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Abstract

For any vertex z in a connected graph G of order n > 2, a set
S C V(G) is an r-detour monophonic set of G if each vertex v € V(G)
lies on an z-y detour monophonic path for some element y in S. The
minimum cardinality of an z-detour monophonic set of G is the z-
detour monophonic number of G, denoted by dmz(G). An z-detour
monophonic set S; of G is called a minimal z-detour monophonic set
if no proper subset of S: is an z-detour monophonic set. The upper
z-detour monophonic number of G, denoted by dmz (G), defined as
the maximum cardinality of a minimal z-detour monophonic set of
G. We determine bounds for it and find the same for some special
classes of graphs. For positive integers 7,d and k with 2 < r < d and
k > 2, there exists a connected graph G with monophonic radius r,
monophonic diameter d and upper z-detour monophonic number %
for some vertex x in G. Also, it is shown that for positive integers
g, k,l and n with 2 < j < k <1 £ n— 7, there exists a connected
graph G of order n with dm;(G) = j,dm}(G) = ! and a minimal
z-detour monophonic set of cardinality k.
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1 Introduction

By a graph G = (V, E) we mean a finite undirected connected graph without
loops or multiple edges. The order and size of G are denoted by n and m
respectively. For basic graph theoretic terminology we refer to [1, 2]. For
vertices  and y in a connected graph G, the distance d(z,y) is the length
of a shortest z-y path in G. An z-y path of length d(z,y) is called an z-y
geodesic. The neighborhood of a vertex v is the set N(v) consisting of all
vertices u which are adjacent with v. The closed neighborhood of a vertex
v is the set N[v] = N(u) U {v}. A vertex v is an eztreme vertez of G if the
subgraph induced by its neighbors is complete.

A chord of a path P is an edge joining any two non-adjacent vertices
of P. A path P is called monophonic if it is a chordless path. A longest
z-y monophonic path P is called an z-y detour monophonic path. For
any two vertices u and v in a connected graph G, the monophonic dis-
tance dn(u,v) from u to v is defined as the length of a longest u-v mono-
phonic path in G. The monophonic eccentricity em(v) of a vertex v in G
is em(v) = maz{dm(v,u) : u € V(G)}. The monophonic radius, radmG
of G is rad»G = min{en(v) : v € V(G)} and the monophonic diameter,
diamn,,G of G is diam,,G = maz{en(v) : v € V(G)}. The monophonic
distance was introduced and studied in [3].

The concept of vertex monophonic number was introduced in [4]. Let
z be a vertex of a connected graph G. A set S of vertices of G is an z-
monophonic set of G if each vertex v of G lies on an z-y monophonic path in
G for some element y in S. The minimum cardinality of an z-monophonic
set of G is defined as the z-monophonic number of G and is denoted by
mz(G). An z-monophonic set of cardinality m,(G) is called a m-set of G.

The concept of vertex detour monophonic number was introduced in
(5]. Let z be a vertex of a connected graph G. A set S of vertices of G is
an z-detour monophonic set of G if each vertex v of G lies on an z-y detour
monophonic path in G for some element y in S. The minimum cardinality
of an z-detour monophonic set of G is defined as the z-detour monophonic
number of G and is denoted by dm;(G). An z-detour monophonic set of
cardinality dm.(G) is called a dm,-set of G.

Theorem 1.1. [5] Let z be any vertex of a connected graph G.

(i) Every extreme vertex of G other than the vertex z (whether r is extreme
or not) belongs to every z-detour monophonic set.

(ii) No cutvertex of G belongs to any dm_-set.

Theorem 1.2. [5] (i) For any non-trivial tree T with k endvertices,
dmy(T) =k or k — 1 according as z is a cutvertex or not.

(ii) For any vertex z in the complete graph K, of order n > 2, dm.(K,) =
n—1.
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Throughout this paper G denotes a connected graph with at least two
vertices.

2 Upper vertex detour monophonic number

Definition 2.1. Let = be any vertex of a connected graph G. An z-
detour monophonic set S; is called a minimal z-detour monophonic set if
no proper subset of S; is an z-detour monophonic set. The upper z-detour
monophonic number is the maximum cardinality of a minimal z-detour
monophonic set of G and is denoted by dm} (G).

