On Interval Edge-Colorings of
Outerplanar Graphs

Petros A. Petrosyan

Department of Informatics and Applied Mathematics,
Yerevan State University, 0025, Armenia
Institute for Informatics and Automation Problems,
National Academy of Sciences, 0014, Armenia
E-mail: pet_petros@{ipia.sci.am, ysu.am, yahoo.com}

May 28, 2013

Abstract

A proper edge-coloring of a graph G with colors 1,...,t is called an
interval t-coloring if the colors of edges incident to any vertex of G form
an interval of integers. A graph G is interval colorable if it has an interval
t-coloring for some positive integer t. For an interval colorable graph G,
the least value of ¢ for which G has an interval ¢-coloring is denoted by
w(G). A graph G is outerplanar if it can be embedded in the plane so
that all its vertices lie on the same (unbounded) face. In this paper we
show that if G is a 2-connected outerplanar graph with A(G) = 3, then
G is interval colorable and

_ [ 8, if]V(G)}is even,
w(G) = { 4 if [V(G)| is odd.

We also give a negative answer to the question of Axenovich on the

outerplanar triangulations.

1 Introduction

In this paper we consider graphs which are finite, undirected, and have no
loops or multiple edges. Let V(G) and E(G) denote the sets of vertices and
edges of a graph G, respectively. The degree of a vertex v € V(G) is denoted
by dg(v), the maximum degree of G by A(G), and the chromatic index of G
by x'(G). A u,v-path in G is a walk without repeated vertices and with first
vertex u and last vertex v. A graph G is outerplanar if it can be embedded in the
plane so that all its vertices lie on the same (unbounded) face. An outerplanar
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triangulation is an outerplanar graph in which every bounded face is a triangle.
An edge of the outerplanar graph is internal if it does not belong to unbounded
face. A separating triangle of the outerplanar graph is a triangular face in which
every edge is internal. The terms and concepts that we do not define can be
found in [10].

A proper edge-coloring of a graph G is a coloring of the edges of G such that
no two adjacent edges receive the same color. If a is a proper edge-coloring of
G and v € V(G), then S (v,c) denotes the set of colors of edges incident to
v. A proper edge-coloring of a graph G with colors 1,...,t is called an interval
t-coloring if all colors are used, and for any vertex v of G, the set S (v,c) is an
interval of integers. A graph G is interval colorable if it has an interval ¢-coloring
for some positive integer ¢. The set of all interval colorable graphs is denoted by
. For a graph G € N, the least value of ¢ for which G has an interval ¢-coloring
is denoted by w(G).

The concept of interval coloring of graphs was introduced by Asratian and
Kamalian [1, 2). In [1, 2], they proved that if G is interval colorable, then
X' (G) = A(G). They also showed that if a triangle-free graph G has an interval
t-coloring, then t < |V(G)|-1. In [6], Kamalian investigated interval colorings of
complete bipartite graphs and trees. In particular, he proved that the complete
bipartite graph Ko » has an interval t-coloring if and only if m+n—ged(m,n) <
t < m + n — 1, where ged(m,n) is the greatest common divisor of m and
n. In (7], Petrosyan investigated interval colorings of complete graphs and n-
dimensional cubes. In particular, he proved that if n < t < 1‘—(22*-'—1)-, then
the n-dimensional cube @, has an interval t-coloring. Recently, Petrosyan,
Khachatrian and Tananyan (8] showed that the n-dimensional cube @, has an
interval t-coloring if and only if n < ¢ < w In [9], Sevast’janov proved
that it is an NV P-complete problem to decide whether a bipartite graph has an
interval coloring or not.

Proper edge-colorings of outerplanar graphs were investigated by Fiorini in
[4]. In [4], he proved that if G is an outerplanar graph, then x’ (G) = A(G) if
and only if G is not an odd cycle. Interval edge-colorings of outerplanar graphs
were first considered by Axenovich in [3]. In (3], she proved that all outerplanar
triangulations with more than three vertices and without separating triangles
are interval colorable. Later, interval edge-colorings of outerplanar graphs were
investigated by Giaro and Kubale in [5], where they proved that all outerplanar
bipartite graphs are interval colorable.

