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Abstract: In 1972, Chvatal and Erdés showed that the graph G with inde-
pendence number a(G) no more than its connectivity x(G) (i.e. £(G) 2> a(G))
is hamiltonian. In this paper, we consider a kind of Chvatal and Erdds type
condition on edge-connectivity (M(G)) and matching number (edge independence
number). We show that if A(G) > &'(G) — 1, then G is either supereuleri-
an or in a well-defined family of graphs. Moreover, we weaken the condition
k(G) 2 a(G) — 1 in [11] to A(G) 2 a(G) — 1 and obtain the similar characteriza-
tion on non-supereulerian graphs. We also characterize the graph which contains
a dominating closed trail under the assumption AM(G) > ¢/(G) — 2.

Keywords: Supereulerian graphs, Matching number, Chvétal-Erdés con-
dition, Edge-connectivity

1 Introduction

Motivated by the Chinese Postman Problem, Boesch et al. [2] proposed
the supereulerian graph problem: determine when a graph has a spanning
eulerian subgraph. They indicated that this might be a difficult problem.
Pulleyblank [15] showed that such a decision problem, even when restricted
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to planar graphs, is NP-complete. We refer the readers to [4, 9] for the
supereulerian graph problem.

We use [1] for terminology and notation not defined here, and consider
simple finite graphs only. In particular, we use a(G) and o'(G) to denote
the independence number and the matching number of a graph G, respec-
tively. We denote by x(G), A(G), §(G) the connectivity, edge-connectivity
and the minimum degree of G. It is known that xK(G) < A(G) < §(G)
for any G. Chviétal and Erdds obtained the following well-known sufficient
condition for a graph to be hamiltonian.

Theorem 1 ([10]). If k(G) = a(G), then G is hamiltonian.

Many extensions of this well-known condition have been reported, see [12]
for the details. Note that hamiltonian cycle is a closed spanning path. This
stimulates us to consider a kind of Chvétal and Erdés type condition on dis-
cussing spanning closed trails of graphs. In the next section, we shall char-
acterize the non-supereulerian graphs under the condition A(G) > o/(G)-1.

Recently, Han et al. [11] gave an extension of Chvatal-Erdés condition
to consider supereulerian graphs as follows.
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Figure.1 The graphs K 3, K3 3(1), K2,3(2).

K23
Figure.2 The graph Kj 3.

Theorem 2 ([11]). Let G be a 2-connected simple graph with k(G) >
aG) — 1. If G is not supereulerian, then either

184



(a) G is in {the petersen graph, K33, K3 3(1), K2,3(2), K3 3}, or

(b) G is one of the two 2-connected graphs obtained from Kz 3 and
K3 3(1) by replacing a vertex whose neighbors have degree three in K33
and Kz 3(1) with a complete graph of order at least three.

Note that A(G) = &(G). In the third section, we shall weaken the con-
dition s(G) > a(G) — 1 to A(G) 2 a(G) — 1 and obtain a similar charac-
terization for non-supereulerian graphs. To complete the characterization,
Catlin’s reduction method is needed.

For a graph G, let O(G) denote the set of odd degree vertices of
G. A graph G is eulerian if G is connected with O(G) = 0, and G is
supereulerian if G has a spanning eulerian subgraph. Given a subset R of
V(G), a subgraph I' of G is called an R-subgraph if both O(T') = R and
G — E(T') is connected. A graph G is collapsible if for any even subset R of
V(G), G has an R-subgraph. Note that when R = {), a spanning connected
subgraph H with O(H) = 0 is a spanning eulerian subgraph of G. Thus
every collapsible graph is supereulerian. Catlin [3] showed that any graph
G has a unique subgraph H such that every component of H is a maximally
connected collapsible subgraph of G and every non-trivial connected col-
lapsible subgraph of G is contained in a component of H. For a subgraph
H of G, the graph G/H is obtained from G by identifying the two ends
of each edge in H and then deleting the resulting loops. The contraction
G/H is called the reduction of G if H is the maximal collapsible subgraph
of G, i.e. there is no non-trivial collapsible subgraph in G/H. We use G’
to denote the reduction of G. A vertex in G’ is trivial if the vertex is
obtained by contracting a trivial collapsible subgraph of G (K1). A graph
G is reduced if it is the reduction of itself. The following summarizes some
of the previous results concerning collapsible graphs.

In particular, a trail in G is a dominating trail if each edge of G is
incident with at least one internal vertex of the trail. Clearly, a spanning
trail a dominating trail.

2 The graphs with A\(G) > d/(G) -1

In this section, we shall characterize the non-supereulerian graphs under
the condition A(G) > o/(G) — 1. The following result is due to Jaeger [13].
Theorem 3 ([13]). A 4-edge connected graph is supereulerian.

