The number of boundary H-points of H-triangles *

Qi Wang, Feixing Gao, Xianglin Wei[†]

College of Science, Hebei University of Science and Technology 050016, China

Abstract

An H-triangle is a triangle with corners in the set of vertices of a tiling of \mathbb{R}^2 by regular hexagons of unit edge. Let $b(\Delta)$ be the number of the boundary H-points of an H-triangle Δ . In [3] we made a conjecture that for any H-triangle with k interior H-points, we have $b(\Delta) \in \{3, 4, ..., 3k + 4, 3k + 5, 3k + 7\}$. In this note, we prove the conjecture is true for k = 4, but not true for k = 5 because $b(\Delta)$ can not equal 15.

1 Introduction and Notation

We start with some basic definitions as in [1] [2]. Let H be the set of vertices of a tiling of \mathbb{R}^2 by regular hexagons of unit edge. A point of H is called an H-point. H can be considered as the union of two disjoint triangular lattices denoted by H^+ , H^- , such that for any two points in H^+ (H^-) there exists a translation of the plane which maps one of the two points to the other and H to H. A point of H^+ (H^-) is called an H^+ -point (H^- -point). Two points x and y are said to be equivalent if $x, y \in H^+$ or $x, y \in H^-$. Otherwise we say that x, y are non-equivalent.

Let A denote the set of all centers of the hexagonal tiles which determines H. A point of A is called an A-point. Clearly, $H^+ \cup H^- \cup A$ forms a triangular lattice with the area of each triangular tile $\frac{\sqrt{3}}{4}$. We will denote this triangular lattice by $T = H^+ \cup H^- \cup A$, and a point of T is called a T-point. A segment with endpoints in T (H, A) is called a T-segment (an H-segment, an A-segment). A simple polygon in \mathbb{R}^2 whose corners lie in H (T, A) is called an H-polygon

^{*}This research was supported by National Natural Science Foundation of China (11471095), Natural Science Foundation of Hebei Province (A2014208095).

[†]Corresponding author: wxlhebtu@126.com

(a T-polygon, an A-polygon). Clearly an H-polygon or an A-polygon is also a T-polygon. For the related researches see [4], [5], [6].

For a planar H-polygon P, let ∂P , intP be the boundary, interior of P respectively, and denote $b(P) = |H \cap \partial P|$ and $i(P) = |H \cap intP|$. It is known that for an H-triangle \triangle with exactly one interior H-point, $b(\triangle) \in \{3,4,5,6,7,8,10\}$ (see [1]), for an H-triangle \triangle with exactly three interior H-points, $b(\triangle) \in \{3,4,5,6,7,8,9,10,11,12,13,14,16\}$ (see [2]), and for any H-triangle with exactly k interior H-points can have at most 3k+7 boundary H-points and can not have 3k+6 boundary H-points (see [3]). Moreover, in [3] we gave the following Conjecture.

Conjecture 1. [3] If \triangle is an *H*-triangle with *k* interior *H*-points, then $b(\triangle) \in \{3, 4, ..., 3k + 4, 3k + 5, 3k + 7\}$.

In this note, we prove the Conjecture is true for k=4, but not true for k=5 because $b(\Delta)$ can not equal 15.

2 Basic facts and related lemmas

As in [1][3] we will use the notion of level of a T-triangle $\Delta = \Delta xyz$, here the corners x,y,z of Δ are labeled in such a way that yz has the largest number of points form $T=H\cup A$. The line containing yz is denoted by l_0 . From l_0 to x draw all lines $l_1,l_2,...,l_s$ passing through T-points that are parallel to l_0 and intersect Δ . Clearly $x\in l_s$, and the distance between l_j and l_{j+1} is the same for every j. We say that Δ has s levels $l_1,l_2,...,l_s$. It is obvious that every H-triangle with one interior H-point has at least two levels.

Let m_j be the relative length of $\triangle \cap l_j$, that is, the length with the unit length being the distance between two consecutive T-points on l_j . Denote $t_j = |l_j \cap int \triangle \cap T|$. Obviously for j > 0 we have $\lfloor m_j \rfloor - 1 \le t_j \le \lfloor m_j \rfloor + 1$, where $\lfloor . \rfloor$ denotes the greatest integer function. Notice that if $t_j = \lfloor m_j \rfloor - 1$, then m_j is an integer, and $m_j = t_j + 1$.

Lemma 2. [1] If an H-triangle \triangle has s levels, then for $0 \le j < s$ we have $m_j = m_0(1 - \frac{j}{s})$.

