and the size of a fragment in a graph.

Theorem A [6] Let k > 2 be an integer, and G be a k-connected graph
not isomorphic to Kixyy. If G has no k-contractible edges, then G has o

, , k
fragment of cardinality at most .

In the same paper, by Theorem A, Egawa [6] obtained the following
Theorem B which gives us a minimum degree condition for a k-connected

graph to have a k-contractible edge.
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Theorem B [6] Let k > 2 be an integer, and let G be a k-connected
graph with minimum degree greater than or equal to [%’-‘-] Then G has a

k-contractible edge, unless 2 < k <3 and G = Kj41.

By Theorem A, we know that the connectivity of a contraction critical
k-connected graph is at least 4.

For k € {4,5,6,7}, some results about the contraction critical k-
connected graphs can be found in [1, 2, 3, 4, 7, 8, 9, 10, 11, 13, 14, 15, 16,
17]. In this paper, we discuss the contraction critical 8-connected graphs.
By Theorems A and B, the minimum degree of a contraction critical 8-
connected graph is 8 or 9. Further, Egawa ([6]) gave examples to show
that there are contraction critical 8-connected graphs with minimum de-

gree 9. The following is the main result of the paper.

Theorem 1 Let G be a contraction critical 8-connected graph which has
no vertices of degree 8. Let x be an arbitrary vertex of G, then either = is
adjacent to a verter of degree 9, or there are at least 4 vertices of degree 9

such that every of them is at distance 2 from z.
2 Some Definitions and Lemmas

Let G be a k-connected graph. Suppose that S is a nonempty set of
some subsets of V(G). A fragment M of G is said to be an S-fragment
if Ng(M) contains an element of S. Therefore, M is also said to be a
fragment with respect to S. If E(G[Ng(M)]) contains an edge e, then we
call M a fragment with respect to e. An inclusion-minimal S-fragment is
called an S-end. An S-fragment with minimum number of vertices is called

an S-atom. Now we list some properties about the fragments.

Lemma 1 [12] Let F, F’ be two distinct fragments of G, T = N¢(F) and
T’ = Ng(F").
(1) IfFOF' #0, then |[FNT'| > |TNF,|F'NT| > |FnT|.
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Q) IfFNF #£#0#£FNF, then both FNF' and FNF' are fragments of
G, and

Ne(FNF)=(TnTHU(F'NT)U(FNT'"),Ne(FNF) = (TnT)u(TN
FYyuFnT).

(3) If FONF' # 0 and F N F' is not fragment, then FNF' = @ and
IFAT| > TnF||F'nT| > |[FnT).

For the convenience of reading Lemma 1, we give the following figure.

F T F
F'| FOF' | F'FnT | FnF!
T| FoT' | TnT' | FnT'
F|FnF | TnF | FnF

Fig. 1.

Lemma 2 [12] Let G be a contraction critical k-connected graph. Let
z be a verter of G. Suppose that S;:= {{z,y} | y € Ng(z)}, and A is
an Sy-atom. Assume that there is a smallest cut-set T of G such that
T N (AU Ng(A)) contains an element of S,. If ANT # 0, then AC T,
and |A] < %

A k-connected graph G is called almost critical if for every fragment M
of G, there is a smallest cut-set T such that M NT # @.

Lemma 3 {12] Ewvery almost critical, non-complete graph G has fragments

Fy, Fy, F3, Fy such that Fy, Fy, F3 and F4 N (UTG) are disjoint.

Lemma 4 (8] Let G be a contraction critical k-connected graph, and let
A be an atom of G, or a set consisting of a single vertex of G, or a set of
vertices with |Ng(A)| > k such that there is a pair (a’,t') € A x Ng(A)
such that a, t are adjacent if (a,t) € A x Ng(A) - {(a’,t')}. Then G — A
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is almost critical of connectivity (k — |A|), Ne(A) C (UT ¢-4), and every
T-fragment of G — A is a (T U A)-fragment of G.