By Theorem 3, we may assume the graphs with A(G) < 3 from now on.
This implies &/(G) < 4. Chen [7] showed the following.

Theorem 4 ([7])). If G is a 3-edge connected simple graph with maiching
number at most 5, then G is supereulerian if and only if G is not contractible
to the Petersen graph.
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If a graph can be contracted to the Petersen graph, then its matching
number is at least 5. Thus, a 3-edge connected graph with o/(G) = 4 is
supereulerian by Theorem 4. Since a graph containing cut-edges is not
supereulerian, we may assume A(G) = 2 and o/(G) < 3 from now on.

Let m,n be two positive integers, and Hy = K3 ;n, H2 & Kz be two
complete bipartite graphs. Let u;,v; be the vertices of degree m in H,,
and ug, vz be the vertices of degree n in Hy. Let S, ,, denote the graph
obtained from H; and H; by identifying v; and vs, and adding a new edge
ujus. Note that Sy is a 5-cycle. Define K;3(1,1,1) to be the graph
obtained from a 6-cycle C' = ujuguzuqusugu; by adding one vertex u and
three edges uu;,uus and uus.

We first introduce several special graphs as follows.
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Figure 3. The case n = 1.
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Figure 4. The case m > n > 2.

Let ST, = S1,m+T1%3, STt = S1 +2123, S1, = S, m+z1x3, Spm=
8!, m+z124. Similarly, we denote by Cs(k s,t,7), C’e(k s,t,7),C3(k; s, t )
the graphs obtained from Cg(k; s, t,r) by adding edges {7123}, {:1:1:1:3,:1:31:5}
and {73, x3%5, 521 }, respectively. We define C = {C}(k; s,t,7), C(k; s,t,7),
C3(k;s,t,7), C3(k; 5,t,7)} and S = {S1,m, S} s St ms St mrSiim {’,',,,,Sn,m,
S:l. m!Sn ms K i’K2,t}

Lemma 5. Let G be a graph with §(G) > 2 and o/(G) < 3. Then G is in
F={G:|V(G) <T}uSuUC.

Proof. Suppose C is the longest cycle of G with length I. As o/(G) < 3,
one can see that [ < 7and |V(G)|=7ifl=7. ThusGe Fifl="7
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If | = 3, then G € {K3,H,H',H"}, where H denotes the hourglass,
H',H" denote the two different graphs obtained from a hourglass and a
triangle by identifying a vertex of the hourglass and a vertex of the triangle
respectively. Each of the cases implies |V(G)| < 7 and then G € F. Thus
we may assume 4 <[ < 6.

Casel. | =6

Let C = z,x223%4Z5zex; be a longest cycle of G. Clearly, C is a
dominating cycle of G. Suppose V(G — C) # 0. Since o/(G) < 3 and
| = 6, at most one end of an edge in E(C) has neighbors in V(G - C).
Thus at most three pairwise nonadjacent vertices of V(C) have neighbors
in V(G — C) and assume that they are z;,z3,z5. Suppose there are k
vertices in V(G — C). It is easy to see that G € C.

Case 2. =5

Let C = z1z2z3z4%5x; be a longest cycle of G. Note that { = 5 and
8(G) > 2. Then if C is not a dominating cycle of G, then G is the graph
obtained from a cycle Cs (a cycle of length 5) and a triangle by identifying
a vertex of the Cs and a vertex of the triangle and adding some edges on
the Cs. In this case, we have |V(G)| < 7. Suppose C is a dominating
cycle of G. It is easy to see that G contains an S, ,, as a subgraph for
some m,n. If m > n > 2, then G € {Snm, S} ;> Snm}- 1f n =1, then
G € {S1,m)S1,m» S1'm } see Figure 4.

Case 3. [ =4

Let C = z,z2z3747; be a longest cycle of G. Similarly, if C is not a
dominating cycle, then |V(G)| < 7. If C is a dominating cycle, we have
G = Ky, or G = K3 , for some integer ¢, where K3, is the graph obtained
form K5 ; by adding an edge between the two vertices of degree ¢. O

Note that S} ., S{"m: S{m, and Sy, , are supereulerian. If G = Cg(k; s,¢,7),
k= 1,s,t,7 > 1 and the parities of s,t,r are the same, then G is not su-
pereulerian. In fact, G has 4 vertices of odd degree and only one edge can
be removed. So G is not supereulerian. If & > 2, the k — 1 vertices of
degree 3 can be used to adjust the parities of s,¢,r such that one of them
is different from others, then the resulting is supereulerian clearly. So we
have the following theorem.

