Supereulerian graphs and Chvátal-Erdös type conditions*

Weihua Yang^{a†} Wei-Hua He^b Hao Li^b Xingchao Deng^c
^aDepartment of Mathematics, Taiyuan University of Technology,
Taiyuan 030024, China

^bLaboratoire de Recherche en Informatique, UMR 8623, C.N.R.S.,
Université de Paris-sud,91405-Orsay cedex, France

^cCollege of Mathematical Science, Tianjin Normal University,
Tianjin-300387, P. R. China

Abstract: In 1972, Chvátal and Erdös showed that the graph G with independence number $\alpha(G)$ no more than its connectivity $\kappa(G)$ (i.e. $\kappa(G) \geq \alpha(G)$) is hamiltonian. In this paper, we consider a kind of Chvátal and Erdös type condition on edge-connectivity $(\lambda(G))$ and matching number (edge independence number). We show that if $\lambda(G) \geq \alpha'(G) - 1$, then G is either superculerian or in a well-defined family of graphs. Moreover, we weaken the condition $\kappa(G) \geq \alpha(G) - 1$ in [11] to $\lambda(G) \geq \alpha(G) - 1$ and obtain the similar characterization on non-superculerian graphs. We also characterize the graph which contains a dominating closed trail under the assumption $\lambda(G) \geq \alpha'(G) - 2$.

Keywords: Supereulerian graphs, Matching number, Chvátal-Erdös condition, Edge-connectivity

1 Introduction

Motivated by the Chinese Postman Problem, Boesch et al. [2] proposed the supereulerian graph problem: determine when a graph has a spanning eulerian subgraph. They indicated that this might be a difficult problem. Pulleyblank [15] showed that such a decision problem, even when restricted

^{*}The research is supported by NSFC (No. 11301371), SRF for ROCS, SEM and Natural Sciences Foundation of Shanxi Province (No. 2014021010-2), Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, Tianjin Normal University Project (No.52XB1206)

[†]Corresponding author.E-mail: ywh222@163.com; yangweihua@tyut.edu.cn.

to planar graphs, is NP-complete. We refer the readers to [4, 9] for the supereulerian graph problem.

We use [1] for terminology and notation not defined here, and consider simple finite graphs only. In particular, we use $\alpha(G)$ and $\alpha'(G)$ to denote the *independence number* and the *matching number* of a graph G, respectively. We denote by $\kappa(G), \lambda(G), \delta(G)$ the connectivity, edge-connectivity and the minimum degree of G. It is known that $\kappa(G) \leq \lambda(G) \leq \delta(G)$ for any G. Chvátal and Erdös obtained the following well-known sufficient condition for a graph to be hamiltonian.

Theorem 1 ([10]). If $\kappa(G) \geq \alpha(G)$, then G is hamiltonian.

Many extensions of this well-known condition have been reported, see [12] for the details. Note that hamiltonian cycle is a closed spanning path. This stimulates us to consider a kind of Chvátal and Erdös type condition on discussing spanning closed trails of graphs. In the next section, we shall characterize the non-superculerian graphs under the condition $\lambda(G) > \alpha'(G) - 1$.

Recently, Han et al. [11] gave an extension of Chvátal-Erdös condition to consider supereulerian graphs as follows.

Figure.1 The graphs $K_{2,3}, K_{2,3}(1), K_{2,3}(2)$.

Figure.2 The graph $K'_{2,3}$.

Theorem 2 ([11]). Let G be a 2-connected simple graph with $\kappa(G) \ge \alpha(G) - 1$. If G is not superculerian, then either

- (a) G is in $\{the\ petersen\ graph, K_{2,3}, K_{2,3}(1), K_{2,3}(2), K'_{2,3}\},\ or$
- (b) G is one of the two 2-connected graphs obtained from $K_{2,3}$ and $K_{2,3}(1)$ by replacing a vertex whose neighbors have degree three in $K_{2,3}$ and $K_{2,3}(1)$ with a complete graph of order at least three.

Note that $\lambda(G) \geq \kappa(G)$. In the third section, we shall weaken the condition $\kappa(G) \geq \alpha(G) - 1$ to $\lambda(G) \geq \alpha(G) - 1$ and obtain a similar characterization for non-superculerian graphs. To complete the characterization, Catlin's reduction method is needed.