Example 2.2. For the graph G given in Figure 2.1, the minimum vertex
detour monophonic sets, the minimum vertex detour monophonic numbers,
the minimal vertex detour monophonic sets and the upper vertex detour
monophonic numbers are given in Table 2.1.

w Y
t u
v z
G
Figure 2.1
vertex minimum minimal
z z-detour dmz(G) z-detour dm}(G)
monophonic sets monophonic sets
t {u,y}, {u,z} 2 {u,y}, {u, 2z} 2
u {ts y}) {t’ Z} 2 {t’ y}a {[t’ Z} 2
v {w,y}, {w,v}. {24},
{z,y} 2 {w,t,u} 3
w {z’y}v {z,y}, {Z,'U}a
{z,v} 2 {v,t,u} 3
y {v, 2}, {v, t}, {v, z}, {v, t},
{v,u} 2 {v,u}, {t,v,w} 3
z {wyy}a {w: ﬂ’v {w7 y}i {’U),t},
{w,u} 2 {w,u}, {v,t,u} 3
Table 2.1

For any vertex z in a connected graph G, every minimum z-detour
monophonic set is a minimal z-detour monophonic set, but the converse
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is not true. For the graph G given in Figure 2.1, {w,t,u} is a minimal v-
detour monophonic set but it is not a minimum v-detour monophonic set.
Also, note that z does not belong to any minimal z-detour monophonic set

of G.

Theorem 2.3. Let = be any vertex of a connected graph G.

(i) Every extreme vertex of G other than the vertex x (whether z is an
extreme vertex or not) belongs to every minimal z-detour monophonic set
of G.

(ii) No cutvertex of G belongs to any minimal z-detour monophonic set of
G.

Proof. (i) Let z be any vertex of G. Since = does not belong to any minimal
z-detour monophonic set, let v # z be an extreme vertex of G. Clearly v
is not an internal vertex of any detour monophonic path so that v belongs
to every minimal z-detor monophonic set of G.

(ii) Let y # x be a cutvertex of G. Let U and W be two components of
G — {y}. For any vertex z in G, let S; be a minimal z-detour monophonic
set of G. Suppose that x € U. Now, suppose that S, "W = §. Let
w; € W. Then w; ¢ S,. Since S, is an z-detour monophonic set, there
exists an element z in S; such that w; lies in some z-z detour monophonic
path P:z = z9,29,...,w1,...,2r =2in G. Since S; "W =P and y is a
cutvertex of G, it follows that the z-w, subpath of P and the w;-z subpath
of P both contain y so that P is not a path in G. Hence S, N W # 0. Let
wg € S;NW. Then wy # y so that y is an internal vertex of an z-w, detour
monophonic path. If y € S;, let S = S; — {y}. It is clear that every vertex
that lies on an z-y detour monophonic path also lies on an z-ws detour
monophonic path. Hence it follows that S is an z-detour monophonic set
of G, which is a contradiction to S; a minimal z-detour monophonic set
of G. Thus y does not belong to any minimal z-detour monophonic set of
G. Similarly, if x € W, then y does not belong to any minimal z-detour
monophonic set of G. O

Since every endvertex is an extreme vertex, the following theorem is an
easy consequence of the definition of the upper vertex detour monophonic
number of a graph and Theorem 2.3.

Theorem 2.4. (i) For any non-trivial tree T with k endvertices, dm} (T') =
k or k — 1 according as z is a cutvertex or not.

(ii) For any vertex z in the complete graph K, of order n > 2, dm}(K,) =
n—1.

Theorem 2.5. For any vertex z in the cycle C,, of order n > 4,

1 if n=4
dmICn) =19 it n>4a
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Proof. Let C,, : u1,uz,...,un,u; be a cycle of order n > 4. Let = be any
vertex in Cy, say T = u;. If n = 4, then S; = {u3} is the unique minimal
z-detour monophonic set of C,, and so dm}(C,) = 1. Now, assume that
n > 4. If n is even, then Sy = {ug 41}, S2 = {u2,us}, S3 = {tn—1,un} and

={uyu;:3<i< Jand § + 3 < j £ n— 1} are the minimal z-detour
monophonic sets of C Ifn 1s odd, then S) = {uz,u3},S2 = {un—1,un}
and S3 = {ui,u; : 3 < i< 2 and 22 < j < n— 1} are the minimal
z-detour monophonic sets of Cn Hence dmz (Cn)=2. O

Theorem 2.6. Let W, = K + Cr—1(n 2> 5) be the wheel.

(i) If n = 5, then dm}(W,) = n — 1 or 1 according as x is K; or z is in
Cn-1.

