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Abstract

In this paper, we characterize all finite abelian groups with isomor-
phic intersection graphs. This solves a conjecture proposed by B.
Zelinka.
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1 Introduction

Let G be a group. In [2], B. Csakiny and G. Pollék defined the intersec-
tion graphs I'(G) of G, whose vertices are the proper non-trivial subgroups
of G, and two vertices H; and H, are adjacent if and only if H; # H2 and
they have a non-trivial intersection. This work was inspired by the study of
intersection graphs of nontrivial proper subsemigroups of semigroups due
to J. Bosék [1]. In [3], B. Zelinka continued the work on intersection graphs
of finite abelian groups and proposed the following conjecture.

Conjecture 1. Two finite abelian groups with isomorphic intersection
graphs are isomorphic.

In this paper, each group G is a finite abelian group written additively
with identity 0, and each subgroup H of G is assumed to be nontrivial and
proper. The order of G is the number of elements in G and is denoted by
o(G). The order o(a) of an element a € G is the smallest positive integer
k such that ka = 0, and the exponent (G) of G is max,eg{o(a)}. Let
C.,. denote the cyclic group of order n. A primary cyclic group is a cyclic
group whose order is a power of a prime. Let G* be the set of non-identity
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elements of G. Let K,, denote that complete graph of order n. Let " he a
graph and z be a vertex of I, N(x) is the set of vertices those are adjacent
with z.

Definition 2. Let n = [[;_, p{* be the prime factorizations of an integer
n > 1. We define the power set of n to be the multiset {e1,ez,...,er}.

It is not hard to show that I'(C,) ~ I'(Cp,) if n and m have the same
power set. In fact, We completely characterize finite abelian groups with
isomorphic intersection graphs as follows.

Theorem 3. Let G; = C,, ® M;, where Cy, is the direct sum of all cyclic
Sylow subgroups of G;, and M; is the direct sum of all non-cyclic Sylow
subgroups of G;, i = 1,2. Then I'(G1) =~ I'(G3) if and only if ny and no
have the same power set and My ~ Ma.

2 The case in p-groups

Recall that a subset X of the vertices of I is called an independent set
of " if u and v are not adjacent for any u,v € X. We need the following
result.

Lemma 4. (/3]) A proper subgroup of G belongs to some independent set
of T'(G) of mazimal cardinality if and only if it is a primary cyclic group.

Remark 5. Let I'p(G) be the subgraph of I'(G) induced by the vertez set
consisting of all primary cyclic groups of G. Then I'p(G) is a union of
complete graphs. This subgraph plays an important role in the study of
I'(G).

Lemma 6. Let p be a prime and G be a non-cyclic group with exponent
p°. Then
~ -1 . .

FP(G) —_ U-;:ocJKZ.Z:O %‘,'_,
where m; = f{z € G | p'z =0} and ¢c; = ;ﬁ(ﬂ,j;—' - 7).
Proof. We define Fi(z) := {y € G | p'y = =} and F(z) := URX,Fi(z) for
any z € G and i > 0. Note that [F*(z)| = m; or 0. Let 4; = {z € G |
o(z) = p'} for i > 0. We decompose A, as follows: A, = UjZ) B;, where
B, = {x € A, | Fi(z) # 0, F*1(z) = 0}. Observe that |A;;1| = miy; —m;
and A;41 = Uzea, Fi(z), which is a disjoint union. Since for z € A4,
Fi(z) # 0 if and only if z € B; for some j > i, therefore,

i—1

Miy1 —m; = (|Ai] - Z |Bj}m,

j=0
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for 1 < i < e. We obtain |B;| = =& —-“'—' ;ﬁ%

Clearly, there are n = —l_‘Tl dlstmct cyclic subgroups of G of order p,
namely, Hy, Hs, ..., H,. It deduce that there are n connected components
of T'(G), each one containing exactly one H;. Let H = {0,,,as,...,ap_1}
be a subgroup of order p of G such that H* C B;. For any primary cyclic
subgroup F of G, F and H are adjacent if and only if F* C Uj<i<p—1F(as).
Suppose that there are s; distinct primary cyclic subgroups of G of order
p' which are adjacent with H. Then there are exactly s;(p‘ — p'~ ) el-

ements of order p contained in Uj<icp—1F(a;). Hence, si(p' — p~!) =
"_} |Fi=1(a;)] = (p — 1)mi_y, si = F&¢. So H is contained in a con-

nected component of I'p(G) whose size is ) 1., +1s;. This completes the
proof. O

Definition 7. We define an equivalent relation ~ on the vertez set of I'(G)
by the rule that H; ~ H, if and only if {H1} U N(H,) = {H2} U N(H>).
Let [H] be the equivalent class containing H.

Lemma 8. Let Hy, H, be two primary cyclic subgroups of G. Then Hy ~
H; in T'(G) if and only if H; N Ha is non-trivial.