Lemma 5 [1] Let k > 2 be an integer and let G be a k-connected graph.
Let S be a k-cut-set of G and let A be a fragment of G — S. Let T be a
cut-set of G such that A C T. Let B be a nonempty union of components
of G =T such that G — (TUB) #0. If |A| > |BN S| and |T| = k, then
B=BnS.

3 Proof of Theorem 1

In this section, we are going to prove Theorem 1 by contradiction. Let
G be a contraction critical 8-connected graph without vertices of degree 8.
Suppose that there is a vertex z of G such that it is not adjacent to any
vertex of degree 9, and there are at most 3 vertices of degree 9 such that
every of them is at distance 2 from z. Let S, := {{z,y} | ¥y € N¢(z)}, and
A be an S;-atom. Suppose that § = Ng(A). Then S is an 8-cut-set of G
such that {z,y} C S for some y € Ng(z). Since G has no vertices of degree
8, we have |A| > 2. If |[A| = 2 and A = {a, b}, then dg(a) = dg(b) =9 and
az,bxr € E(G), a contradiction. Therefore, |A| > 3. Since z € Ng(A), we
have Ng(z) N A # 0. Let 2z € Ng(z) N A. Clearly, zz is a non-contractible
edge of G. Then there is an 8-cut-set S’ of G such that {z,z} C §’. This
implies that S'N A # @. Noting that S'N(AUS) contains an element of Sz,
then |A| < 8'2'—‘ by Lemma 2. Hence, |4| = 3. Assume that A = {a,b,c}.
Since x is not adjacent to any vertices of degree 9 and x € Ng(A), we have
that at least one of dg(a), dg(b) and dg(c) is 10.

Now, we prove that exactly one of dg(a), dg(b) and dg(c) is 10. Suppose
that at least two of dg(a),dc(b) and dg(c) is 10. Then G — A is an almost
critical 5-connected graph by Lemma 4. By Lemmas 3 and 4, there are
4 fragments Fy, Fy, F3,F4 in G — A such that ;N S, F, NS, F3N S and
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FyN S are pairwise disjoint, and every F;(i = 1,2,3,4) is a T;-fragment of
G for some smallest cut-set T; of G, where T; D A. In this case, we claim
that F; NS # 0 for i = 1,2,3,4. If there is an F}, saying F, such that
FiNS =0, then |[FiNS|=0<|ANTy| = |A|. Since F; is a T)-fragment
of G, AC T and |T;| = 8, we have F; = F1 NS = § by Lemma 5, a
contradiction. Hence, F; NS # @ for i = 1,2,3, 4. Clearly, we have

4
4< D IFNS| < [S]=8.

i=1

Now, we claim that |[F; N S| = 2 for i = 1,2,3,4. On the contrary,
assume that there is an F}, saying F3, such that |FoN S| # 2. First suppose
that [F,NS|=1. Since T; D A, we have 1 = |[F;N S| < |[ANT,| = |A] = 3.
Noting that F; is a To-fragment of G and |T,| = 8, we have F; = FoN S by
Lemma 5. Thus |F3| = |F, N S| = 1. So, the only vertex of F, must have
degree 8, i.e., G has a vertex of degree 8, a contradiction. Next suppose
that |[F, N S| > 3. Then there is an Fi(l € {1, 3,4}) such that |F;N S| = 1.
By the same arguments as above, we also have that G has a vertex of degree
8, a contradiction. Therefore, |F; N S| =2 hold for i = 1,2, 3,4.

