A stronger relation between coloring number and the modification of Randić index*

Renfang Wu, Hanyuan Deng[†]

College of Mathematics and Computer Science, Hunan Normal University, Changsha, Hunan 410081, P. R. China

Abstract

The coloring number col(G) of a graph G is the smallest number k for which there exists a linear ordering of the vertices of G such that each vertex is preceded by fewer than k of its neighbors. It is well known that $\chi(G) \leq col(G)$ for any graph G, where $\chi(G)$ denotes the chromatic number of G. The Randić index R(G) of a graph G is defined as the sum of the weights $\frac{1}{\sqrt{d(u)d(v)}}$ of all edges uv of G, where d(u) denotes the degree of a vertex u in G. We show that $\chi(G) \leq col(G) \leq 2R'(G) \leq R(G)$ for any connected graph G with at least one edge, and col(G) = 2R'(G) if and only if G is a complete graph with some pendent edges attaching to its same vertex, where R'(G) is a modification of Randić index, defined as the sum of the weights $\frac{1}{\max\{d(u),d(v)\}}$ of all edges uv of G. This strengths a relation between Randić index and chromatic number by Hansen et al. [7], a relation between Randić index and coloring number by Wu et al. [17] and extends a theorem of Deng et al. [2].

AMS classification: 05C07, 05C15

Keywords: coloring number, chromatic number, Randić index.

1 Introduction

All graphs considered in this paper are finite and simple. Let G = (V, E) be a finite simple graph with vertex set V and edge set E. As usual, N(v) denotes the set of neighbours of a vertex v in G, and d(v) = |N(v)| is the

^{*}Project supported by the National Natural Science Foundation of China (11401192).

[†]Corresponding author: hydeng@hunnu.edu.cn

degree of v. $\delta(G)$ and $\Delta(G)$ denote the minimum degree and the maximum degree of G, respectively.

A k-coloring of G is a mapping $c: V \to C$, such that $c(u) \neq c(v)$ for any $uv \in E$, where C is a set of k colors. The chromatic number of G, denoted by $\chi(G)$, is the smallest integer k for which G has a k-coloring.

The chromatic number of G, denoted by $\chi(G)$, is the smallest number of colors needed to color all vertices of G such that no pair of adjacent vertices gets the same color.

The coloring number of G, denoted by col(G), is the smallest integer k such that G has a vertex ordering in which each vertex is preceded by fewer than k of its neighbors.

The degeneracy of G, denoted by deg(G), is defined as $deg(G) = \max\{\delta(F) : F \text{ is a subgraph of } G\}$. It is known in [8] that

$$col(G) = deg(G) + 1. (1)$$

for any graph G.

As an extension of coloring of a graph, Vizing [16] and Erdös et al. [4] introduced a list coloring of a graph. For each vertex v of a graph G, let L(v) denote a list of colors assigned to v. A list coloring is a coloring c of vertices of G such that $c(v) \in L(v)$ and $c(x) \neq c(y)$ for any $xy \in E$, where $v, x, y \in V$. A graph G is k-list-colorable if for any list assignment L to each vertex $v \in V$ with $|L(v)| \geq k$, there always exists a list coloring c of G. The list chromatic number of G, denoted by $\chi_l(G)$, is the minimum k for which G is k-list-colorable. It can be found in Tuza [15] that the well-known Brooks theorem on chromatic number was extended as follows

$$\chi(G) \le \chi_l(G) \le col(G) \le \Delta(G) + 1.$$
(2)

The Randić index (or molecular connectivity index) of G is defined as $R(G) = \sum_{uv \in E(G)} \frac{1}{\sqrt{d(u)d(v)}}$. It was proposed by the chemist Milan Randić [14] for correlating macroscopic properties with graph theoretical invariants of the structural formula of the organic molecule. Many applications and mathematical properties of this descriptor have also been studied extensively in [6, 10, 11, 12, 13]. The harmonic index of G, denoted by H(G), is defined in [5] as $H(G) = \sum_{uv \in E(G)} \frac{2}{d(u) + d(v)}$. A modification R'(G) of the Randić index was introduced by Dvořák et al. [3]. It is defined as $R'(G) = \sum_{uv \in E(G)} \frac{1}{\max\{d(u),d(v)\}}$.

