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Abstract

Given two sets A, B C Ty of elements of the finite field Fq of g elements,
Shparlinski (2008) showed that the product set AB = {ab | @ € A,b € B}
contains an arithmetic progression of length k > 3 provided that k < p,
where p > 3 is the characteristic of Fy, and | A||B| > 2¢*~Y/*~1. In
this paper, we recover Shparlinski’s result for the case of 3-term arithmetic
progressions via spectra of product graphs over finite fields. We also illustrate
our method in the setting of residue rings. Let m be a large integer and Z/mZ
be the ring of residues mod m. For any two sets A, B C Z/mZ of cardinality

1A11B] > m ( r(mm 1) ,

Amy7

the product set .AB contains a 3-term arithmetic progression where y(m) is
the smallest prime divisor of m and 7(m) is the number of divisors of m.
The spectral proofs presented in this paper avoid the use of character and
exponential sums, the usual tool to deal with problems of this kind.

1 Introduction

The question of existence of long arithmetic progressions in various sets has been
studied extensively in the literature (see [9, Chapters 9-12] for a comprehensive
treatment of this topic). One of the most celebrated results of this kind is the
theorem of Green and Tao [6] which asserts that there are arbitrary long arithmetic
progressions of primes.

Let m be a large integer and Z,, = Z/mZ be the ring of residues mod m.
Define the set of units and the set of nonunits in Z,, by Z, and ZJ, respectively.
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In the setting of finite fields and residue rings, Green [5)] has shown that for some
absolute constant ¢ > 0 and two subsets A, B C Z,, of cardinalities | 4] > am
and [B| > Bm, thesumset A+ B = {a+b | a € A,b € B} contains a k-term
arithmetic progression with

k> exp (c ((aﬂ log m)!/2 — log logm)) .

For the sharpness of this result, Ruzsa [8] showed that for any € > 0 and sufficently
large primes p, there is a set A C Z, of cardinality |.A| > (1/2 — €)p such that
A + A does not have an arithmetic progression of length k > exp((log p)%/3+¢).
It also follows from a result of Croot, Ruzsa and Schoen (4, Corollary 1} that if
A,B C Z,, of cardinality [A||B| > 6m2-2/(*=1) for some integer k > 3, then
sum set A 4 B contains an arithmetic progression 6 + ju,j =0,...,k — 1, with
§ € L, € Z),, of length at least & (provided that m is sufficiently large).

1.1 Arithmetic progressions in product sets

For any prime power g = p” where p is a prime and r is a positive integer, let [,
be the finite field of g elements. Shparlinski [10] considered a similar problem in

product sets
AB = {ab|a € A,be B},

where A, B C F,. He showed that if k < p and |.A||B| > 2¢2~/(*~1) then AB
contains a k-term arithmetic progression, that is k& pairwise distinct elements of
the form 6 + ju, j = 0,...,k — 1, for some & € F,, u € Fy. In particular, one
needs p > 3 and |A||B| > 2¢®/2 to ensure that AB contains a 3-term arithmetic
progression. In this paper we reprove this result for the case of 3-term arithmetic
progressions via spectra of product graphs over finite fields. Note that in our proof,
we will relax the condition p > 3 in [10] to p > 3. More precisely, we have the
following theorem.

Theorem 1.1 Let q be an odd prime power. For any two sets A,B C F, of

cardinality
MIIB] > ¢(g"/? +1),

the product set AB contains a 3-term arithmetic progression.

We also illustrate our method in the setting of residue rings. Let m be a large
integer and Z,, be the ring of residues mod m. Let y(m) be the smallest prime
divisor of m, w(m) be the number of prime divisors of m, and 7(m) be the number
of divisors of m. Note that our result is only effective when v(m) is large, i.e.
v(m) > m* for some € > 0. Therefore, we will assume that m is an odd integer.
We have the following result on 3-term arithmetic progressions in product sets
over finite rings.
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Theorem 1.2 Let m be a large odd integer and Z, be the ring of integers modulo
m. For any two sets A, B C Zn, of cardinality

|A|1B] > m ( T(mm 1)

y(m)1/2
and AB ¢ Z2,, the product set AB contains a 3-term arithmetic progression.