It is easy to see that 2 = |[F; N S| < |A| = |[ANT;| = 3(: = 1,2,3,4).
Since |T;| = 8, we have F; = F; N S(i = 1,2,3,4) by Lemma 5. Thus,
we have |Fj| = |F; N S| = 2(i = 1,2,3,4). Hence, each F; consists of
exactly two adjacent vertices of degree 9, i = 1,2,3,4. Since |S| = 8
and that 1 NS, F, NS, F3n S and F; N S are pairwise disjoint, we have
U?=1 F; = U?=1 F; NS = S. Therefore, every vertex of S is a vertex of
degree 9. Hence, dg(z) = dg(y) = 9. By y € Ng(z), we have that z
is adjacent to a vertex of degree 9, a contradiction. In addition, if every
vertex of S — {z,y} is not adjacent to z, then the 6 vertices of degree 9 in
S — {z,y} are at distance 2 from z, also a contradiction. Hence, exactly

one of dg(a),dg(b) and de(c) is 10.
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Therefore, in the work below, we always assume that two of dg(a),
dg(b),de(c) are 9, the third one is 10. Without loss of generality, we may
assume that dg(a) = dg(c) = 9,de(b) = 10. Then zb € E(G),ax,cx ¢
E(G), ie.,, Ng(z) N A = {b}. Notice that S = Ng(A) and {z,y} C S
(i.e., zy € E(G[9])). So ac € E(G). For otherwise, if ac € E(G), then
we can easily get that S C Ng(a) N Ng(c). Thus za € E(G),zc € E(G)
and dg(a) = dg(b) = 9, a contradiction. Therefore, ab, ac, bc € E(G), i.e.,
abca is a triangle. So, we have that S — {z} C Ng(a) N Ng(c), S € Ng(b).
Hence, y,b are two adjacent vertices in the neighborhood of z. Clearly, y
and b have two common neighbors a and ¢ such that each of a and ¢ has
degree 9.

Since b € E(G), zb is a non-contractible edge of G. Then there is an
8-cut-set T of G such that {z,b} C T. Suppose that B is a fragment of
G-T,B =G - (TUB). Clearly, {z,b} € S;. Therefore, each of B and
B is an S,-fragment. It is obvious that 7'N (AU S) contains an element of
Sy and ANT # 0. By Lemma 2, we have A C T

Claim1l 3<|BNS|<4,3<[BNnS{<4andl1<|TNS|<2

Proof Assume that |[BNS| < 2. By ACT, we have |[ANT| = |A] = 3.
Thus [BNS| <2 <3 =|ANT| = |A|l. Noting that |T| = 8, we have
B = BN S by Lemma 5. Then |B] = |BNS| < 2. By B # 0, we have
BN S # 0. Since G has no vertices of degree 8, |B| = |BN S| = 2. Thus,
2 = |B| < |A| = 3. This contradicts that A is an S,-atom because of
that B is also an S;-fragment. Hence, |[BN S| > 3. Similarly, we have
[BNS|>3. Sincez € SNT, we have |[SNT| > 1. If [BN S| > 4, then
|BN S| < 2, a contradiction. Therefore, 3 < [BN S| < 4. Similarly, we
have 3 < |BN S| < 4. By the arguments as above, we have 1 < |SNT| < 2.

This completes the proof of Claim 1. a
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By Claim 1, we see that at least one of |[BNS| =3 and [BN S| =3
holds. Therefore, in the work below, we always assume that |[BN S| = 3.
Let V(BN S) = {u,v,w}. Take a vertex of BN S saying u (possibly
u = y). It is obvious that v € S — {z} C Ng(a). Hence, au € E(G)
and au is a non-contractible edge. Let F be a fragment with respect to
au. Then Z = Ng(F) is an 8-cut-set of G such that {a,u} C Z. Denote
F=G-(ZUF).

Claim2 ACZ.