In the present paper we show that if G is a 2-connected outerplanar graph
with A(G) = 3, then G is interval colorable and

_ | 3, if|V(G)|is even,
w(G) = { 4 if [V(G)| is odd.

We also give a negative answer to the question of Axenovich on the outer-
planar triangulations.
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2 Interval edge-colorings of subcubic outerpla-
nar graphs

First we need the following lemma which was proved in [4].

Lemma 1 If G is a 2-connected outerplenar graph with A(G) = 3, then G has
either (1) u and v adjacent vertices such that de(u) = dg(v) = 2, or (2) u,v
and w mutually adjacent vertices such that de(u) = dg(w) = 3 and dg(v) = 2.

Now we can prove our first result.

Theorem 2 If G is a 2-connected outerplanar graph G with A(G) < 3 and G
is not an odd cycle, then G € M and w(G) < 4.

Proof. For the proof, it suffices to show that if G is a 2-connected outerplanar
graph G with A(G) < 3 and G is not an odd cycle, then G has an interval
coloring with no more than four colors.

We show it by induction on |E{G)|. The statement is trivial for the case
|E(G)|] < 5. Assume that |E(G)| > 6, and the statement is true for all 2-
connected outerplanar graphs G’ with A(G’) < 3 which are not odd cycles and
|E(G)| < |E(G)I.

Let us consider a 2-connected outerplanar graph G with A(G) < 3 which
is not an odd cycle. If A(G) = 2, then G € 9t and w(G) < 2. Now suppose
that A(G) = 3. By Lemma 1, G has either u and v adjacent vertices such
that dg(u) = dg(v) = 2, or u,v and w mutually adjacent vertices such that
dg(u) = dg(w) = 3 and dg(v) = 2. We consider two cases.

Case 1: uv € E(G) and dg(u) = dg(v) = 2.

Clearly, in this case there are vertices z,y (z # y) in G such that uz € E(G)
and vy € E(G).

Case 1.1: zy ¢ E(G).

In this case let us consider a 2-connected outerplanar graph G’ = (G — v —
v) + zy. By induction hypothesis, G’ has an interval coloring o with no more
than four colors.

If a(zy) = 1, then we delete the edge zy and color the edges uz and vy
with color 1 and the edge uv with color 2. If a(zy) > 2, then we delete the
edge zy and color the edges uz and vy with color a(xy) and the edge uv with
color a(zy) — 1. It is not difficult to see that the obtained coloring is an interval
coloring of the graph G with no more than four colors.

Case 1.2: zy € E(G).

In this case let us consider a 2-connected outerplanar graph G' = G —u —v.
If G’ is an odd cycle, then we color the edges xy with color 3 and the edges of
the z, y-path in G’ — zy alternately with colors 1 and 2. Next, we color the edge
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uzx with color 2, the edge uv with color 3 and the edge vy with color 4. Clearly,
the obtained coloring is an interval 4-coloring of the graph G.

Now we can suppose that G’ is a 2-connected outerplanar graph with A(G’) <
3 which is not an odd cycle. By induction hypothesis, G’ has an interval
coloring o with no more than four colors. Since G is 2-connected, we have
do(z) = do(y) = 3.

Suppose that S{z,a) = S(y,a) = {¢,c+ 1}. If ¢ = 1, then we color the
edges uz and vy with color 3 and the edge uv with color 2; otherwise we color
the edges uz and vy with color ¢ — 1 and the edge uv with color ¢. If S(z, o) U
S(y,a) = {c,c+1,c + 2}, then without loss of generality we may assume that
S(z,a) = {c,c+ 1} and S(y,a) = {c+ 1,c + 2}. We color the edge uz with
color ¢ + 2, the edge uv with color ¢+ 1 and the edge vy with color ¢. Clearly,
the obtained coloring is an interval coloring of the graph G with no more than
four colors.