Theorem 6. Let G be a graph with AM(G) =2 > o'(G) — 1. Then G is not
supereulerian if and only if one of the following holds:

(1) If G = Spjm,m > 1 2 1, then one of n,m is an even number;

(2) If G € {S1,1n: ST}, then m is an even number;

(B) IfG= S ,,,m>n2>2, then x4 is a vertez of odd degree.

(4) If G = Ce(k;s,t,7), then k = 0 or 1. Moreover, if k = 1, then
the parities of s,t,r are the same; If k = 0, then the parities of s,t,r are
different.
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Note that if G contains vertices of degree 1, then G is not supereulerian.
If we assume o/(G) < 2, then it is easy to get the following by the proof of
Lemma 5.

Corollary 7. Let G be graph with A(G) =1 and o/(G) < 2. If G contains
no spanning eulerian trail, then G is either obtained from Kz by adding
several pendant edges on the vertices of degree t, or obtained from K3, by
adding at least two pendant edges on a vertex of degree t.

3 Supereulerian graphs in terms of A\(G) >
a(G) -1

In this section, we shall weaken the condition £(G) > a(G) — 1 to A(G) >
a(G) — 1 and obtain a characterization similar to that of Theorem 2 for
non-supereulerian graphs. We assume that G’ is the reduction of G. By
the definition, one can see a(G) > a(G’), and A(G’) > A(G) if G’ is not
trivial.

Recall that £(G) < MG). By Theorem 3, we may assume A(G) < 3,
and then a(G) ~1 < 3. By the characterization of Theorem 2, if \(G) = 3,
then either G’ is K; or G is the Petersen graph. The non-supereulerian
graphs are also characterized by Theorem 2 for the case A(G) = £(G) = 2
and a(G) < 3. Moreover, if A(G) = 1 and a(G) < 2, then G is not
supereulerian. The rest is the case for 2 = A(G) > x(G) =1 and o(G) < 3.

Define F1 = {K32;3,K23(1),K23(2)}. Let K35 and K33(1) be the
graphs obtained from K33 and K3 3(1) by replacing a vertex whose neigh-
bors are both vertices of degree 3 in K5 3 and K 3(1) with a complete graph
of order at least three, respectively. It is easy to see that the reduction of
K3 3, K33 and K3 5(1) are the graph K3 3.

Lemma 8. Assume A\(G) =2 > &(G). If G is not supereulerian, then G is
either the graph obtained from K, 3 by joining a complete graph on a vertez
of degree 2, or the graph obtained from K 3(1) by joining a complete graph
on @ verter of degree 2 whose neighbors in G are both vertices of degree 3.

Proof. Assume G is not supereulerian. Let G’ be the reduction of G. Then
G' isnot K7 and A(G') = 2. If kK(G') = 2, then by Theorem 2 that G’ € F;.
Since #(G) = 1, there is one vertex v; of G’ that is not trivial and it is a
cut vertex of G. Assume that v, is obtained by contracting the collapsible
subgraph H; of G. Note that |V(H;)| > 3. If dg/(v1) = 3, then one can
find an independent set of size 4. Thus, v; is a vertex of degree 2. If v,
has an neighbor in G’ of degree 2, then it is easy to find an independent
set of size 4. So the neighbors of v; in G’ are both vertices of degree 3.
Since a(G) < 3, Hy must be a complete subgraph of G. It is not difficult
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to see that the vertices of degree 3 in G’ are trivial and there is exactly one
vertex of degree 2 that is not trivial. Thus, G is either the graph obtained
from K3 3 by joining a complete graph on a vertex of degree 2, or the graph
obtained from K3 3(1) by joining a complete graph on a vertex of degree 2

whose neighbors in G’ are both vertices of degree 3.
Now, we may assume k(G’) = 1. Let u be a cut vertex of G’. Note that

A(G') > 2 and ¢ is triangle free. Then u lies on at least two 4-cycles which
have exactly one common vertex u. These 4-cycles imply an independent
set of size at least 4. This is impossible. We complete the proof. O

Combining Theorem 2 and Lemma 8, we give a similar statement of
Theorem 2.

Theorem 9. Let G be a 2-edge connected simple graph with A(G) > a(G)—
1. If G is not supereulerian, then exactly one of the following holds.

(a) G is in {the Petersen graph, K33, K33(1), K2,3(2), K3 3}, or

(b) G is one of the two 2-connected graphs obtained from K3 and
K33(1) by replacing a vertez whose neighbors are both vertices of degree 3
in Ky 3 and K3 3(1) with a complete graph of order at least three.

(c) G is either the graph obtained from Ko 3 by joining a complete graph
on a vertex of degree 2, or the graph obtained from Kjy3(1) by joining
a complete graph on a vertez of degree 2 whose neighbors in G are both
vertices of degree 3.