Proof. 1t follows immediately from Definition 7. 0

Theorem 9. Let p;,ps be two primes and G; be a p;-group. ThenI'(G)) =~
[(G,) if and only if at least one of the following conditions holds.

(i) G, ~ G2,

(i) Gy =~ Cp; and G = Cy; for a positive integer e.

Proof. We only need to prove the necessity. If G is a cyclic group, then
I'(G,) is a complete graph. So G2 contains exactly one subgroup of order
p2 and G: is also a cyclic group. Condition (ii) is satisfied by comparing
the number of vertices. Assume that neither G nor Gy is a cyclic group
and ¢ : I'(G;) — T'(G2) is an isomorphism.

We claim that p; = py. Let I'(G;) = I'p(G;) U Y be disjoint union
of the vertex set. Then Y; # @ and each H € Y; contains a subgroup
isomorphic to Cp, ® Cp,. Let k(H) = #{[F] | F € N(H)NTp(G;)} for any
subgroup H of G;. Then mingey, {k(H)} = k(Cp, ® Cp,) = pi + 1, since
C,, ®C,, contains exactly p;+1 distinct subgroups of order p;. However, by
Lemma 4, o(Tp(G1)) = Tp(G2) and (Y1) = Y. So p(N(H)NTp(G1)) =
N(p(H)) NTp(G2) for any subgroup H of G;. Moreover, F1 ~ F3 if and
only if cp(Fl) ~ p(F3). Therefore, mingey, {k(H)} = mingey, {k(H)},

=p2 =

Suppose G1 = &)1 (Cp:)*, G2 = @11 (Cpi), ki 2 0, I; 2 0, where
(Cn)™ denotes the direct sum of m copies of C,. Let m; = f§{z € G, | p'z =
0}, ni =#{z € G2 | p'z =0}, ¢; = 25 (FE — D#2) and d; = ey (BE -

mi it
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) . . Zimit2 ki (phig1
722). By Lemma 6 and a direct computation ¢; = & cdeidid pJ_(l” =1 and
Zizivali(plitr — . .
dy = BEZZ2 2@ o) Thys, k; = I; and Gy ~ Gs. This finishes the

—1
proof. ? O

Lemma 10. Let G;, M; be groups, 1 < i < r. Suppose that I'(G;) ~ I'(M;)
for each i and ged(o(G;), 0(G;)) = ged(o(M;),0o(M;)) = 1 for any i # j.
Then [(@7_,G:) = [(@%, M),

Proof. Let G = ®]_,G; and M = @[_,M;. Let p; : I'(G;) — T'(M;) be
an isomorphism of graphs. We set ¢;(0) = 0 and ¢;(G;) = M; and define
@ :T(G) — (M) as follows. For any subgroup H = ®]_, H; of G,

W(H @ Hy ©...0 H,) = p1(H) @ 02(Hy) ® ... & o (H,).

It is straightforward to show that ¢ is also an isomorphism. 0

3 Proof of Theorem 3

Clearly, Gy ~ G2 implies I'(G;) ~ I'(G2). So the sufficiency follows
from Lemma 10. Assume that I'(G;) ~ T'(G2) and let ¢ : I'(G;) — I'(G,)
be an isomorphism of graphs. Let I'(G;) = T'p(G;) UY; be disjoint union
of the vertex set. Then ¢(I'p(G1)) =T'p(G2) and (Y1) = ¢(¥2).

Let Hy, H; € I'p(G,) such that o(H;) and o( H;) are powers of a same
prime p. Suppose F; = ¢(H;) € I'p(G2) and o F;) is a power of p;. We
will show p; = py. There are two cases.

Case 1: H; and H; are adjacent. So F) and F> are also adjacent. Hence,
P1 = po.

Case 2: H; and H; are not adjacent. If p; # py, let L; be the cyclic
subgroup of F; of order p; and F = L+ Ly. Then F ~ Cyp,,, and {[L] | L €
N(F)NT'p(G2)} = {[L1],[L2]}. Both H, and H are adjacent with ¢~!(F),
¢~!(F) contains a subgroup isomorphic to C, @ Cj, since H; N H, = {0}.
Hence, #{[L] | L € N(F)NT'p(G2)} =#{[L] | L € N(¢p~}(F))NTp(G))} >
p+ 1. This is a contradiction. So p; = ps.

Let G, = ®L,A; and G2 = &2, B; such that each A; (resp. B;) is a
Sylow subgroup of G (resp. Gz). By the above discussion r; = 7, = r and
¢(T'p(A;)) = T'p(B;) after a permutation of indices. Thus, each pair A;,
B; satisfies one condition of Theorem 9. Without loss of generality we can
assume A; ~ C’a:-,-, B; ~ C’,,:.- for 1 <1 < s, and neither A; and B; is cyclic
for s+1<i<r. Letn =[], af, no =[[i, b5, My =&®]_,,,A: and
M; = ®]_,,,B;. Then G; ~ Cp, ® M;, where n; and ny have the same
power set and M; ~ Ms.
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