Case 2: wv,vw,uw € E(G) and dg(u) = dg(w) = 3 and dg(v) = 2.

In this case by contracting the uvw triangle to a single vertex v*, we obtain
a 2-connected outerplanar graph G’ with A(G’) < 3. If G’ is an odd cycle, then
we color the edge uw with color 3, the first edge of the u,w-path in G with
color 4 and the remaining edges alternately with colors 3 and 2. Next, we color
the edge uv with color 2 and the edge vw with color 1. Clearly, the obtained
coloring is an interval 4-coloring of the graph G.

Now we can suppose that G’ is a 2-connected outerplanar graph with A(G’) <
3 which is not an odd cycle. By induction hypothesis, G’ has an interval coloring
a with no more than four colors.

Let S(v*,a) = {c,c+1}. If ¢ = 1, then we color the edge uw with color 3
and the edges uv and vw with colors 1 and 2 or 2 and 1 depending on the colors
of the colored edges incident to vertices u and w; otherwise we color the edge
uw with color ¢ — 1 and the edges uv and vw with colors cand c+1orc+1
and ¢ depending on the colors of the colored edges incident to vertices u and
w. Clearly, the obtained coloring is an interval coloring of the graph G with no
more than four colors. O

Next we prove the following result:

Theorem 3 If G is a 2-connected outerplanar graph G with A(G) = 3, then
G € N and

_ [ 3, if|V(G)| is even,
w(G) ‘{ 4 i |V(G)| is odd.

Proof. By Theorem 2, we have G € 9t and w(G) < 4. On the other hand,

since A(G) = 3, we obtain 3 < w(G) < 4. We consider two cases.
Case 1: |V(G)] is even.
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Figure 1: A 2-connected outerplanar graph G with A(G) = 4 which has no
interval coloring.

Since G is 2-connected and outerplanar, it is clear that G is Hamiltonian.
Let C be a Hamiltonian cycle in G. Since |V(G)] is even, clearly |C] is even,
too. Now we construct an interval 3-coloring of the graph G. First we color the
edges of the cycle C alternately with colors 1 and 2. Next we color the edges
from the set E(G)\ E(C) by color 3. Since E(G)\ E(C) is a matching in G, the
obtained coloring is an interval 3-coloring of the graph G and thus w(G) = 3.

Case 2: |V(G)] is odd.

For the proof, it suffices to show that w(G) > 4.

Suppose, to the contrary, that G has an interval 3-coloring ¢. In this case
we consider the set S(v,a) for every v € V(G). Since G is 2-connected and
outerplanar, we have |S(v,a)| > 2 for every v € V(G). This implies that
2 € S(v, ), and the edges with color 2 form a perfect matching in G, but this
contradicts the fact that |[V(G)| is odd. Thus, w(G) =4. O

On the other hand, there are 2-connected outerplanar graphs G with A(G) =
4 which are not interval colorable. For example, the graph G shown in Fig. 1

has no interval coloring. Now we show a more general result. For that we define
a triangle graph Ty m (k,{,m € N) as follows:

V(Tetm) = {29, 2,81, . .- ; U2ke1, V1, + -+, V21, W1, . . ., W2m~1} &Nd
E (Ti1,m) = {zy, zu1, Uak-19, Y2, Y01, V21-12, TZ, TWY, Wam—12 }U
{u,-u,-+1 01 < 1 S 2k—2}U{viv,~+1 1L 1 < 2l—2}U{w‘-wi+1 01 < 1 < 2m—2}.
Clearly, Tk i,m is a 2-connected outerplanar graph with A (Ti1m) = 4.

Theorem 4 For any k,l,m € N, we have Ty m ¢ M.
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Proof. Suppose, to the contrary, that the graph T 1,m has an interval ¢-coloring
a for some t > 4.

Since all degrees of vertices of the graph Ty 1 , are even, the sets S(z, a), S(y, &)
and S(z, @) contain two even colors and two odd colors, and the sets S(u;, a), S(v;, @)
and S(w,, a) contain one even color and one odd color fori =1,...,2k~1,j =
1,....,20-1,p=1,...,2m ~ 1.