In the next section we consider the dominating closed trail in graphs
with A(G) > ¢/(G) — 2.

4 The dominating closed trail in graphs with
AMG) =2 d(G) -2

In this section we consider the dominating closed trail in the graphs sat-
isfying M(G) > o/(G) — 2. We assume the graph has minimum degree at
least 2.

Theorem 10 (Chen (8]). Let G be a reduced greph with §(G) > 3. Then
o/(G) 2 min{231, 244},

The theorem above implies that if a reduced graph has o/ (G) < 5, then
n <11,

Theorem 11 (Chen [6]). A 3-edge-connected graph with at most 13 vertices
either is supereulerian, or its reduction is the Petersen graph.
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Theorem 12 (Catlin and Lai [5]). Let G’ be the reduction of a graph G.
If every edge of G' lies on a cycle of length at most 7, then G contains a
dominating closed trail.

Thus, if A(G) = 3, then either G is supereulerian or its reduction is the
Petersen graph. It is easy to see that if G satisfying A(G) =3 2 o/(G) — 2
and its reduction is the Petersen graph, then G is the Petersen graph. Thus,
we have the following.

Corollary 13. If a 3-edge connected graph G satisfying A(G) > o/(G) -2,
then it is either a supereulerian graph, or the Petersen graph. Moreover,
G contains a dominating closed trail.

Next, we assume A(G) < 2 and &'(G) £ AMG) — 2. By Corollary 6,
one can see that if a/(G) < 3, then G has a dominating closed trail. If
AG) =1, then o/(G) < 3.

Lemma 14. Let G’ be the reduction of G with §(G) = 2 and &/(G) <
AG) +2. If M(G) =1, then G contains no dominating closed trail, and
G’ either is Ky or the graph C} obtained by adding a pendant edge on a

4-cycle.

Proof. Note that A(G) = 1 and 6(G) > 2. Then G has no dominating
closed trail.

Let e be a cut edge of G, and let G}, G5 be the two components of
G’ —e. If G| and G} are both trivial components, then G’ = K,. Note
G’ is triangle free. If neither G} nor Gj is a trivial component, then G’
contains a matching of size at least 4. This is impossible. Assume G is
trivial and obtained by contracting the subgraph G; (it is of at least 3
vertices) of G. Then, G} is a triangle and G} is a 4-cycle. We complete the
proof. O

Lemma 15. Let G be a graph with 6(G) > 3 and \(G) = 2. If|V(G)| <8,
then G is collapsible.

Proof. It is easy to see that G is collapsible if |V (G)| < 5. Assume [V (G)| >
6. Let {e;1,e2} be an edge cut of G and G,, G2 be the two components of
G—{e1,e2}. If [V(G)| < 7, then one of Gy, G is of order 3. And if G) (G3)
is of order 3, then G, is a triangle. Thus |V(G/G1)| £ 5if |V(G)| £ 7, and
then G is collapsible. So we may assume |V(G)| > 8 and G; be of order 4.
Since §(G) > 3, G; is collapsible. So G is collapsible. g

Lemma 16. Let G’ be the reduction of graph G with §(G) = 2 and o/(G) <
MG) + 2. If XM(G) =2, then G contains a dominating closed trail.
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Proof. It can be seen that each of the graphs in S and C (in Lemma 5)
contains a dominating closed trail. Moreover, it is not difficult to see that
if [V(G)| £ 7, then G contains a dominating closed trail. So we may assume
o/(G) = 4 and A\(G) = 2. If §(G) > 3, then by Theorem 10 we have n < 8.
By the lemma above, G' contains a dominating closed trail. So we may
assume §(G) = 2.

Note that if §(G’) > 3 and o’(G’) < 4, then by Theorem 10 we have
n < 8. Thus, G’ is collapsible and then G contains a dominating closed
trail. We may assume §(G’) = 2 from now on. Let the length of a longest
cycle of G’ is l.

By Theorem 12, we may assume [ > 8. Note that o/(G') < 4. Then
G — V(C) contains no edges and no non-trivial vertices. Thus C implies a
dominating closed trail of G. O

Combining the lemmas above, we state the main result of this section
as follows.

Theorem 17. If a graph G satisfies 6(G) > 2 and o/(G) < A(G) +2, then
either G contains a dominating closed trail, or its reduction is in {K,,Cy}.

In the end, we pose a problem on the 3-edge connected graph.

Problem 18. What is the minimum integer t such that a 3-edge connect-
ed graph G satisfying A(G) > o/(G) — t is neither supereulerian nor the
Petersen graph ? Furthermore, what is the minimum integer t such that a
3-edge connected graph G satisfying A(G) > o/'(G) — t contains no domi-
nating closed trail ?
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