Lemma 3. [3] There exists no H-triangle \triangle with k interior H-points and 2k+2 interior A-points.

As in [1][3] let $\triangle = \triangle xyz$ be an *H*-triangle with *k* interior *H*-points, and consider the number of *T*-points on each side of the *H*-triangle \triangle . Denote by α , β , γ the relative lengths of the sides of \triangle . We may assume that $\alpha \ge \beta \ge \gamma$.

Let f be a linear transformation, which maps T into \mathbb{Z}^2 and Δ into a lattice triangle Δ' . Notice that the number of T-points on the sides of Δ and the number of lattice points on the corresponding sides of Δ' are the

same. Denote by b', i' the number of boundary, interior lattice points of Δ' , respectively. Then $b' = \alpha + \beta + \gamma \ge b(\Delta)$, clearly $\alpha \ge \frac{b'}{3}$. And from [3] we know that $b' + 2i_A + 2(k-1)$ is divisible by α , β , γ , $\alpha\beta$, $\alpha\gamma$ and $\beta\gamma$, where i_A denotes the number of interior A-points in H-triangle $\Delta = \Delta xyz$, then $i_A \in \{0, 1, ..., 2k+1\}$ by Lemma 7.

Lemma 4. [3] There exists no H-triangle with k interior H-points and triple (α, β, γ) , where $\alpha > 3(k+1)$.

3 H-triangle with 4 interior H-points

The Conjecture 1 is valid for $k \leq 3$. In the following theorem we find the Conjecture is also true for k = 4.

Theorem 5. If \triangle is an H-triangle with 4 interior H-points, then $b(\triangle) \in \{3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19\}.$

Proof. From Theorem 10 and Theorem 11 of [3] we know that $b(\Delta) \leq 3k + 7$ and $b(\Delta) \neq 3k + 6$ for an *H*-triangle with k interior *H*-points. Hence if Δ is an *H*-triangle with 4 interior *H*-points, then $b(\Delta) \leq 19$ and $b(\Delta) \neq 18$. So we only need to consider the cases $3 \leq b(\Delta) \leq 17$ and $b(\Delta) = 19$. Figure 1-3 provide *H*-triangles with 4 interior points and $3 \leq b(\Delta) \leq 17$, and 19 boundary *H*-points. The proof is complete.

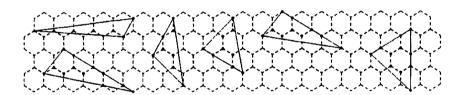


Figure 1: H-triangles \triangle with $i(\triangle)=4$ and $b(\triangle)=3,4,5,6,7,8$.



Figure 2: H-triangles \triangle with $i(\triangle)=4$, $b(\triangle xyz)=13$, $b(\triangle xy_1z)=12$, $b(\triangle xyz_1)=11$, $b(\triangle xy_1z_1)=10$, $b(\triangle xy_1z_2)=9$.

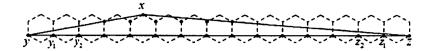


Figure 3: H-triangles \triangle with $i(\triangle)=4$, $b(\triangle xyz)=19$, $b(\triangle xy_1z)=17$, $b(\triangle xy_2z)=16$, $b(\triangle xy_1z_1)=15$, $b(\triangle xy_1z_2)=14$, $b(\triangle xy_2z_2)=13$.

4 H-triangle with 5 interior H-points

Theorem 6. There exists no H-triangle \triangle with 5 interior H-points and 15 boundary H-points.

Proof. Let (α, β, γ) be the triple of an H-triangle Δ with 5 interior H-points. Recalled that $b' = \alpha + \beta + \gamma \ge b(\Delta)$. To prove the theorem, we need to examine every triple (α, β, γ) for which $\alpha + \beta + \gamma \ge 15$. From [3] we know that when $\alpha + \beta + \gamma \ge 3k + 8$ there exists only one realizable triple (3k + 3, 3, 3) which only for $b(\Delta) = 3k + 7$. Therefore we only need to examine triples (α, β, γ) for $15 \le \alpha + \beta + \gamma \le 22$. We give the detailed proof for $\alpha + \beta + \gamma = 22$, 21. The proofs for other cases see [7].

For every case, by lemma 4, we only need to consider the case $\alpha \leq 18$. We know that $\alpha\beta$ divides $b'+2i_A+2(k-1)$, where $i_A \in \{0,1,...,11\}$ by lemma 3, and $b'+2i_A+2(k-1) \in \{b'+8,b'+10,...,b'+30\}$. Since $\alpha\beta$ divides $b'+2i_A+2(k-1) \leq b'+30$, and hence $\alpha\beta \leq b'+30$.

