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ABSTRACT. Many authors define certain generalizations of the usual
Fibonacci, Pell and Lucas numbers by matrix methods and then
obtain the Binet formulas and combinatorial representations of the
generalizations of these number sequence. In this article firstly we de-
fine and study the generalized Gaussian Fibonacci numbers and then
find the matrix representation of the Generalized Gaussian Fibonacci
numbers and prove some theorems by these matrix representations.

1. INTRODUCTION

Matrix methods are major tools in solving certain problems stemming
from linear recurrence relations. In this paper, the procedure will be illus-
trated by means of a sequence.

To begin with, we introduce the concept of the resultant of given poly-
nomials [12]. Let f(z) = 31y a:iz" " and g(z) = Y[~ biz™* be polyno-
mials, where ag # 0 and bg # 0. The presence of a common divisor for f(z)
and g(z) is equivalent to the fact that there exist polynomials p(z) and ¢(z)
such that f(z)g(z) = g(z)p(z) where degp(z) < n—1 and degg(z) < m—1.
Let g(z) = upz™ ! + --- + up-1 and p(z) = voz" ! + -+ + vn_1. The
equality f(z)g(z) = g(z)p(z) can be expressed in the form of a system of
equations

aouo = bowo
ayup +agu1 = by + bour
agug +a1u; + aguz = bovg + byvy + bove

The polynomials f(z) and g(x) have a common root if and only if this
system of equations has a nonzero solution (ug,u1,...,v,v1,...). If, for
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example, m = 3 and n = 2, then the determinant of this system is of the
from

Qo 0 0 —bo 0 ay a1 Qg 0 0
a1 Qo 0 —b1 —bo 0 ay Qo1 a2 0
ag a1 a —by b |=| 0 0 a a a |=|S(f(z)g(2)).
0 az aq —b3 —bz bo b] bz b3 0
0 0 as 0 —b3 0 bo bl b2 b3

The matrix S(f(x), g(z)) is called the Sylvester matriz of polynomials f(z)
and g(z). The determinant of S(f(x), g(z)) is called the resultant of f(x)
and g(x) and is denoted by R(f(z), g(z)). It is clear that R(f(z),g(z)) =0
if and only if the polynomials f(z) and g(z) have a common divisor, and
hence, an equation f(z) = 0 has multiple roots if and only if R(f(z), f'(z)) =
0.

Now, we introduce the Fibonacci sequence. The Fibonacci sequence,
{F.}, is defined by the recurrence relation, for n > 1

Faop1=Fp+Fo

where Fy = 0, F; = 1. There are many applications of Fibonacci numbers
and Golden Section in every branches of mathematics. See [19], [20], [21],
[22].

The Gaussian Fibonacci sequence in [17] is defined as GFy =1, GF; = 1
and GF, = GF,_1 + GF,3 for n > 1, where i = /1. One can see that

GF,=F,+iF,

where F,, is the usual nth Fibonacci number.

The complex Fibonacci numbers and Gaussian Fibonacci numbers are
studied by some other authors [14, 15]. Harman [14] gives a new approach
toward the extension of Fibonacci numbers into the complex plane. Be-
fore this study there were two different methods for defining such numbers
studied by Horadam [16] and Berzsenyi [5). Harman [14] generalized both
of the methods. Good (13] points out that the square root of the Golden
Ratio is the real part of a simple periodic continued fraction but using
(complex) Gaussian integers a + ib instead of the natural integers. The
authors in (3] defined and studied the Bivariate Gaussian Fibonacci and
Bivariate Gaussian Lucas Polynomials. They gave generating function,
Binet formula, explicit formula and partial derivation of these polynomi-
als. By defining these bivariate polynomials for special cases Fy,(z,1) is
the Gaussian Fibonacci polynomials, L,(z,1) is the Gaussian Lucas poly-
nomials, F,,(1,1) is the Gaussian Fibonacci numbers and L,(1,1) is the
Gaussian Lucas numbers defined in [17]. Also the authors in [4] define
the Gaussian Jacobsthal and Gaussian Jacobsthal Lucas numbers. They
give generating functions, Binet formulas, explicit formulas and Q matrix
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of these numbers. They also present explicit combinatorial and determi-
nantal expressions, study negatively subscripted numbers and give various
identities. Similar to the Jacobsthal and Jacobsthal Lucas numbers they
give some interesting results for the Gaussian Jacobsthal and Gaussian
Jacobsthal Lucas numbers

Many authors [8], [9] define certain generalizations of the usual Fi-
bonacci, Pell and Lucas numbers by matrix methods and then obtain the
Binet formulas and combinatorial representations of the generalizations of
these number sequence. Furthermore, using matrix methods for computing
of properties of recurrence relations are very convenient to parallel algo-
rithm in computer science. The authors in [23] construct the symmetric
tridiagonal family of matrices M_,_g(k), k = 1,2, ... whose determinants
form any linear subsequence of the Fibonacci numbers.