Note that $\sqrt{d(u)d(v)} \le \frac{d(u)+d(v)}{2} \le \max\{d(u),d(v)\}$, we have

$$R'(G) \le H(G) \le R(G). \tag{3}$$

There are some relations relating the above invariants. First, Hansen et al. [7] proved that a relation between Randić index R(G) and the chromatic number $\chi(G)$ conjectured by the system AutoGraphiX.

Theorem 1. [7] Let G be a simple graph with the chromatic number $\chi(G)$ and the Randić index R(G), then $\chi(G) \leq 2R(G)$ with equality if and only if G is a complete graph possibly with some additional isolated vertices.

In [2] and [9], Deng et al. and Jiang et al. obtained the relations relating the harmonic index H(G), the modified Randić index R'(G) and the chromatic number $\chi(G)$, respectively. They strengthen Theorem 1 from the relation (3).

Theorem 2. [2] Let G be a simple graph with the chromatic number $\chi(G)$ and the harmonic index H(G), then $\chi(G) \leq 2H(G)$ with equality if and

only if G is a complete graph possibly with some additional isolated vertices.

Theorem 3. [9] Let G be a simple graph with the chromatic number $\chi(G)$ and the modified Randić index R'(G), then $\chi(G) \leq 2R'(G)$ with equality if and only if G is a complete graph possibly with some additional isolated vertices.

Recently, Wu et al. [17] established a relation between the Randić index and the coloring number of a graph, and extended Theorem 1 from the relation (2).

Theorem 4. [17] If G is a simple graph with at least one edge, then $col(G) \leq 2R(G)$, with equality if and only if G is a complete graph, possibly with some additional isolated vertices.

Moreover, Deng et al. [1] obtained a relation between the coloring number and the harmonic index of a graph and extended Theorem 4.

Theorem 5. [1] If G is a simple graph with at least one edge, then $col(G) \le 2H(G)$, with equality if and only if G is a complete graph, possibly with some additional isolated vertices.

The aim of this paper is to extend further Theorems 1-5 as follows.

Theorem 6. If G is a simple graph with at least one edge, then $col(G) \leq 2R'(G)$, with equality if and only if G is a complete graph K_r with t pendent edges attaching to the same vertex u of K_r , possibly some additional isolated vertices.

Note that $\sqrt{d(u)d(v)} < \frac{d(u)+d(v)}{2} < \max\{d(u),d(v)\}$ if $d(u) \neq d(v)$, we have R'(G) < H(G) < R(G) for any graph except the graph in which each component is regular. So, Theorem 6 is stronger than Theorems 1-5. And also, the following corollary can be easily deduced from Theorem 6 and the relation (2).

Corollary 7. If G is a simple graph with at least one edge, then

$$\chi_l(G) \leq 2R'(G)$$

with equality if and only if G is a complete graph K_r with t pendent edges attaching to the same vertex u of K_r , possibly some additional isolated vertices.

2 The proof of Theorem 6

The proof of Theorem 6 is based on the following result. For completeness, we rewrite its proof.

Lemma 8. [9] Let G be a simple graph with the modified Randić index R'(G) and the minimum degree $\delta \geq 1$. If v_0 is a vertex of G with degree equal to δ , then

$$R'(G) - R'(G - v_0) \ge 0.$$

Proof. Let $N(v_0) = \{v_1, v_2, \dots, v_{\delta}\}$ and d_i the degree of vertex v_i . m_i is the number of vertices in $N(v_i) - \{v_0\}$ with degree less than d_i , where

 $0 \le m_i \le d_i - 1$. We have

$$R'(G) - R'(G - v_0) = \sum_{i=1}^{\delta} \frac{1}{d_i} + \sum_{i=1}^{\delta} \left(\frac{m_i}{d_i} - \frac{m_i}{d_{i-1}} \right)$$
$$= \sum_{i=1}^{\delta} \left(\frac{m_i+1}{d_i} - \frac{m_i}{d_{i-1}} \right) = \sum_{i=1}^{\delta} \frac{d_i-m_i-1}{d_i(d_i-1)} \ge 0.$$

Proof of Theorem 6. First, if G is a complete graph K_r with t pendent edges attaching to the same vertex u of K_r , possibly some additional isolated vertices, then col(G) = deg(G) + 1 = r and $R'(G) = \frac{r}{2}$ for $r \geq 2$, and col(G) = deg(G) + 1 = 2 and R'(G) = 1 for r = 1, t > 0, otherwise $G = K_1$. So, we have col(G) = 2R'(G).