Moreover, in the same column (row) of every Table, $\alpha\beta$ increases as β increases.

Table 1: All possible solutions for $\alpha + \beta + \gamma = 22$ (18,3,1)(18,2,2)(17,4,1)(17,3,2)(16,5,1)(16,4,2)(16,3,3)(15,6,1)(15,5,2)(15,4,3)(14,7,1)(14,6,2)(14,5,3)(14,4,4)(13,8,1)(13,7,2)(13,6,3)(13,5,4)(12,9,1)(12,8,2)(12,7,3)(12,6,4)(12,5,5)(11,10,1)(11,9,2)(11,8,3)(11,7,4)(11,6,5)(10,10,2)(10,7,5)(10,6,6)(10,9,3)(10,8,4)(9,9,4)(9,8,5)(9,7,6)(8,8,6)(8,7,7)

Case 1: $b' = \alpha + \beta + \gamma = 22$. Table 1 provides all possible solutions for $\alpha + \beta + \gamma = 22$.

It is easy to check that there are only the following triple (α, β, γ) for which $\alpha\beta$ can divide $b' + 2i_A + 2(k-1)$ and $\alpha\beta \leq 52$: (18, 2, 2).

If l_0 contains only *H*-points, then $b(\Delta) \ge 19 + 1 = 20$. So we can assume that l_0 contains both *H*-points and *A*-points. If Δ has two levels, then by

lemma 2, $m_1 = 9$. So either $|l_1 \cap H \cap \partial \triangle| = 2$ or $|l_1 \cap A \cap \partial \triangle| = 2$, that is to say $b(\triangle) = 13 + 2 + 1 = 16$ or $b(\triangle) = 13 + 1 = 14$. If \triangle has at least three levels, then by lemma 2, $m_1 \ge 12$. Then by inequality $t_j \ge \lfloor m_j \rfloor - 1$, we know that $t_1 \ge 11$, so $|l_1 \cap int \triangle \cap H| \ge 7$, a contradiction.

Table 2: All possible solutions for $\alpha + \beta + \gamma = 21$

Table 2. All possible solutions for $\alpha + \beta + \gamma = 21$						
(18,2,1)						
(17,3,1)	(17,2,2)					
(16,4,1)	(16,3,2)					
(15,5,1)	(15,4,2)	(15,3,3)				
(14,6,1)	(14,5,2)	(14,4,3)				
(13,7,1)	(13,6,2)	(13,5,3)	(13,4,4)			
(12,8,1)	(12,7,2)	(12,6,3)	(12,5,4)			
(11,9,1)	(11,8,2)	(11,7,3)	(11,6,4)	(11,5,5)		
(10,10,1)	(10,9,2)	(10,8,3)	(10,7,4)	(10,6,5)		
	,	(9,9,3)	(9,8,4)	(9,7,5)	(9,6,6)	
			• • • •	(8,8,5)	(8,7,6)	
						(7,7,7)

Case 2: $b' = \alpha + \beta + \gamma = 21$. Table 2 provides all possible solutions for $\alpha + \beta + \gamma = 21$.

It is easy to check that there are only the following triples (α, β, γ) for which $\alpha\beta$ can divide $b' + 2i_A + 2(k-1)$ and $\alpha\beta \leq 51$: (17,3,1), (15,3,3), (7,7,7).

Case 2.1: (17,3,1) (for triple (15,3,3), the discussion is similar).

Clearly \triangle with such a triple has at least 3 levels, then by lemma 2, $m_1 \ge m_0(1-\frac{1}{3})=\frac{34}{3}, \ m_2 \ge m_0(1-\frac{2}{3})=\frac{17}{3}$. Then by inequality $t_j \ge \lfloor m_j \rfloor -1$, we know that $t_1 \ge 11$ and $t_2 \ge 5$. If l_0 contains both H-points and A-points, $|l_1 \cap int \triangle \cap H| \ge 7$, a contradiction. If l_0 contains only H-points, then $b(\triangle) \ge 19 \ne 15$.