There is no doubt that Shparlinski’s method will also work for composite m
and will give the same saving of y(m)/2. The spectra proofs presented in this
paper avoid the use of character and exponential sums, the usual tool to deal with
problems of this kind.

1.2 Product graphs

Our main tools to study the existence of 3-term arithmetic progression in product
sets over finite fields and finite rings are product graphs over corresponding spaces.
For a graph G (we allow G to have loops but not to have multiple edges between
the same two vertices), let \; > A2 > ... > A, be the eigenvalues of its adjacency
matrix. The quantity A(G) = max{Ag, —A,} is called the second eigenvalue of
G. A graph G = (V,E) is called an (n,d, X)-graph if it is d-regular, has n
vertices, and the second eigenvalue of G is at most A.

For any § € F,, the product graph Py, (0) is defined as follows. The vertex set
of the product graph Py 4(6) is the set V' (Py,4(6)) = IF:\(O, ...,0). Two vertices
aand b € V(Py,4(8)) are connected by an edge, (a, b) € E(Pq,q(9)), if and only
ifa-b=24,where a-b = a1b; +...+agbq is the usual dot product. When § = 0,
the graph is just a blow-up of a variant of the Erd6s-Rényi graph. The eigenvalues
of this graph are easy to compute (for example, see [1]). We have the following
result on the spectra of the product graph when é € F; (our construction is similar
to that of [11]).

Theorem 1.3 Foranyd > 2 and & € [F*, the product graph, Py 4(6), is an
(¢* - 1,¢%%, ¢4 /?) — graph.

Let m be a large integer and Z,, be the ring of residues mod m. Recall that
~(m) be the smallest prime divisor of m, w(m) be the number of prime divisors of
m, and 7(m) be the number of divisors of m. We identify Z, with {0,1,...,m—
1}. For any § € Z,, the product graph Py, 4(8) is defined as follows. The vertex
set of the product graph Py, 4(6) is the set V(P 4(d)) = ZE\(Z3,)%. Two
vertices @ and b € V (P, 4(6)) are connected by an edge, (@, b) € E(Pm,4(5)),
if and only if @ - b = 6. When & = 0, the graph is a variant of Erdés-Rényi graph,
which has several interesting applications. We will study this case in a separate
paper. We have the following result on the spectra of the product graph when
§ € Z%, (our construction is similar to that of [12]).
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Theorem 1.4 Foranyd > 2 and 6 € ZY,, the product graph P, 4(6) is an

d-1
(1 = m = gty ms-1, TR — g,

2 Arithmetic progressions over finite fields

2.1 Product graphs over finite fields

We first give a proof of Theorem 1.3. It is easy to see that Py 4(8) is a regular
graph of order ¢g¢ — 1 and valency g?~1. We now compute the eigenvalues of this
multigraph (i.e. graph with loops). Foranya # b € IFg\(O, ...,0), the system

a-z=b-x =4, :z:e]Fg\(O,...,O),

has g%=2 solutions when @ # wb for all w € F,, and no solution otherwise.
Hence, for any two vertices a # b, a and b have ¢%~2 common neighbors if a
and b are linearly independent, and no common neighbor otherwise. Let A be the
adjacency matrix of P, 4(4). It follows that

A2 = qd—2J + (qd—l _ qd—z)I _ qd—ZE’ (2.1)

where J is the all-one matrix, I is the identity matrix, and E is the adjacency
matrix of the graph Bg, where for any two distinct vertices @ and b € V' (P, q4(0)),
(a,b) is an edge of Bg if and only if @ and b are linearly dependent. Since
P,,4(8) is a (¢ — 1)-regular graph, g*~! is an eigenvalue of A with the all-one
eigenvector 1. The graph P, 4(8) is connected therefore the eigenvalue g%~! has
multiplicity one. For any @ with @ - @ # 0, we can choose b such that a, b are
linearly independent and @ - b = 4. This implies that a and b have ¢*~2 common
neighbors. Therefore, the graph is not bipartite when d > 2. Hence, for any other
eigenvalue 8, |0 < g%~1. Let vy denote the corresponding eigenvector of 8. Note
that vg € 1+, so Jvg = 0. It follows from (2.1) that

(62 — q%! + ¢%"%)vy = —¢* 2 Ew,. 2.2)