Several Hessenberg matrices whose determinants are Fibonacci numbers
have been studied up to now. It has been shown in [10] that the maxi-
mum determinant achieved by n x n Hessenberg (0, 1)-matrices is the nth
Fibonacci number. In [1] the authors give some determinantal and per-
manental representations of k-generalized Fibonacci numbers and Lucas
numbers. They also obtained the Binet’s formula for these sequences by
using their representations.

In this paper, we define and study the generalized Gaussian Fibonacci
numbers.

2. GENERALIZATION OF THE GAUSSIAN FIBONACCI NUMBERS

In this section, we consider the generalization of the Gaussian Fibonacci

numbers.
We define Generalized Gaussian Fibonacci numbers (abbr. GGFNs) f,

as following; fo =0, fi =k, fo=j, fa=1i, fa=1,forn > 5, and

fa=afn1+bfn-2+ cfn-3 + dfn—g, (2-1)
wherei2 = j2 =k? = -1,ij=—-ji=k, jk= -kj=1i, ki= -ik =j and
a, b, ¢, d are complex numbers.

Our natural question now becomes what is an explicit expression for f,
in terms of 1,1, j, k, a, b, ¢, d? Ifa=b=1 and ¢ = d = 0, then the
GGFNs are the Gaussian Fibonacci numbers, and, in [26], Rosenbaum gave
the explicit expression for the case.

In this section, we give an explicit expression for

fo=afn-1+bfa2+cfo3+dfn_q,n =5

Let Gn = (fa, fa—1, fn—2, fn-3)T for n > 3. The fundamental recur-
rence relation (2.1) can be defined by vector recurrence relation

Gn+l = QGn

149



where

a b c d
1 000
Q= 0100
0 010
Also, we have G, 44 = Q"G4. That is,
f n+4 f 4
fn+3 al fs
= . 2.2
forz | =9 £ (22)
fas1 h

And the characteristic equation of Q is
pA) =2 —aX—b 2 -—cA—d=0.
If R(p(A), '(A\)) # 0, then the equation p(A) = 0 has distinct 4 roots.
Theorem 1. Let p(z) be the characteristic equation of the matriz Q. If
R(p(z), p'(z)) #0

then, for n 2 5, fn = afp—1 + bfn—2 + cfn-3 + dfn-s has an ezplicit
expression in terms of 1,1, j, k.

Proof. If R(p(x), p'(x)) # 0, then the characteristic equation of @ have 4
distinct roots, say A1, A2, Az, A4. Since the matrix @ is diagonalizable,
there exists a matrix A such that A=!QA = diag()\;, A2, A3, Ag). Then,
by (2.2), we have

Gnta =Adlag( ?s ;‘a ’\g’ /\Z)A_IG4.
And hence we have
Sfnta = 8127 + 8225 + S35 + s4A],

where s;, 82, $3, 84 are complex numbers independent of 4, and we can
determine the values of sy, 32, s3, s4 by Cramer’s rule. That is, by setting
n =3, 2, 1, 0, we have

fr = 5123 4503 + 5303 + 5,03

f6 = SlAi + 82/\% + 83)\§ + 34)\2
fs = S1A1+ 82A2 + 83A3 + 84y
fa = s1+s2+s83+84

Hence, for s = (s1, sq, s3, 84)7,
Vs = Gr, (2.3)
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where the matrix V is a Vandermonde matrix such that
3 33 13 4,3
MBS

V=10 % d M
1 1 1 1
Since G7 = Q3G4, we have the desired result from (2.3).
The proof is completed. O
From [7], we know the (3, 7) entry q in @™ is given by the following

formula:

q‘(;;) Z mJ+.+m4 % (m1+-..+m4)am|bmgcmadm.;, (2.4)
my+---+my my,...,My
(m; ,...,m4)
where the summation is over nonnegative integers satisfying
my+2mg +3maz +4dmy=n—i+j
and the coefficient in (2.4) is defined to be 1 if n =17 —j.
Corollary 1. For GGFNs f,, we have

n+4
Z fe= Z @ + i+ ¢®+ W10+ A +i+i+ k).
k=1

Proof. Since Gptq4 = Q"G4, we have

n+4
> Gi= Z Q*G..
k=5 k=1
That is,
n+4
> fi= Z(q‘k) aBi+¢®i +a{P k).
k=5
And,
fa=1, fa=1, fo=]j, fi=k
Thus, the proof is completed. O