For a graph G, let O(G) denote the set of odd degree vertices of G. A graph G is eulerian if G is connected with $O(G) = \emptyset$, and G is superculerian if G has a spanning culcrian subgraph. Given a subset R of V(G), a subgraph Γ of G is called an R-subgraph if both $O(\Gamma) = R$ and $G - E(\Gamma)$ is connected. A graph G is collapsible if for any even subset R of V(G), G has an R-subgraph. Note that when $R = \emptyset$, a spanning connected subgraph H with $O(H) = \emptyset$ is a spanning eulerian subgraph of G. Thus every collapsible graph is supereulerian. Catlin [3] showed that any graph G has a unique subgraph H such that every component of H is a maximally connected collapsible subgraph of G and every non-trivial connected collapsible subgraph of G is contained in a component of H. For a subgraph H of G, the graph G/H is obtained from G by identifying the two ends of each edge in H and then deleting the resulting loops. The contraction G/H is called the reduction of G if H is the maximal collapsible subgraph of G, i.e. there is no non-trivial collapsible subgraph in G/H. We use G'to denote the reduction of G. A vertex in G' is trivial if the vertex is obtained by contracting a trivial collapsible subgraph of $G(K_1)$. A graph G is reduced if it is the reduction of itself. The following summarizes some of the previous results concerning collapsible graphs.

In particular, a trail in G is a dominating trail if each edge of G is incident with at least one internal vertex of the trail. Clearly, a spanning trail a dominating trail.

2 The graphs with $\lambda(G) \geq \alpha'(G) - 1$

In this section, we shall characterize the non-superculerian graphs under the condition $\lambda(G) \geq \alpha'(G) - 1$. The following result is due to Jaeger [13].

Theorem 3 ([13]). A 4-edge connected graph is supereulerian.

By Theorem 3, we may assume the graphs with $\lambda(G) \leq 3$ from now on. This implies $\alpha'(G) \leq 4$. Chen [7] showed the following.

Theorem 4 ([7]). If G is a 3-edge connected simple graph with matching number at most 5, then G is superculerian if and only if G is not contractible to the Petersen graph.

If a graph can be contracted to the Petersen graph, then its matching number is at least 5. Thus, a 3-edge connected graph with $\alpha'(G) = 4$ is supereulerian by Theorem 4. Since a graph containing cut-edges is not supereulerian, we may assume $\lambda(G) = 2$ and $\alpha'(G) \leq 3$ from now on.

Let m, n be two positive integers, and $H_1 \cong K_{2,m}, H_2 \cong K_{2,n}$ be two complete bipartite graphs. Let u_1, v_1 be the vertices of degree m in H_1 , and u_2, v_2 be the vertices of degree n in H_2 . Let $S_{n,m}$ denote the graph obtained from H_1 and H_2 by identifying v_1 and v_2 , and adding a new edge u_1u_2 . Note that $S_{1,1}$ is a 5-cycle. Define $K_{1,3}(1,1,1)$ to be the graph obtained from a 6-cycle $C = u_1u_2u_3u_4u_5u_6u_1$ by adding one vertex u and three edges uu_1, uu_3 and uu_5 .

We first introduce several special graphs as follows.

Figure 4. The case $m \ge n \ge 2$.

Let $S_{1,m}^* = S_{1,m} + x_1 x_3, S_{1,m}'' = S_{1,m}' + x_1 x_3, S_{1,m}'' = S_{1,m}' + x_1 x_3, S_{n,m}'' = S_{n,m}' + x_1 x_4$. Similarly, we denote by $C_6^1(k; s, t, r), C_6^2(k; s, t, r), C_6^3(k; s, t, r)$ the graphs obtained from $C_6(k; s, t, r)$ by adding edges $\{x_1 x_3\}, \{x_1 x_3, x_3 x_5\}$ and $\{x_1 x_3, x_3 x_5, x_5 x_1\}$, respectively. We define $C = \{C_6^1(k; s, t, r), C_6^1(k; s, t, r), C_6^2(k; s, t, r), C_6^3(k; s, t, r)\}$ and $S = \{S_{1,m}, S_{1,m}', S_{1,m}'', S_{1,m$

Lemma 5. Let G be a graph with $\delta(G) \geq 2$ and $\alpha'(G) \leq 3$. Then G is in $F = \{G : |V(G)| \leq 7\} \cup S \cup C$.