Hence, vy is also an eigenvector of E. By the definition of E, the graph Bg is
a disjoint union of (¢% — 1)/(g — 1) copies of the complete graph K,_;. This
implies that Bg has eigenvalues ¢ — 2 with multiplicity (¢¢ — 1)/(g — 1), and —1
with multiplicity (g¢ — 1)(g — 2)/(g — 1). One corresponding eigenvector of the
eigenvalue g — 2 is the all-one eigenvector 1 and other corresponding eigenvectors
can be chosen in the orthogonal space 11. Plug in to Eq. (2.2), A has eigenvalues
g%~! with mutltiplicity 1, and others eigenvalues are +q{¢~1)/2 and +4¢(¢-2)/2,
The theorem follows.
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2.2 Proof of Theorem 1.1

Let G be a (n,d, A)-graph. It is well known (see [2, Chapter 9] for more details)
that if A is much smaller than the degree d, then the G has certain random-like
properties. For two (not necessarily) disjoint subsets of vertices U, W C V, let
e(U, W) be the number of ordered pairs (v, w) such that v € U, w € W, and
(u, w) is an edge of G. We recall the following well-known fact (see, for example,

(2.

Lemma 2.1 ([2, Corollary 9.2.5]) Let G = (V, E) be an (n,d, \)-graph. For
any two sets B,C C V, we have

(8,0) - 2N < 1BTIE.

We are now ready to give a spectral proof of Theorem 1.1. It is enough to
show that the following equation

Toyo + Ta2y2 = 221Y1,T; € A,y € B (2.3)

has a solution given that zo, yo, T2, y2 # Z1¥1. Fix some z; € Aandy; € B
such that 2z, # 0 (note that the characteristic of the field is odd as g is an odd
prime power). Let G be the product graph Py 2(2z1y,). It follows from Theorem
1.3 that Gis an (¢® — 1,q, ,/q)-graph. Let U =V = A x B, Lemma 2.1 implies
that the numbser of solutions (o, Yo, T2, y2) satisfying Eq. (2.3) is at least

Al%|B|?
LB gas)

Note that the number of quadruples (o, Yo, Z2, y2) With Zoyo = T2y2 = 71y is
bounded by |.A||B] (as for each (xo,y2) € A X B, we have at most one choice of
(¥o, x2)). Therefore, the product set .AB contains a 3-term artihmetic progression
if
-1
q

concluding the proof of Theorem 1.1.

Note that the solvability of Eq. (2.3) can be derived directly from the proof
of {7, Theorem 1.4]. The above proof avoids the use of character and exponential
sums, the usual tool to deal with problems of this kind.

|A||B] > (Va+1),

3 Arithmetic progressions over finite rings

3.1 Product graphs over finite rings

In this section, we will give a proof of Theorem 1.4. It follows from the definition
of the product graph Py, 4(8) that P, 4(0) is a graph of order m? — (m — ¢(m)).
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The valency of the graph is also easy to compute. Given a vertex © € V(Pp, 4(d)),
there exists an index z; € Z),. We can assume that z; € Z),. We can choose
Y2,...,Yd € Z,, arbitrarily, then y; is determined uniquely such that - y =
4. Hence, By,(d, §) is a regular graph of valency m?~1. It remains to estimate
the eigenvalues of this multigraph (i.e. graph with loops). For any @ # b €
Z23\(Z?,)?, we count the number of solutions of the following system

a-x=b-x=48 modm, x e Z\(Z2)°. @3.1

There exist uniquely n | m and by € (Z,,/,)4\(Z2, /n)“ such that b = a + nb;.
The system (3.1) above becomes

a-z=38 modm, nb-x=0 modm, x € (Z,)%\(Z2)" 3.2)

Let an € (Zpn/n)*\(Z),/,)* = @ mod m/n, x, € (Zm/n)d\(Z?n/n d=g
mod m/n and 6, = § mod m/n. To solve (3.2), we first solve the following

system

@, Tp =0, mod m/n, by -2, =0 mod m/n, z, € (ZM/")d\(Z?n/")d‘

The system (3.3) has no solution when @, = tb; mod p for some prime p |
(m/n) and t € ZX; and (m/n)?%~2 solutions otherwise. For each solution ,, of
(3.3), putting back into the system

a-z=46 modm, x=x, modm/n, 3.9

gives us n%~! solutions of the system (3.2). Hence, the system (3.2) has m9—2n
solutions when a,, # tb; mod p and no solution otherwise. Let A be the adja-
cency matrix of Py, q¢(9), it follows that