Let n be the order of G. Since $deg(G) = max\{\delta(F) : F \text{ is a subgraph of } G\} \geq \delta(G)$, we consider two cases.

Case 1. $deg(G) = \delta(G)$.

In this case, $deg(G) = \delta(G)$ and $col(G) = \delta(G) + 1$ by inequality (1). Since $|E(G)| \ge \frac{\Delta(G) + (n-1)\delta(G)}{2}$,

$$R'(G) = \sum_{uv \in E(G)} \frac{1}{\max\{d(u), d(v)\}} \ge \sum_{uv \in E(G)} \frac{1}{\Delta(G)}$$
$$\ge \frac{\Delta(G) + (n-1)\delta(G)}{2} \times \frac{1}{\Delta(G)}$$
(4)

and thus

$$2R'(G) \ge \frac{\Delta(G) + (n-1)\delta(G)}{\Delta(G)} = \frac{n-1}{\Delta(G)}\delta(G) + 1 \ge \delta(G) + 1 = col(G)$$

with equality if and only if G is Δ -regular by (4) and $\Delta = n - 1$ by the last inequality of the above displayed formula. Therefore, G is the complete graph of order n.

Case 2. $deg(G) > \delta(G)$. We prove by induction on n in this case.

If u is an isolated vertex of G, then R'(G-u)=R'(G) and col(G-u)=col(G). By the the inductive assumption, $col(G-u) \leq 2R'(G-u)$ with equality if and only if G-u is a complete graph with some pendent edges attaching to the same vertex, possibly some additional isolated vertices. So, $col(G) \leq 2R'(G)$ with equality if and only if G is a complete graph with some pendent edges attaching to the same vertex, possibly some additional isolated vertices.

Now, we assume that G has no isolated vertices. Let $v \in V(G)$ with $d(v) = \delta(G) \geq 1$. Since $deg(G) > \delta(G)$, no subgraph G' attaining $\delta(G') = deg(G)$ can contain v, and

$$deg(G) = max \{ \delta(F) : F \text{ is a subgraph of } G \}$$

$$= max \{ \delta(F) : F \text{ is a subgraph of } G - v \}$$

$$= deg(G - v).$$

By the equation (1), we have col(G) = deg(G) + 1 = deg(G - v) + 1 = col(G - v). By Lemma 8, we have $R'(G - v) \leq R'(G)$. By the inductive assumption, $col(G - v) \leq 2R'(G - v)$. So,

$$col(G) = col(G - v) \le 2R'(G - v) \le 2R'(G). \tag{5}$$

If col(G - v) < 2R'(G - v), then we have col(G) < 2R'(G).

If col(G-v)=2R'(G-v), then, by the inductive assumption, G-v is a complete graph K_r with t pendent edges uu_1, uu_2, \cdots, uu_t attaching to the same vertex u of K_r , possibly some additional isolated vertices.

Subcase 1. If t=0, i.e., G-v is a complete graph K_r with n-r-1 isolated vertices, where $1 \le r \le n-1$, then G is obtained from G-v by connecting $\delta(G)$ edges from v to K_{n-1} or $G=K_{n-2}\cup K_2$, since G has no isolated vertices and v is a vertex with the minimum degree of G.

(i) If G is a graph obtained by connecting $\delta(G)$ edges from v to K_{n-1} , then

$$R'(G) = \frac{(n-1-x)(n-2-x)}{2} \times \frac{1}{n-2} + x(n-1-x) \times \frac{1}{n-1} + \frac{x(x-1)}{2} \times \frac{1}{n-1} + x \times \frac{1}{n-1} = \frac{(n-1-x)(n-2-x)}{2n-4} + \frac{2xn-x^2-x}{2n-2}$$

where $x = d(v) = \delta(G)$, $1 \le x \le n - 2$ since $deg(G) > \delta(G)$. And

$$R'(G) - R'(G - v) = R'(G) - R'(K_{n-1}) = R'(G) - \frac{n-1}{2}$$
$$= \frac{x(x-1)}{2(n-2)(n-1)}.$$

If $1 < x \le n - 2$, then R'(G) > R'(G - v) and col(G) < 2R'(G) from (5).