Proof By contradiction. Suppose that A ¢ Z. Thus, we have AN F # 0
or ANF # 0. Since abca is a triangle and a € AN Z, we only need
to consider that one of AN F and AN F is nonempty. Without loss of
generality, we assume that ANF # @ and ANF = 0. This implies that
{bc} CA-F. Ifbe ANF, then S C SN(FUZ) by S C Ng(b).
Thus F NS = 0. Therefore, (FNS)U(SNZ)U(@ANZ)| =|FnS|+
(SNZYU(AN2Z)| =|(SNZY)U(@ANZ)| = |Z| -]ANn Z| < 7(since
a € AN Z). Since G is 8-connected, we have ANF = (. Hence, F = 0, a
contradiction. Therefore, b ANF. So,be AN Z. Hence, by AN F # 0,
we have that ANZ = {a,b} and c € ANF. Thus |[ANZ| = 2. By
S—{z} C Ng(c), we have S—{z} C SN(FUZ). It follows that [FNS| < 1.
Therefore, |(FNS)U(ZNS)UANZ) = |[FNS|+|(ZnS)u (AN Z)| =
FNS|+|{Z-(ANZ)|=|FNS|+|2|-]ANZ| <1+8—2=7. Since G is
8-connected, we have ANF = (. Hence, F = FNS and [F|=[FNnS§| < 1.
By F # 0, we have |F| = [Fn S| = 1. This implies that F = FN S = {z}.
Therefore, d¢(z) = 8, a contradiction. So A C Z. O

Claim 3 =z & Z.

Proof By contradiction. Suppose that z € Z. Hence, we have x € ZNnSNT
since z € TN S. In addition, we have {b,z} C Z sincebe Aand AC Z
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(by Claim 2). Therefore, each of F' and F is an S,-fragment. By using the
same way as in the proof of Claim 1, we easily have that 3 < [FN S| < 4,
3<(FnS|<4and1<|ZnS| <2 Since {u,z} CZNS, |ZNS|>2.
Thus, we have that |ZN S| =2and [FNS|=3=|FnS3|.

By Claim 2, we have A C Z. Thus A C ZnNT since A C T. Therefore,
Au{z} CZNTbyze ZNSNT. Thus |ZNT| > |AU {z}| = 4 (since
z & A).

Subclaim 3.1 IfBAF #0, then |[BNZ|> [FNT|, |FNT| > [Bn Z|
and BNF =0.

Proof We first prove that |[BNZ| > [FNT|. If BNF # 0, then we
have [BNZ| > |[FNT| by Lemma 1. Meanwhile, by BN F # 0, we
know that (BN Z)U(ZNT)U (FNT)is acut-set of G. Now, suppose
that [BN Z| = |FNT|. Then, we have (BN Z)U(ZNT)U(FNT)| =
IBNZ{+|(ZNT)U(FNT)| ={FNT|+|(ZNT)U(FNT|=|T| = 8. Thus,
by the definition of fragment, we easily have that BN F is a fragment of
Gand Nog(BNF)=(BNZ)U(ZNT)U(FNT) is an 8-cut-set of G. By
AU{z} C ZNT, we have {z,b} C ZNT. So, {z,b} C No(BNF). Thus
BN F is an S;-fragment. In addition, we know that u ¢ F since u € Z.
Hence, u € BN S — F. Noting that |BN S| = 3, we have (BN F)N S| =
IBN(FNS)=|BN(SNF)|=|(BNS)NF| <2 SinceAC ZnT,
we have A C Ng(B N F). Noting that |[(BNF)N S| <2< |A] =3 and
[INg(BNF)| = 8, we have BN F = (BN F)N S by Lemma 5. Thus,
[BNF}=|(BNF)NS| <2< 3=]A| This contradicts that A is an S,-
atom. Therefore |B N Z| > |[F N T)|. Similarly, we have |[FNT| > |Bn Z|.
By |IBNZ| > |FNT|, we have (FNT)U(ZNT)u(BnZ)|=|FNT|+
HZNnTYuBn2Z) < |BNZ|+|(ZNnT)U(Bn Z)| =|Z| =8. Since G
is 8-connected, we have BNF = @. This completes the proof of Subclaim

3.1. |
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Subclaim 3.2 [fBNF # 0, then [FNT| > (BN 2|, |BNZ| > [FNT|
and BNF = .

Proof Notice that we also have u ¢ Fbyu € Z. Thusue BnS —F.
Since [FNS| =3 =|BNS|, wehave |[BNF)NS| <2 Next, by using
the same way as in the proof of Subclaim 3.1, we can prove Subclaim

3.2. 0

Now, we continue the proof of Claim 3 by discussing the following two

cases.