Applying the Gp44 = Q"G4 to (2.4), we have, for n > 1,
Farr = a0 + a1+ a3 + gk (2.5)
Hence, from Theorem 1 and (2.3), forn > 1,

fanr = aP +aRi+dRi+ 'k
= 8127 + 8223 + 837 + 847
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The characteristic equation of Q is p(A\) = A* —aX® —bA2—cA—d =0,
and hence

-a b - -d
1 —-a -b -—c

0 1 —-a =D
—3a -2b -—c 0
4 —-3a -2b -—c

0 4 -3a -2b

0 0 4 -3a -2 -—c

144bc*d — 256d° — 16b%d — 18abc® — 192acd?
—27¢* + 80ab®cd + 18a%bed — 4a3c® — 128b%d? + 4b°c?
—27a%d? — 144a%bd? — 4a%b%d + 6a%c?d + a?b*c?.

R(p(A), P'(N)

il
cookmOoOH
! ||
0o oOoon RO
I
cococaoco

We know that, from the definition of resultant, the equation p(\) = 0
has multiple roots if and only if R(p(A), p'(A)) = 0. That is, the equation
P(A) = 0 has 4 distinct roots if and only if R(p()), p'(}))) # 0.

Suppose that R(p()), p'(A)) # 0 and a3, as, a3, a4 are the distinct
roots of p(A) = 0. Then we have

fad1 = 81T + 8227 + 8307 + 8407
= sjof + 8203 + s3aj + s4af. (2.6)
Since fy =1, f5 = a+bi+cj+dk, fs = (a2 +b)+(ab+c)i+ (ac+d)j+adk,

fr = (a® +2ab +c) + (a®b + ac + b% + d)i + (a2c + ad + be)j + (a?d + bd)k
and

S1+s2+s3+54 = fy,
s1a) + s202 + 8303 + s4a4 = fs,
8102 + 5303 + 5302 + 5402 = fs,
3 3 3 3 _
s104 + 8205 + s3a3 + s405 = fr,
we have
1 1 1 1 31 fa
o a; a3 o s2 | _| fs
2 2 2 _9 =17 (2.7)
al ag aa (14 33 6
al o o of S4 f1
Set
1 1 1 1
o oy 03 «
v = det ; 3 3 3
o e B B
ay a3 a3 o
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[ fo 1 1 1] [(1 /1 1]
fs o o3 oy ay fs a3 o
v, = det Vo, = det
g fooof of of "M T ol % of of
| f1 o3 o} of ] | o} fr 3 of J
[ 1 1 fy 1] [ 1 1 1 fy ]
a; o fs o a; oy ag fs
v, = det Vo, = det
@3 o o} fo o |’ ™ o? aé oz fs
of a3 fr of | [ of o o fr |

Then we have the following theorem which is a generalization of Binet
formula.

Theorem 2. Let p()\) be the characteristic equation of the matriz Q and
let ay, a3, as, as be the roots of p(A) = 0. If R(p(z), p'(x)) # 0, then, for
GGFN fn41,

n
Va, a? + Va, @ + Vas ag + Vo, a?
v

fn+1 =
Proof. From (2.6), we have
far1 = Sla? + Szag + Ssag + 34&2,

where
1 Va, Vas Vay

§1=—, Sg=—, §3=—, 4= —.

v v v
The proof is completed. a

From Theorem 2, in particular, if a = b = ¢ = d = 1 then R(p(}), p'(A)) =
—563 # 0. In this case, the equation p(A) = 0 have 4 distinct roots and
hence we have the following corollary.

Corollary 2. For GGFN fay1 =afn+bfn—1 +cfa—a+dfn_3, ifa=b=
c=d =1, then we have

n
Vay, @11 + ‘Uam

n n '3
021 + Vay, @31 + Vo, Y41
)

f'n.+1 = 7

where a1, Qo1, 31, aay are the roots of py(A) = At — A% — AM-A-1=0
and
1 1 1 1
Qa1 Q21 Qg1 Qq)
gy o3 a3 of
ofy 03 agl ody

I (en-au)