Proof. Suppose C is the longest cycle of G with length l. As $\alpha'(G) \leq 3$, one can see that $l \leq 7$ and |V(G)| = 7 if l = 7. Thus $G \in F$ if l = 7.

If l=3, then $G \in \{K_3, H, H', H''\}$, where H denotes the hourglass, H', H'' denote the two different graphs obtained from a hourglass and a triangle by identifying a vertex of the hourglass and a vertex of the triangle respectively. Each of the cases implies $|V(G)| \le 7$ and then $G \in F$. Thus we may assume 4 < l < 6.

Case 1. l = 6

Let $C = x_1x_2x_3x_4x_5x_6x_1$ be a longest cycle of G. Clearly, C is a dominating cycle of G. Suppose $V(G-C) \neq \emptyset$. Since $\alpha'(G) \leq 3$ and l=6, at most one end of an edge in E(C) has neighbors in V(G-C). Thus at most three pairwise nonadjacent vertices of V(C) have neighbors in V(G-C) and assume that they are x_1, x_3, x_5 . Suppose there are k vertices in V(G-C). It is easy to see that $G \in C$.

Case 2. l = 5

Let $C=x_1x_2x_3x_4x_5x_1$ be a longest cycle of G. Note that l=5 and $\delta(G)\geq 2$. Then if C is not a dominating cycle of G, then G is the graph obtained from a cycle C_5 (a cycle of length 5) and a triangle by identifying a vertex of the C_5 and a vertex of the triangle and adding some edges on the C_5 . In this case, we have $|V(G)|\leq 7$. Suppose C is a dominating cycle of G. It is easy to see that G contains an $S_{n,m}$ as a subgraph for some m,n. If $m\geq n\geq 2$, then $G\in\{S_{n,m},S'_{n,m},S''_{n,m}\}$. If n=1, then $G\in\{S_{1,m},S'_{1,m},S''_{1,m}\}$, see Figure 4.

Let $C = x_1x_2x_3x_4x_1$ be a longest cycle of G. Similarly, if C is not a dominating cycle, then $|V(G)| \leq 7$. If C is a dominating cycle, we have $G \cong K_{2,t}$ or $G \cong K_{2,t}^*$ for some integer t, where $K_{2,t}^*$ is the graph obtained form $K_{2,t}$ by adding an edge between the two vertices of degree t.

Note that $S_{1,m}^*, S_{1,m}'^*, S_{1,m}''^*$, and $S_{n,m}''$ are superculerian. If $G \cong C_6(k; s, t, r)$, $k=1,s,t,r\geq 1$ and the parities of s,t,r are the same, then G is not superculerian. In fact, G has 4 vertices of odd degree and only one edge can be removed. So G is not superculerian. If $k\geq 2$, the k-1 vertices of degree 3 can be used to adjust the parities of s,t,r such that one of them is different from others, then the resulting is superculerian clearly. So we have the following theorem.

Theorem 6. Let G be a graph with $\lambda(G) = 2 \ge \alpha'(G) - 1$. Then G is not superculerian if and only if one of the following holds:

- (1) If $G \cong S_{n,m}, m \geq n \geq 1$, then one of n, m is an even number;
- (2) If $G \in \{S'_{1,m}, S''_{1,m}\}$, then m is an even number;
- (3) If $G \cong S'_{n,m}$, $m \ge n \ge 2$, then x_4 is a vertex of odd degree.
- (4) If $G \cong C_6(k; s, t, r)$, then k = 0 or 1. Moreover, if k = 1, then the parities of s, t, r are the same; If k = 0, then the parities of s, t, r are different.

Note that if G contains vertices of degree 1, then G is not superculerian. If we assume $\alpha'(G) \leq 2$, then it is easy to get the following by the proof of Lemma 5.

Corollary 7. Let G be graph with $\lambda(G) = 1$ and $\alpha'(G) \leq 2$. If G contains no spanning eulerian trail, then G is either obtained from $K_{2,t}$ by adding several pendant edges on the vertices of degree t, or obtained from $K_{2,t}^*$ by adding at least two pendant edges on a vertex of degree t.