Casel BNF#§.
By BNF # 0 and Subclaim 3.1, we have |[BNZ| > |[FNT| and BNF = 0.

Subcase 1.1 BNF # 0.

By BNF # 0 and Subclaim 3.2, we have [FNT| > [BNZ| and BNF = 0.
Therefore, BNF =@ = BN F. So, B = BN Z. By Claim 1, we have
[B] > |BN S| > 3. Therefore, [BN Z| = |B| > 3. Since |ZNT| > 4, we
have |[BNZ| < 1. By u € BN Z, we have |[BN Z| = 1. But by Subclaims
3.1 and 3.2, we can easily get that 1 = |[BNZ| > |FNT|>|BnZ|>3,a

contradiction. This contradiction shows that Subcase 1.1 does not occur.

Subcase 1.2 BNF =0.

Since BNF =0 and BNF = 0, we have F = FNT. Since [F| >
[FNS| = 3, we have that |[F| = |[FNT| > 3. By |[ZNT| > 4, we
have 3 < [FNT| < 4. Since 1 < [SNT| < 2 and |A| = 3, we have
4<ITN(AUS) <5and 3 < |TNA| <4 By A C T, we have
T = (ANT)U(TNS)U(ANT) = Au{z}U((TNS) - {x})U(ANT). Notice
that (AU {z})NF =0 (since (AU {z}) C ZNT). If|[F|=|FnT|=3,
then F has at least two vertices ¢; and ¢ such that {¢;,t,} € ANT. Thus
each of t; and t, is not adjacent to any vertex of A. By A ¢ Z = Ng(F),

Il
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we have dg(t)) < 7 and dg(tz) £ 7. This contradicts that G is an 8-
connected graph. Hence, |F| = [FNT| = 4. Similarly, F has at least
3 vertices t{,t5 and t} such that {t{,t5,t3} € ANT. Thus each of t,t}
and t} is not adjacent to any vertex of A. By A C Z = Ng(F), we have
da(t)) < 8,dg(th) < 8 and dg(t;) < 8. Since G is 8-connected, we have
dg(t]) = de(ty) = de(th) = 8, a contradiction. This contradiction shows

that Subcase 1.2 also does not occur and the proof of Case 1 is completed.
Case2 BNF=49.
Subcase 2.1 BNF #0.

Since BNF # @, we have BN F = B by Subclaim 3.2. Thus BNF =
@ = BN F. Therefore, F = F NT. By using the same way as in the proof

of Subcase 1.2 of Case 1, we can prove that Subcase 2.1 does not occur.
Subcase 2.2 BNF =9.

In this case, BNF = @ = BNF. Therefore B = BNZ. By Claim 1, we
have |B| > |BN S| = 3. 1t follows that |[BNZ| = |B| > 3. If |[FNT| <2,
Then |[FNT| <2< |BNnZ| = |B|. Since B C Z and |Z| = 8, we have
F =FnNT by Lemma 5. Thus |F| = |[FNT| < 2. This contradicts that
|F| > |FNS| = 3. Hence |FNT| > 3. Similarly, we have |[FNT| > 3. Since
|ZNT| > 4, we have, 8 = |T| = |FNT|+|ZNT|+|FnT| > 3+4+3 =10,
a contradiction. This completes the proof of Claim 3. 0

By Claim 3, we have z ¢ Z. Hence, z € F or x € F. Without loss
of generality, we suppose that = € F (and so x € F'NT). Therefore, by

symmetry, we may always suppose that z € F N T in the work below.

Claim 4 IfBNF #0, then |[FNT| > |Bn2Z|, |BNZ| > |[FNT)| and
?n?:@.