1<i<j<4

v7 = det
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Proof. Since fas1 = fa+ fac1+ faz+ fas, R(B1(N), P(N)) = =563 # 0.
That is, the equation p1(A) = 0 have 4 distinct roots a11, a1, a31, a4.
From (2.7), we have fy =1, fs = 1+i+j+k, fos =2+ 2i +2j +k,
fr=4+4i+3j+ 2k and

s1+82+s3+84 = fa,
f5,

s1011 + Saiey + 8331 + S

2 2 2
s103; + s203; + 8303, + 8404, = Je,
3 3 3 3
8107, + 820p; + 83034 + 8404y = f7’
That is,
1 1 1 1 8 1
Q11 Qo1 Q31 Qg1 82 _ 1+i+j+k
o}y of of of 83 2+2i+2j+k
a:lil agl agl Otil 84 4 + 4 + 3J + 2k
Set
1 1 1 1
« @ « a
vy = det 1 gl 21 gl
o Gy a3 Qg
[ 1 1 1 1

l1+i+j+k o2 an ag
2+2i4+2j+k o} o3 af
| 4+4i+3j+2k o3 of o}

1 1 1 1
11 1+i+j+k az; Q41
oy 2+2i+2j+k of o}

1 1 1 1
a1y Qo) 1+i+j+k Q41
o}, a2, 2+2+2j+k a
o}, a3 4+4i+3j+2%k af

1 1 1 1
11 Qg1 Q31 1+i+j+k
a%l agl a§] 2 + 2i + 2j + k
| of; of; o3 4+4i+3j+2k |

Vg, = det

Vay, = det

Vqg, = det

Vg, = det

Thus, we have
n n k(3
Vo, @11 + Vg, 091 + Va3, 031 +
n

n
aqy ¥41

fn+1 =
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where
1 1 1 1

Q11 Q21 Q31 Q4]
v = det = Qi1 — O
! 0‘21 aél 0‘§1 gy 1<£‘£<4( 7 )
o5 ayp 03 A T
The proof is completed. O
For GGFNs fp4+1 = afn + bfa—1 + cfa—2 + dfp—3,if a = b =1 and
¢ = d = 0, then we have R(p(}), p’(A)) = 0. So, the equation p(A) = 0
have multiple roots, i.e., A = 0 is the multiple root of multiplicity 2. And

hence, from the Theorem 2 , we have the Binet formula for the Gaussian
Fibonacci number GF,.

3. GENERALIZATION OF THE GAUSSIAN LUCAS NUMBERS

In [19], the author introduced a generalized Lucas number from gener-

alized Fibonacci number. The k-Fibonacci sequence {g,(,")} is defined as
k k k k
gg )="'=gl(c—)2=0’ gl(c-—)l= l(c)=1
and forn >k > 2,
o =gl + gl + -+ g1,
From the definition of the generalization, the author define the k-Lucas
sequence {lgk)} as follows;
19 = g + g%, . (3.1)

In this section, we also consider the generalization of the Gaussian Lucas
numbers. We define Generalized Gaussian Lucas numbers (abbr. GGLNs)
l, as following; for n > 1,

ln = fn+3 + fn—l- (3'2)
From the definition of GGLNSs, we have, for n > 6,
ln = fn+3 + fn—l

afn+2 + bfn+l + cfn + dfn—l + a'fn—Z + bfn—3 + cfn—-4 + dfn—S
a(frt2 + frn—2) + b(fat1 + fa=3) + c(fn + fa—a) + d(frn-1 + fn-s)

Since I, = fr43 + fn-1 for n > 1, we have, for n > 6,
lo=alp_1+bly_o+clps+dl,_,4. (3.3)

From the Theorem 2 and (3.2), we have the following theorem which is
the Binet formula for the GGLNs.
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Theorem 3. Let p(A) be the characteristic equation of the matriz Q and
let ay, ag, a3, a4 be the roots of p(A\) = 0. If R(p(z), p'(x)) # 0, then, for
GGLN I,

L = va; 07 "2 (e +1)+vaz af “2(af +1)+vag o _2(0‘3+1)+”¢u°‘"-2(°4+1)
n - v

Proof. From (3.2) and Theorem 2, we have

ln = fn+3+fn—l
42

2
vay a1 +va, 03 2 tvagagt? o, of
v
-2 -2 -2
Vo & " “HYa 05 " +Veg a3 " +va, 0f

+ v
Vo, al "3 (ad+1)4va, af 3 (el +1)+vag af “2(ad+1)Hva 0l " (ad +1)
” .

-2

The proof is completed. O
Also, from the Corollary 2 and Theorem 3, we have the following corol-

lary.

Corollary 3. For GGFN I, = alp.; + blpa + cly_3 + dln_y, n > 6, if

a=b=c=d=1, then

I, = Yay; o] 2 (e +1)+vay) o 2(°‘al+1)+"a31°‘"-2(°31+1)+”on°‘"- (agi+1)

]

where oyy, a1, 31, aq1 are the roots ofpl(/\) =X -A-a-1=0

and
1 1 1 1

11 Q21 Q31 Q43
v =det 2 2 2 2 | = I I (aj1 - ai1)
ap Gy Gz Oy oy
3 3 3 3 1gi<j<4
ajyy G Q31 0y
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