(ii) If n > 5, then dm}(W,) = n —1 or 3 according as z is K; or z is in
Cn-1.

Proof. Let Crn_1 : u1,u%2,...,Un—1,%1 be a cycle of order n — 1 and let u
be the vertex of K;. If x = u, then no vertex of C,,_; is an internal vertex
of any detour monophonic path starting from z. It follows that V(Cn_))
is the minimal z-detour monophonic set of W,, and so dm} (W) =n — 1.
Let z be any vertex in Cn_1, say £ = u;. If n = 5, then S; = {us}
is the unique minimal z-detour monophonic set of G and so dm} (W) =
1. Now, assume that n > 5. If n is odd, then S; = {u,un_ 1,182 =
{u,U2,U3},53 = {4, upn-2,un—1} and Sy = {u,u;,u; : 3 < i < "; and
243 < j < n — 2} are the minimal z-detour monophonic sets of W,. It
follows that dm}(W,) = 3. If n is even, then S; = {u,us,u3},S2 =
{4, Un-2,un—1} and S3 = {u,u;,u; : 3 <i < % and 242 < j <n-—2} are
the minimal z-detour monophonic sets of W, and hence dm}f(W,)=3. O

Theorem 2.7. Let G = K, 4(2 < r < s) be the complete bipartite graph

. . - -1 ifzeW
th bipartition (Vi, Va). Then dm#(G) =4~
with bipartition (V1,V2). Then dm}(G) s—1 ifzeVs
Proof. Let V; = {uy,us,...,u,} and Vo = {w;,ws,..., w,} be a partition

of G. Let z € Vi, say x = u;. Since the vertex u;(2 < i < r) does not lie
on any detour monophonic path starting from z and every vertex of V; lies
on an z-ug detour monophonic path, Sy = V; — {z} is the unique minimal
z-detour monophonic set of G. Hence dm}(G) = |Sz| =7 —1. Let z € V5.
Then by a similar argument, we get dm} (G) = s — 1. O

3 Bounds and realization results for dm}(G)

Theorem 3.1. For any vertex z in a connected graph G of order n > 2,
1<dm}(G)<n-1.
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Proof. 1t is clear that every minimal z-detour monophonic set contains at
least one vertex so that dm} (G) > 1. Since the vertex z does not belong
to any minimal z-detour monophonic set of G, it follows that dm}(G) <
n-—1. O

Remark 3.2. The bounds in Theorem 3.1 are sharp. For the path P,
(n > 2), dm}(P,) = 1 for an endvertex z in P,. Also, for the complete
graph K, (n > 2), dm}(K,)=n—1.

Theorem 3.3. For any two integers ¥ and n with 1 < k < n—1 and
n > 2, there exists a connected graph G of order n and dm}(G) = k for
some vertex z in G.

Proof. Let G be the graph obtained from the path P,_j : u1,us,...,Un—k
of order n — k > 1 by adding k£ new vertices wy, wo, ..., wx and joining each
w;i(1 < i < k) with u,—x in P,_x. The graph G is a tree of order n and is
shown in Figure 3.1.

uy (%]

G

Figure 3.1

Let z = u;. If n — k = 1, then the tree G has k endvertices and z is the
cutvertex. If n — k > 1, then the tree G has k + 1 endvertices and z is an
endvertex. In both cases, by Theorem 2.4 (i), dm}(G) = k. O

For every connected graph G, radmG < diam,,G. It is showed in (3]
that every two positive integers a and b with a < b are realizable as the
monophonic radius and monophonic diameter, respectively, of some con-
nected graph. It can be extended so that the upper vertex detour mono-
phonic number can be prescribed under some conditions.

Theorem 3.4. For integers r,d and k with 2 < 7 < d and k > 2, there
exists a connected graph G with rad,,G = r,diam,,G = d and dm}(G) = k
for some vertex z in G.

Proof. Case 1. r =d = 2. Let Cy : v;,v2,v3,v4,v; be the cycle of order
4. Let G be the graph obtained from C4 by adding £ — 1 new vertices
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w1, wy,...,Wk-1 and joining each w;(1 £ ¢ < k — 1) with vy and v4 in Cy.
The graph G is shown in Figure 3.2. It is easily verified that rad,,G =
diam,,G = 2. Now, let £ = v;. Since vz and w;(1 < ¢ < k — 1) are not
internal vertices of any detour monophonic path starting from z, it follows
that v3 and each w;(1 < ¢ < k — 1) must belong to every minimal z-detour
monophonic set of G. Let § = {v3, w1, wy,...,wek—1}. Clearly S is the
unique minimal z-detour monophonic set of G and so dm} (G) = |S| = k.