Proof If BAF # 9, then (BN2Z)U(ZNT)U(FNT)is acut-set of G. By
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Lemma 1, we have |FNT| > |[BNZ| and |BNZ| > |[FNT|. If |FnT| = [BnZ|
or [BNZ| = |[FNT|, then we can easily get that [(BNZ)U(ZNT)U(FNT)| =
8. Therefore, by the definition of fragment, we easily have that BN F is a
fragment of G and Ng(BNF) = (BNZ)U(ZNT)U(FNT) is an 8-cut-set
of G. By AC T and Claim 2, we have AC ZNT. Sincexz € FNT, we
have {z,b} C TN (F U Z). Hence, {z,b} C Ng(BnN F).Therefore, BN F is
an S;-fragment. Clearly, we also have |(BNF)NS| < 2. Now, by using the

same way as in the proof of Subclaim 3.1 of Claim 3, we can prove Claim
4. O

Claim 5 IfBNF #0, then|BNZ| > |FNnT|,|JFNT| > |BnZ| and
BnF=90.

Proof First prove that |[BNZ| > |FNT|. f BANF # , then (BN Z)U
(ZNT)U(FNT) is a cut-set of G. By Lemma 1, we have |[BNZ| > |FNT|.
Suppose that |[BNZ| = |[FNT|. Then (BNZ)U(ZNT)U(FNT)| =
IBAZ|+(ZNTYU(FNT)| = |FOT|+|(ZnT)U(FNT)| = |T| = 8. Thus,
by the definition of fragment, we easily have that BN F is a fragment of
Gand Ng(BNF)=(BNnZ)U(ZNnT)U(FNT)is an 8cut-set of G. By
A C T and Claim 2, we have A C ZNT. Thus A C Ng(BNF). Since
u€ BNS,u¢ F and |BN S| = 3, we have |[(BNF)N S| < 2. Therefore,
(BNF)NS| <2< |ANNg(BNF)| = |A| =3. Since [Ng(BNF)| = 8, we
have BNF = (BNF)NS by Lemma 5. Hence, |BNF| = [(BNF)NS| < 2.
Since G has no vertices of degree 8, |[BNF| = |(BNF)N S| = 2. In this
situation, by u € BNS and u ¢ F, we may assume that (BNF)NS = {v, w},
ie, BNF = {v,w}. Thus, dg(v) = dg(w) = 9 and v,w ¢ Ng(z). It
is obvious that Ng(B N F) C Ng(v) N Ng(w). Since A ¢ Ng(B N F)
and b € A, we have bv,bw € FE(G). On the other hand, we have that
ba, be,ya,yc € E(G) and dg{a) = dg(c) = 9. Obviously, a,¢,v and w are 4
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distinct vertices of degree 9 which are not adjacent to z. By b,y € Ng(z),
we have that each of a, ¢, v and w is at distance 2 from z. Namely, there are
at least 4 vertices of degree 9 such that every of them is at distance 2 from
z, a contradiction. Therefore, we have |BN Z| > |F NT|. Similarly, we
have [FNT| > |BN Z|. By using the same way as in the proof of Subclaim
3.1 of Claim 3, we have BN F = . This completes the proof of Claim
5. ]

Now, we continue the proof of Theorem 1 by discussing the following 4

cases.
Casel BNnF=0=BnNF.

By BNF =0 =BnF, we have BC Z. Thus B = BnZ. By Claim 1,
we have |B| > |BNS| = 3. Then |[BNZ| =|B| > 3. By A C T and Claim 2,
we have A C TNZ. Thus [TNZ| > |A| = 3 and |[BNZ| < 2. Sincez € FNT,
we have |[F N T| > 3. Otherwise, if |[FNT| <2 <3< |BNZ|=|B|, then
F=FnT and |F| = |FNT| <2by|Z| =8 and Lemma 5. Since G has no
vertices of degree 8 and F # 9, |F| = |F N T| = 2. Therefore, two vertices
of F are adjacent vertices of degree 9. Noting that z € FNT, we find that
z is adjacent to a vertex of degree 9, a contradiction. Thus, |[FNT| > 3.
So, [ BNZ| <2< 3<|FNT|. Hence, (BNZ)U(ZNT)U(FNT)| =
BNZ|+|(ZNTYUFnT)| < |FNT|+|(ZNnT)U(FNT)| =|T| =8.
Thus BNF = 0 by G being an 8-connected graph. Therefore, F = FNT.
Since |[FNT| >3 and AC ZNT, we have [F| = |[FNT} < 2. Since G
contains no vertices of degree 8, |[F| = [FNT|=2. By 1 < |SNT| <2,
we have TN (AUS) < 5and TNA| >3 By ACT, we have T =
(ANTYU(TNS)U(ANT) = Au{z}u((TNS) - {z})U(ANT). Noting
that ACTNZ and z € FNT, we have (AU {z})NF = 0. Thus F has at