If x = 1, then G is obtained by attaching a pendent edge to the complete graph K_{n-1} , and it is easy to check that col(G) = n - 1 = 2R'(G).

(ii) If $G = K_{n-2} \cup K_2$, then $R'(G) = R'(K_{n-2}) + R'(K_2) > R'(K_{n-2}) = R'(G - v)$. So, col(G) < 2R'(G) by the equation (5).

Subcase 2. If $t \geq 1$, i.e., G - v is a complete graph K_r with t pendent edges uu_1, uu_2, \dots, uu_t attaching to the same vertex u of K_r , and n - r - t isolated vertices, then $r + t \geq 3$. Note that G has no isolated vertices and v is a vertex with the minimum degree of G, then $d(v) = \delta(G) = 1$ or 2 since $t \geq 1$, and G is one of the seven graphs are described in Figure 1.

If $G = G_1$, then G is a complete graph K_r with t + 1 pendent edges attaching to the same vertex u, and col(G) = 2R'(G) = r.

If $G = G_7$ and r = 2, then G is a complete graph K_3 with one pendent edge attaching to the vertex u, and col(G) = 2R'(G) = 3; If $G = G_7$ and

 $r \geq 3$, we have $R'(G_7) - R'(G_7 - v) = \frac{1}{2}$, and $col(G_7) < 2R'(G_7)$ by the equation (5).

For $2 \le i \le 6$, we have $R'(G_i) - R'(G_i - v) > 0$, and $col(G_i) < 2R'(G_i)$ by the equation (5).

The proof of the theorem is completed.

Figure 1. Graphs in the proof of Theorem 6.

References

- H. Deng, S. Balachandran, S. K. Ayyaswamy, A note on harmonic index and coloring number of a graph, accepted by Ars Combin.
- [2] H. Deng, S. Balachandran, S. K. Ayyaswamy, Y. B. Venkatakrishnan, On the harmonic index and the chromatic number of a graph, Discrete Appl. Math. 161(2013) 2740-2744.
- [3] Z. Dvořák, B. Lidický, R. Škrekovski, Randić index and the diameter of a graph, Eur. J. Comb. 32 (2011) 434-442.
- [4] P. Erdös, A. Rubin, H. Taylor, Choosability in graphs, Congr. Numer. 26 (1979) 125-157.

- [5] S. Fajtlowicz, On conjectures of Graffiti-II, Cong. Numer. 60 (1987) 187-197.
- [6] I. Gutman, B. Furtula (Eds.), Recent Results in the Theory of Randić Index, Univ. Kragujeva, Kragujevac, 2008.
- [7] P. Hansen, D. Vukicević, Variable neighborhood search for extremal graphs. 23. On the Randić index and the chromatic number, Discrete Math. 309 (2009) 4228-4234.
- [8] T. R. Jensen, B. Toft, Graph Coloring Problems, in: A Wiely-Interscience Publication, John Wiley and sons, Inc, New York, 1995.
- [9] X. Jiang, G. Huang, M. Kuang, H. Deng, On R' index of a graph, accepted by Ars Combinatoria.
- [10] L. B. Kier, L. H. Hall, Molecular Connectivity in Chemistry and Drug Research, Academic Press, New York, 1976.
- [11] L. B. Kier, L. H. Hall, Molecular Connectivity in Structure-Activity Analysis, Wiley, New York, 1986.
- [12] X. Li, I. Gutman, Mathematical Aspects of Randić-Type Molecular Structure Descriptors, Mathematical Chemistry Monographs No.1, Kragujevac, 2006.
- [13] L. Pogliani, From molecular connectivity indices to semiempirical connectivity terms: recent trends in graph theoretical descriptors, Chem. Rev. 100 (2000) 3827-3858.
- [14] M. Randić, On characterization of molecular branching. J. Am. Chem. Soc. 97 (1975) 6609-6615.

- [15] Z. Tuza, Graph colorings with local constraints-a survey, Discuss. Math. Graph Theory 17 (1997) 161-228.
- [16] V. G. Vizing, Coloring the vertices of a graph in prescribed colors, Diskret. Anal. 29 (1976) 3-10 (Russian).
- [17] B. Wu, J. Yan, X. Yang, Randić index and coloring number of a graph, Discrete Appl. Math. 178 (2014) 163-165.