Uz
v1 v3
V4
G

Figure 3.2
Case 2. 2 <r=dor?2 <r <d Let H be a graph obtained from
a cycle Cry2 : v1,V2,...,Ur42,v1 Of order 7 + 2 and a path Py, :
Ug, U1, U2, ..., ud—r Of order d — r + 1 by identifying the vertex v,41 in

Cry2 and ug in Py_,4; also join each vertex ui(1 < i <d —7) in Py—ry1
with v,42 in Cry2. Now, let G be the graph obtained from H by adding
k — 2 new vertices w;, ws, ..., wx_2 and join each w;(1 < 7 < k — 2) with
vg and vp42 in H. The graph G is shown in Figure 3.3.

Figure 3.3

It is easily verified that 7 < en(z) < d for any vertex z in G. Also
em(Vr42) = 7 and e, (v1) = d. It follows that rad,,G = r and diam;,,G = d.
Now, let £ = ug_, and let S = {v1,vrt2,w1,ws,..., wk—2}. Since every
vertex of G lies on an z-y, where y € S, detour monophonic path, S is an
z-detour monophonic set of G. Suppose that S is a proper subset of S such
that S; is an z-detour monophonic set of G. Then there exists a vertex z in
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S such that 2z ¢ ). It is clear that z may be vy or vypg or w; (1 < i < k-2).
In all cases, z does not lie on any z-u, where u € S;, detour monophonic
path, it follows that S is not an z-detour monophonic set of G. This shows
that S is a minimal z-detour monophonic set of G and so dm}(G) > k.
Also, it is clear that any minimal z-detour monophonic set contains at most
k elements and hence dm} (G) < k. Therefore, dm} (G) = k. O

Since every minimum z-detour monophonic set is a minimal z-detour
monophonic set, we have 1 < dm;(G) < dm}(G) < n— 1. In view of this
we have the following theorems.

Theorem 3.5. Let z be any vertex in a connected graph G of order n > 3.
If dm;(G) = 1, then dm}(G) <n—2.

Proof. Let S; = {y} be an z-detour monophonic set of G and let T, be
a minimal z-detour monophonic set of G. Then y # z. If y € Ty, then
T.=S8;and sodm}(G) =1<n-2. If y ¢ T, then dm}(G) = |T:| <
n—2. O

Theorem 3.6. Let = be any vertex in a connected graph G. Then dm;(G)
=n—1if and only if dm}(G) =n - 1.

Proof. Let dm.(G) = n — 1. Since dm;(G) < dm}(G) < n — 1, we have
dm}(G) = n — 1. Conversely, let dm}(G) =n — 1. Then T = V(G) - {z}
is the minimal z-detour monophonic set of G. Now, claim that dm,(G) =
n — 1. If not, then G has a minimum z-detour monophonic set T} with
|T1| £ n — 2. Since z is not in any minimum z-detour monophonic set, T}
is a proper subset of T' and so T is not a minimal z-detour monophonic set
of G, which is a contradiction. O

Theorem 3.7. For any three positive integers j,k and { with2 < j < k <
l < n—7, there exists a connected graph G of order n with dm.(G) =
J, dm}(G) =l and a minimal z-detour monophonic set of cardinality k.

Proof. Case 1. 2<j=k=1<n—17 Let G be a tree of order n > 9 with
k endvertices. Then for any cutvertex = in G, by Theorems 1.2 and 2.4,
dm;(G) = dm}(G) = k and the set of all endvertices in G is a minimal
z-detour monophonic set with cardinality k by Theorem 2.3.
Case 2. 2 < j=k <l <n-7 LetG be the graph obtained from the
cycle Cn_t+1 : v1,v2,...,Vn-141,01 of order n — ! + 1 by adding | — 1 new
vertices wy,ws, ..., w;_1,u1,U2,...%—; and joining each w; (1 < i < j—1)
with v,_;; and also join every u; (1 < i < I — j) with v; and v,—;. Then
the graph G has order n and is shown in Figure 3.4.