A =m 2 (m-m® N -md? Y Bt Y (m?inem?E,,

njlm n|m
1<n<m lI<n<m

(3.5)
where J is the all-one matrix, I is the identity matrix, E,, is the adjacency matrix
of the graph Bg 5, where for any two vertices a,b € V(P 4(9)), (a,b) is an
edge of Bg,» if and only if b = a + nby, by € (Znyn)*\(Z0,,,,)* and an, = tb
mod p for some prime p | (m/n), and F, is the adjacency matrix of the graph
Bprn, where for any two vertices a, b € V(Pp, 4(0)), (a, b) is an edge of Bp, if
and only if b = a + nby, by € (Zm/n)*\(Z,,,)* and @, # th; mod p for any
prime p | (m/n).

Therefore, Bg ,, is a regular graph of valency at most

m d
S (-1 (%) < w(m)(m/myy(m)i=4.

pl(m/n), p€P
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Hence absolute values of eigenvalues of E,, are bounded by w(m)(m/n)%y(m)*~<.

Besides, it is clear that absolute values of eigenvalues of F, are at most (m/n)<.
Since P, a(8) is a m?l-regular graph, m¢~! is an eigenvalue of A with the
all-one eigenvector 1. The graph Pp, 4(6) is connected therefore the eigenvalue
m?=1 has multiplicity one. Since the graph P,;, 4(6) contains (many) triangles, it
is not bipartite. Hence, for any other eigenvalue 8, || < m?~1. Let vy denote the
corresponding eigenvector of #. Note that vg € 1%, so Jvg = 0. It follows from
(3.5) that

(02 —m?14m?2)vy = | m?—2 Z E, - Z (m?®2n — m?"2)F, | ve.

n|lm njm
1<n<m 1<n<m

Hence, vy is also an eigenvalue of

m?=2 Z E, - Z (m®2n — mé~2)F,
nlm n|lm
1<n<m l<n<m

Since eigenvalues of sum of matrices are bounded by sum of largest eigenval-
ues of summands. We have

62 < mé—1 — md-2 4 pd-2 Z w(m)(m/n)d,y(m)l—d

n|m

1<n<m
+ Y (m?%n —m42)(m/n)*
njim
l<n<m
< mi !l 4 w(m)(r(m) — 1)m* " 2y(m)~4 + Z m2d-2pl-d
n|m
1<n<m

< (W(m) +1)(r(m) - m?~2y(m)! =
< 7(m)2m2-2y(m)'~4,

The theorem follows.

3.2 Proof of Theorem 1.2

We are now ready to give a proof of Theorem 1.2. It is enough to show that the
following equation

ZoYo + Tay2 = 27191, € A, y; € B (3.6)

has a solution given that zo, Yo, T2,¥2 # T1¥1. Fix some z; € Aandy; € B
such that 2z,y; € Z%. Let G be the product graph Py, 2(2x11). It follows
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from Theorem 1.4 that G is an (m2 — (m — ¢(m))?,m, :((m"‘)),"‘g)-graph. Let
U =V = A x B, Lemma 2.1 implies that the number of solutions (o, o, Z2, ¥2)
satisfying Eq. (2.3) is at least

|A]?|B|>m 7(m)m

m—(m = ) )72 Bk

Note that the number of quadtuples (zo, yo, Z2, ¥2) With Zoyo = z2y2 = Z1y1 is
bounded by |.A||B] (as for each (o, y2) € A x B, we have at most one choice of
(yo, x2)). Therefore, the product set AB contains a 3-term artihmetic progression

if
2 _ 2
48] > = (mm ¢(m)) (;((Z))IZ +1>,

concluding the proof of Theorem 1.2.

Note that the solvability of Eq. (3.6) can be derived directly from the proof
of [3, Theorem 1.3.2]. The above proof avoids the use of exponential sums, the
usual tool to deal with problems of this kind.
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