3 Superculerian graphs in terms of $\lambda(G) \ge \alpha(G) - 1$

In this section, we shall weaken the condition $\kappa(G) \geq \alpha(G) - 1$ to $\lambda(G) \geq \alpha(G) - 1$ and obtain a characterization similar to that of Theorem 2 for non-superculerian graphs. We assume that G' is the reduction of G. By the definition, one can see $\alpha(G) \geq \alpha(G')$, and $\lambda(G') \geq \lambda(G)$ if G' is not trivial.

Recall that $\kappa(G) \leq \lambda(G)$. By Theorem 3, we may assume $\lambda(G) \leq 3$, and then $\alpha(G) - 1 \leq 3$. By the characterization of Theorem 2, if $\lambda(G) = 3$, then either G' is K_1 or G is the Petersen graph. The non-superculerian graphs are also characterized by Theorem 2 for the case $\lambda(G) = \kappa(G) = 2$ and $\alpha(G) \leq 3$. Moreover, if $\lambda(G) = 1$ and $\alpha(G) \leq 2$, then G is not superculerian. The rest is the case for $2 = \lambda(G) > \kappa(G) = 1$ and $\alpha(G) \leq 3$.

Define $F_1 = \{K_{2,3}, K_{2,3}(1), K_{2,3}(2)\}$. Let $K_{2,3}^*$ and $K_{2,3}^*(1)$ be the graphs obtained from $K_{2,3}$ and $K_{2,3}(1)$ by replacing a vertex whose neighbors are both vertices of degree 3 in $K_{2,3}$ and $K_{2,3}(1)$ with a complete graph of order at least three, respectively. It is easy to see that the reduction of $K_{2,3}'$, $K_{2,3}^*$ and $K_{2,3}^*(1)$ are the graph $K_{2,3}$.

Lemma 8. Assume $\lambda(G) = 2 > \kappa(G)$. If G is not superculerian, then G is either the graph obtained from $K_{2,3}$ by joining a complete graph on a vertex of degree 2, or the graph obtained from $K_{2,3}(1)$ by joining a complete graph on a vertex of degree 2 whose neighbors in G are both vertices of degree 3.

Proof. Assume G is not superculerian. Let G' be the reduction of G. Then G' is not K_1 and $\lambda(G')=2$. If $\kappa(G')=2$, then by Theorem 2 that $G'\in F_1$. Since $\kappa(G)=1$, there is one vertex v_1 of G' that is not trivial and it is a cut vertex of G. Assume that v_1 is obtained by contracting the collapsible subgraph H_1 of G. Note that $|V(H_1)| \geq 3$. If $d_{G'}(v_1)=3$, then one can find an independent set of size 4. Thus, v_1 is a vertex of degree 2. If v_1 has an neighbor in G' of degree 2, then it is easy to find an independent set of size 4. So the neighbors of v_1 in G' are both vertices of degree 3. Since $\alpha(G) \leq 3$, H_1 must be a complete subgraph of G. It is not difficult

to see that the vertices of degree 3 in G' are trivial and there is exactly one vertex of degree 2 that is not trivial. Thus, G is either the graph obtained from $K_{2,3}$ by joining a complete graph on a vertex of degree 2, or the graph obtained from $K_{2,3}(1)$ by joining a complete graph on a vertex of degree 2 whose neighbors in G' are both vertices of degree 3.

Now, we may assume $\kappa(G') = 1$. Let u be a cut vertex of G'. Note that $\lambda(G') \geq 2$ and G' is triangle free. Then u lies on at least two 4-cycles which have exactly one common vertex u. These 4-cycles imply an independent set of size at least 4. This is impossible. We complete the proof. \square

Combining Theorem 2 and Lemma 8, we give a similar statement of Theorem 2.

Theorem 9. Let G be a 2-edge connected simple graph with $\lambda(G) \geq \alpha(G) - 1$. If G is not superculerian, then exactly one of the following holds.