Let S = {w;,ws,...,wj—1} be the set of all extreme vertices of G and
let £ = v;. First, we show that dm;(G) = j. By Theorem 1.1, every
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minimum z-detour monophonic set of G contains S. Since S is not an
z-detour monophonic set of G, S; = S U {v3} is a minimum z-detour
monophonic set of G so that dm;(G) = |S1| = j. Also, S; is a minimal
z-detour monophonic set of cardinality k& = j.

Ui j

Un—t+1

G
Figure 3.4

Next, we show that dm}(G) = [. It is clear that M = {wy, ws,...,wj-1,

Vn-i+1,U1,U2,-..,U—;} is a minimal z-detour monophonic set of G with
maximum cardinality and so dm} (G) = [M| =1
Case 3. 2 < j < k=1<n-—17 For the graph G given in Figure 3.4,
dm:(G) = jv dm:(a) =land M = {'W1,'UJ2, ceey Wil Un—i41, UL, U2y - . -,
uj—;} is a minimal z-detour monophonic set of cardinality k = [.
Cased4. 2<j<k<l<n-—1. Let Cs:v1,vy2, Y3, Vs, Y5, Ys, Y1 be the cycle
of order 6 and P,_;_4 : v, 2,...,Vn—i—4 be the path of ordern—1—4 > 3.
Let H be the graph obtained from Cg and P,_;_4 by joining y; in Ce with
v; in P,_;_4. Let G be the graph obtained from H by adding ! — 2 new
vertices wy,ws,. .., Wj—2, U1, U2y .., Uk—j+1,21,22,- .-, 2l—k—1 and joining
each w;(1 < i < j —2) with 3 in H; also join each u;(1 <i < k—j+1)
with y; and v,,_;—4 in H; and join each 2;(1 < ¢ <! —k —1) with 3, and
y3 in H. Then the graph G has order » and is shown in Figure 3.5.

Let S = {w;,ws,...,w;—2} be the set of all extreme vertices of G and
let £ = vn_;_4. Then by Theorem 1.1, every z-detour monophonic set of G
contains S and also for any vertex y € V(G) — S, SU{y} is not an z-detour
monophonic set of G. It is clear that Sy = SU {y4,vn_1-6¢} is a minimum
z-detour monophonic set of G and so dmz(G) = |S1| = j.
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Next, we show that there is a minimal z-detour monophonic set of
cardinality k. Let T = SU {y4,u1,u2,...,ux—j41}. It is clear that T
is an z-detour monophonic set of G. We claim that T is a minimal z-
detour monophonic set of G. Assume that T is not a minimal z-detour
monophonic set of G. Then there is a proper subset T} of T such that T
is an z-detour monophonic set of G. Let t € T and t ¢ T;. By Theorem
23, clearly t = ygort =u; forsomei =1,2,....k—j+1. Ift = y,,
then each y;(2 < 7 < 6) and z;(1 < i <! —k — 1) does not lie on any
z-y detour monophonic path for some y € Th, which is a contradiction. If
t = u; for some i = 1,2,...,k — 7+ 1, then u; does not lie on any z-y
detour monophonic path for some y € T, it follows that T3 is not an z-
detour monophonic set of G, which is a contradiction. Thus T is a minimal
z-detour monophonic set of G with cardinality k.

Uk—j+1 G

Figure 3.5 Zm k1

Finally, we claim that dm}(G) = 1. let W = SU {uy,ua,..., uk—j11,
Y2,Y3,21,22,...,21—k—1}. 1t is clear that W is an z-detour monophonic set
of G. We claim that W is a minimal z-detour monophonic set of G. Assume
that W is not a minimal z-detour monophonic set of G. Then there exists
a proper subset W, of W such that W is an z-detour monophonic set of G.
Let w e W and w ¢ W;. By Theorem 2.3, w # w; forall i =1,2,...,5—2.
If w = ys, then y; (3 < i < 6) does not lie on any z-z detour monophonic
path for some z € W), which is a contradiction. If w = u; for some
i=1,2,...,k—j+ 1, then for convenience, let w = u;. Since u; does not
lie on any z-z detour monophonic path for some z € Wy, it follows that W,
is not an z-detour monophonic set of G, which is a contradiction. If w = yo
orw = z; forsome i =1,2,...,l—k—1, then similar to the above argument,
W) is not an z-detour monophonic set of G, which is a contradiction. Thus
W is a minimal z-detour monophonic set of G and so dm} (G) > |W| = L.
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Also, it is clear that every minimal z-detour monophonic set contains at
most ! elements and hence dm}(G) < l. Therefore, dm}(G) = 1. a
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