Consider the triangle zyz. Clearly, there is a vertex of the triangle for which
the colors of two incident edges of the triangle have the same parity. Without
loss of generality, we may assume that this vertex is = and a(zy) and a(zz) have
the same parity. If a(zy) and a(zz) are even colors, then a(zu;) and a(zw, ) are
odd colors, and thus ougk-1y) and a(wem-12z) are even colors. This implies
that a(yz), a(yv:) and a(vy-12) are odd colors. On the other hand, since
a(yz), a(yv,) are odd colors, we obtain a(vg_1z) is an even color, which is a
contradiction. Similarly, if a(zy) and a(zz) are odd colors, then a(zxu;) and
a(zw;) are even colors, and thus a(uzx—1y) and a(wam—12) are odd colors. This
implies that a(yz), a(yv;) and a(vy_1z) are even colors. On the other hand,
since a(yz), a(yv,) are even colors, we obtain a(vai—12z) is an odd color, which
is a contradiction. O

3 Interval edge-colorings of outerplanar trian-
gulations

In [3], Axenovich showed that all outerplanar triangulations with more than
three vertices and without separating triangles are interval colorable, and also
she posed the following

Question 1 Is it true that an outerplanar triangulation has an interval coloring
if and only if it does not have a separating triangle?

In this section we give a negative answer to the question. For that we define
a triangular fan graph TF,, (n > 3) as follows:

V(TF,,) = {u, V1y:e ey Un-1,Wi,... ,w,,_g} and
E(TF,) = {uwv; : 1 <t <n— 1} U {v;w;, wivig1, 041 : 1 i < n—2}.

Clearly, TF, is an outerplanar triangulation.

Theorem 5 For any n > 3, TF,, has an interval A(TF,)-coloring.
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Figure 2: An interval 3-coloring of TF3, an interval 5-coloring of TF5 and an
interval 6-coloring of T F5.

Proof. We consider two cases.

Case 1: n is odd.

Fig. 2 gives an interval 3-coloring of T'F3, an interval 5-coloring of T'F5 and
an interval 6-coloring of TFy. Let a be an interval 6-coloring of TF7 shown in
Fig. 2. Now we define an edge-coloring 3 of the graph T'F,, as follows:

(1) for every e € E(TF), let B(e) = a(e);
(2) fori=3,...,"T'3, let
,B(uvgi.,.l) = 2i+ 2 and ﬂ(u’vgg.,.g) =2i+1,

B(vaiz1we;) = B(wairrvaive) = 2 — 1, Bvaisp1v2i42) = Blvaiwa:) = 24,
B(vaivait1) = 2i + 1 and Bvgip1woisr) = 28 — 2.
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Figure 3: Interval 5-colorings of TF; and TF;, and an interval 7-coloring of
TF;.

It is not difficult to see that 3 is an interval A(TF,,)-coloring of TF,, for odd
n.

Case 2: n is even.

Fig. 3 gives interval 5-colorings of TF; and TFg, and an interval 7-coloring
of TFg. Let o be an interval 7-coloring of TFg shown in Fig. 3. Now we define
an edge-coloring 5 of the graph TF,, as follows:

(1) for every e € E(TFg), let B(e) = afe);

(2) for'i=3,...,"T'4, let

ﬂ(u025+2) =2i+ 3 and ﬁ(uvg,-+3) =2i+ 2,
B(vairowzis1) = B(wair2veiys) = 24,
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B(vaivavaira) = B(vait1wais1) = 20+ 1,
B(vair1v2is2) = 2i + 2 and B(vaipowaize) = 2i — 1.

It is not difficult to see that 3 is an interval A(TF,)-coloring of TF, for
evenn. O

Corollary 6 For any n > 3, we have TF, € M and w(TF,) = A(TF,).

Clearly, uv;v;;) is a separating triangle in TF, for i = 2,...,n — 3. Thus,
for n > 5, TF, has n — 4 separating triangles.
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