- (a) G is in {the Petersen graph, $K_{2,3}, K_{2,3}(1), K_{2,3}(2), K'_{2,3}$ }, or
- (b) G is one of the two 2-connected graphs obtained from $K_{2,3}$ and $K_{2,3}(1)$ by replacing a vertex whose neighbors are both vertices of degree 3 in $K_{2,3}$ and $K_{2,3}(1)$ with a complete graph of order at least three.
- (c) G is either the graph obtained from $K_{2,3}$ by joining a complete graph on a vertex of degree 2, or the graph obtained from $K_{2,3}(1)$ by joining a complete graph on a vertex of degree 2 whose neighbors in G are both vertices of degree 3.

In the next section we consider the dominating closed trail in graphs with $\lambda(G) \ge \alpha'(G) - 2$.

4 The dominating closed trail in graphs with $\lambda(G) \ge \alpha'(G) - 2$

In this section we consider the dominating closed trail in the graphs satisfying $\lambda(G) \geq \alpha'(G) - 2$. We assume the graph has minimum degree at least 2.

Theorem 10 (Chen [8]). Let G be a reduced graph with $\delta(G) \geq 3$. Then $\alpha'(G) \geq \min\{\frac{n-1}{2}, \frac{n+4}{3}\}$.

The theorem above implies that if a reduced graph has $\alpha'(G) \leq 5$, then $n \leq 11$.

Theorem 11 (Chen [6]). A 3-edge-connected graph with at most 13 vertices either is supereulerian, or its reduction is the Petersen graph.

Theorem 12 (Catlin and Lai [5]). Let G' be the reduction of a graph G. If every edge of G' lies on a cycle of length at most 7, then G contains a dominating closed trail.

Thus, if $\lambda(G) \geq 3$, then either G is superculerian or its reduction is the Petersen graph. It is easy to see that if G satisfying $\lambda(G) = 3 \geq \alpha'(G) - 2$ and its reduction is the Petersen graph, then G is the Petersen graph. Thus, we have the following.

Corollary 13. If a 3-edge connected graph G satisfying $\lambda(G) \geq \alpha'(G) - 2$, then it is either a superculerian graph, or the Petersen graph. Moreover, G contains a dominating closed trail.

Next, we assume $\lambda(G) \leq 2$ and $\alpha'(G) \leq \lambda(G) - 2$. By Corollary 6, one can see that if $\alpha'(G) \leq 3$, then G has a dominating closed trail. If $\lambda(G) = 1$, then $\alpha'(G) \leq 3$.

Lemma 14. Let G' be the reduction of G with $\delta(G) \geq 2$ and $\alpha'(G) \leq \lambda(G) + 2$. If $\lambda(G) = 1$, then G contains no dominating closed trail, and G' either is K_2 or the graph C'_4 obtained by adding a pendant edge on a 4-cycle.

Proof. Note that $\lambda(G) = 1$ and $\delta(G) \geq 2$. Then G has no dominating closed trail.

Let e be a cut edge of G', and let G'_1, G'_2 be the two components of G' - e. If G'_1 and G'_2 are both trivial components, then $G' \cong K_2$. Note G' is triangle free. If neither G'_1 nor G'_2 is a trivial component, then G' contains a matching of size at least 4. This is impossible. Assume G'_1 is trivial and obtained by contracting the subgraph G_1 (it is of at least 3 vertices) of G. Then, G_1 is a triangle and G'_2 is a 4-cycle. We complete the proof.

Lemma 15. Let G be a graph with $\delta(G) \geq 3$ and $\lambda(G) = 2$. If $|V(G)| \leq 8$, then G is collapsible.

Proof. It is easy to see that G is collapsible if $|V(G)| \leq 5$. Assume $|V(G)| \geq 6$. Let $\{e_1, e_2\}$ be an edge cut of G and G_1, G_2 be the two components of $G - \{e_1, e_2\}$. If $|V(G)| \leq 7$, then one of G_1, G_2 is of order 3. And if G_1 (G_2) is of order 3, then G_1 is a triangle. Thus $|V(G/G_1)| \leq 5$ if $|V(G)| \leq 7$, and then G is collapsible. So we may assume $|V(G)| \geq 8$ and G_i be of order 4. Since $\delta(G) \geq 3$, G_i is collapsible. So G is collapsible. \Box

Lemma 16. Let G' be the reduction of graph G with $\delta(G) \geq 2$ and $\alpha'(G) \leq \lambda(G) + 2$. If $\lambda(G) = 2$, then G contains a dominating closed trail.