least one vertex c; such that ¢; € V(ANT). Hence, ¢, is not adjacent to any
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vertex of ANZ = A. However, A C Z C Ng(F). Therefore, de(c1) £6, a

contradiction. This contradiction shows that Case 1 does not occur.
Case2 BNF=0and BNF #0.

By BNF # 0 and Claim 5, we have [BNZ| > |[FNT| and BN F = 0.
Hence, BNF =0 = BN F. So we have that F = FNT. Since z € FNT,
we can easily get that |[FNT| = |F| > 3. Thus, |BNZ| > |FNT| > 3. This
implies that [BN Z| > 4. Because A C TN Z, we have TN Z| > |A| = 3.
Therefore, |[BNZ| <1 < |FNT| = |F|. Since F ¢ T and |T| = 8, we
have B = BN Z by Lemma 5. So |B| = |[Bn Z| < 1. This contradicts that
|B| = [BN S| > 3 (by Claim 1). This shows that Case 2 does not occur.

Case 3 BNF#0and BNF=0.

Since BNF # 0, we have BNF = @ by Claim 4. Thus, BNF =0 =
BnF. Hence, we have F = FNT. Since G has no vertices of degree 8,
[F|=|FNT|>2. Byz € FNT and A C ZNT, we have [F| = [FNT| < 4.
Thus 2 < |F| < 4. Similar to Case 1, by AC ZNT,andz € FNT, we
also have that (AU {z})NF = 0. If [F| = [FNT| = 2, then F has at
least one vertex c{ such that ¢} € V(ANT). Therefore, ¢} is not adjacent
to any vertex of A. However, A C Z = Ng(F). Thus dg(c}) < 6. This
contradicts that G is an 8-connected graph. If [F| = |FNT| = 3, then
by the same arguments as above, F has at least two vertices ¢ and ¢}
such that {c{,c§} C V(ANT). Then each of ¢/ and ¢} is not adjacent
to any vertices of A. By A C Z = Ng(F), we have dg(c}) < 7 and
de(c) < 7, also a contradiction. Thus, [F| = |[FNT| = 4. Again by the
same arguments as above, F' contains at least 3 vertices w;, w2 and w3 such
that {w,ws, w3} C V(XOT). Then each of wy,ws and w3 is not adjacent
to any vertices of A. By A C Z = Ng(F), we have dg(w;) < 8,d¢(ws) < 8
and de(ws) < 8. Since G is an 8-connected graph, dg(w;) = dg(wsp) =
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de(ws) = 8. This contradicts the hypothesis that G has no vertices of
degree 8. This shows that Case 3 does not occur.

Cased BNF#0#BnNF.

Since BNF # 0 # BNF, we have |FNT| > |BnZ|, [FNT|>|Bn Z|
and BNF =0 = FN B by Claims 4 and 5. Therefore B = BN Z. By
Claim 1, we have |B| > |[BN S| > 3. Thus |[BN Z| = |B| > 3. Hence, we
have |[FNT|>|BNZ| >3 and [FNT| > |Bn Z| > 3. This implies that
|[FNT|>4and [FNT| >4. By AC ZNT, we have |ZNT| > |A] = 3.
Therefore, 8 = |T| = |[FNT|+|ZnT|+|FnT| >4+3+4=11,a
contradiction. This completes the proof of Theorem 1. 0
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