Case 2.2: (7,7,7)

Clearly \triangle with such a triple has at least 7 levels, then by lemma 2, $m_1 \ge 6$, $m_2 \ge 5$, $m_3 \ge 4$, $m_4 \ge 3$, $m_5 \ge 2$, $m_6 \ge 1$. Then by inequality $t_j \ge \lfloor m_j \rfloor - 1$, we know that $t_1 \ge 5$, $t_2 \ge 4$, $t_3 \ge 3$, $t_4 \ge 2$ and $t_5 \ge 1$. If l_0 contains both H-points and A-points, $|l_1 \cap int \triangle \cap H| \ge 3$, $|l_2 \cap int \triangle \cap H| \ge 2$, $|l_3 \cap int \triangle \cap H| \ge 2$, $|l_4 \cap int \triangle \cap H| \ge 1$, then there are at least 8 H-points in $int \triangle$, a contradiction. If l_0 contains only H^- -points (H^+ -points), then on l_1 and l_4 there are only H^+ -points, on H^+ -points H^+ -points, since otherwise there are at least 10 H-points in $Int \triangle$, a contradiction. But now H^+ by H^+ by

Theorem 7. If \triangle is an H-triangle with 5 interior H-points, then $b(\triangle) \in \{3,4,5,6,7,8,9,10,11,12,13,14,16,17,18,19,20,22\}.$

Proof. From Theorem 10 and Theorem 11 of [3] we know that $b(\Delta) \leq 3k + 7$ and $b(\Delta) \neq 3k + 6$ for an *H*-triangle with k interior *H*-points. Hence if Δ is an

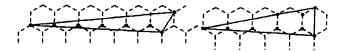


Figure 4: H-triangles \triangle with $i(\triangle) = 5$ and $b(\triangle) = 3, 4$.

Figure 5: H-triangles \triangle with $i(\triangle) = 5$ and $b(\triangle) = 9$.

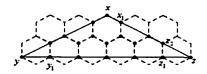


Figure 6: H-triangles \triangle with $i(\triangle)=5$, $b(\triangle xyz)=14$, $b(\triangle xy_1z)=10$, $b(\triangle xyz_2)=8$, $b(\triangle x_1yz_1)=7$, $b(\triangle xy_1z_1)=6$, $b(\triangle xy_1z_2)=5$.

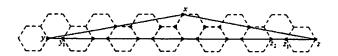


Figure 7: H-triangles \triangle with $i(\triangle)=5$, $b(\triangle xyz)=16$, $b(\triangle xy_1z)=14$, $b(\triangle xyz_2)=13$, $b(\triangle xy_1z_1)=12$, $b(\triangle xy_1z_2)=11$.

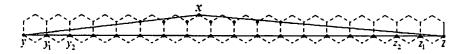


Figure 8: H-triangles \triangle with $i(\triangle)=5$, $b(\triangle xyz)=22$, $b(\triangle xy_1z)=20$, $b(\triangle xy_2z)=19$, $b(\triangle xy_1z_1)=18$, $b(\triangle xy_1z_2)=17$, $b(\triangle xy_2z_2)=16$.

H-triangle with 5 interior H-points, then $b(\Delta) \leq 22$ and $b(\Delta) \neq 21$. So we only need to consider the cases $3 \leq b(\Delta) \leq 20$ and $b(\Delta) = 22$. Figures 4-8 provide H-triangles with 5 interior H-points and $3 \leq b(\Delta) \leq 14$, $16 \leq b(\Delta) \leq 20$, and 22 boundary H-points. Moreover, from Theorem 6 we know that $b(\Delta) \neq 15$. The proof is complete.

References

- [1] K. Kolodziejczyk, Hex-triangles with one interior H-point, ARS Combinatoria, 70 (2004), 33-45.
- [2] X. Wei and R. Ding, H-triangles with 3 interior H-points, Journal of Applied Mathematics and Computing, 27 (2008), 117-123.
- [3] X. Wei and R. Ding, H-triangles with k interior H-points, Discrete Mathematics, 308 (2008), 6015-6021.
- [4] R. Ding, J. R. Reay, and J. Zhang, Areas of generalized H-polygons, Journal of Combinatorial Theory, Series A, 2 (1997), 304-317.
- [5] S. Rabinowitz, On the number of lattice points inside a convex lattice n-gon, Congressus Numerantium, 73 (1990), 99-124.
- [6] K. Kolodziejczyk, Realizable quadruples for Hex-polygons, Graph and Combinatorics, 23 (2007), 61-72.
- [7] X. Wei and F. Gao, A disproof of the conjecture about boundary H-points of H-triangles, Journal of Applied Mathematics and Computing. DOI 10.1007/s12190-015-0906-6