Proof. It can be seen that each of the graphs in S and C (in Lemma 5) contains a dominating closed trail. Moreover, it is not difficult to see that if $|V(G)| \leq 7$, then G contains a dominating closed trail. So we may assume $\alpha'(G) = 4$ and $\lambda(G) = 2$. If $\delta(G) \geq 3$, then by Theorem 10 we have $n \leq 8$. By the lemma above, G contains a dominating closed trail. So we may assume $\delta(G) = 2$.

Note that if $\delta(G') \geq 3$ and $\alpha'(G') \leq 4$, then by Theorem 10 we have $n \leq 8$. Thus, G' is collapsible and then G contains a dominating closed trail. We may assume $\delta(G') = 2$ from now on. Let the length of a longest cycle of G' is l.

By Theorem 12, we may assume $l \geq 8$. Note that $\alpha'(G') \leq 4$. Then G - V(C) contains no edges and no non-trivial vertices. Thus C implies a dominating closed trail of G.

Combining the lemmas above, we state the main result of this section as follows.

Theorem 17. If a graph G satisfies $\delta(G) \geq 2$ and $\alpha'(G) \leq \lambda(G) + 2$, then either G contains a dominating closed trail, or its reduction is in $\{K_2, C'_4\}$.

In the end, we pose a problem on the 3-edge connected graph.

Problem 18. What is the minimum integer t such that a 3-edge connected graph G satisfying $\lambda(G) \geq \alpha'(G) - t$ is neither superculerian nor the Petersen graph? Furthermore, what is the minimum integer t such that a 3-edge connected graph G satisfying $\lambda(G) \geq \alpha'(G) - t$ contains no dominating closed trail?

5 Acknowledgements

We would like to thank the referees for their helpful comments and useful suggestions.

References

- [1] J.A. Bondy and U.S.R. Murty, Graph theory with application, Macmillan, London, 1976.
- [2] F.T. Boesch, C. Suffel, R. Tindell, The spanning subgraphs of Eulerian graphs, J. Graph Theory 1 (1977) 79-84.
- [3] P.A. Catlin, A reduction method to find spanning Eulerian subgraphs,J. Graph Theory 12 (1988) 29-45.

- [4] P.A. Catlin, SuperEulerian graphs: A survey, Journal of Graph Theory 16 (1992) 177-196.
- [5] P.A. Catlin and H-J. Lai, Eulerian subgraphs in graphs with short cycles, Ars Combinatoria 30 (1990) 177–191.
- [6] Z.-H. Chen, SuperEulerian graphs and the Petersen graph, J. of Comb. Math, and Comb. Computing 9 (1991) 70–89.
- [7] Z.-H. Chen, Collapsible graphs and and the matching, J. Graphs Theory 17 (1993) 597–605.
- [8] Z.-H. Chen, Supereulerian graphs, independent set, and degree-sum conditions, Discrete Math. 179 (1998) 73-87.
- [9] Z.-H. Chen and H.-J. Lai, Reduction techniques for superEulerian graphs and related topics - an update. Combinatorics and Graph Theory 95, ed. by Ku Tung-Hsin, World Scientific, Singapore/London (1995) pp.53-69.
- [10] V. Chvátal and P. Erdös, A note on Hamiltonian circuits, Discrete Math. 2 (1972) 111C113.
- [11] L. Han, H-J. Lai, L. Xiong, and H. Yan, The Chvátal-Erdös condition for supereulerian graphs and the Hamiltonian index, Discrete Mathematics 310 (2010) 2082-2090.
- [12] B. Jackson and O. Ordaz, Chvátal-Erdös conditions for paths and cycles in graphs and digraphs. A survey, 84 (1990) 241-254.
- [13] F. Jaeger, A note on supereulerian graphs, J. Graph Theory 3 (1979) 91-93.
- [14] H.-J. Lai, H. Yan, SuperEulerian graphs and matchings, Applied Mathematics Letters 24 (2011) 1867–1869.
- [15] W.R. Pulleyblank, A note on graphs spanned by eulerian graphs, J. Graph Theory 3 (1979) 309-310.
- [16] W. Yang and H. Li, A note on the graphs with given small matching number, Ars Comb. 121 (2015) 125-130.