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Abstract

Let p.(n) be the number of ways to make change for n cents using
pennies, nickels, dimes, and quarters. By manipulating the generating
function for p.(n), we prove that the sequence {p.(n) (mod &)} is periodic
for every prime power #7.
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1. Introduction

For a certain amount of money, how many ways are there to make
change using pennies, nickels, dimes, and quarters? This problem was
popularized by Polya [5] in 1956 where half-dollars are included. Let m be
the number of money, p the number of pennies, n the number of nickels,
d the number of dimes, and ¢ the number of quarters. The problem is to
find solutions to m = p*14+n#*5+d*10+ g x25. Let p.(n) be the
number of ways to make change for n cents using pennies, nickels, dimes,
and quarters. Graham, Knuth, and Patashnik [3] showed that the problem
can be solved by writing the generating function for p.(n) as a product of
known closed formulas for other series. Recently, following this method,
Costello and Osborne [2] established the generating function and a closed
formula for p.(n). Moreover, based on a recurrence for p.(5n), they proved
that the parity of the sequence {p.(n)} is periodic, and that the period
length is 200.

The main purpose of the present paper is to study periodicity of {p.(n)}
modulo powers of a prime. We will prove a simpler recurrent formula for
pe(5n). For a prime power £/, we show that the sequence {p.(n) (mod &)}
is periodic and p.(n) (mod #7) are the coefficients in anti-reciprocal poly-
nomials (see the last section for definitions). As consequences, we extend
the results obtained by Costello and Osborne in [2]. We remark that, in
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contrast to the recurrences for p.(5n) used in [2], the generating function
for p.(n) plays a crucial role in our proofs.

2. The generating function and recurrences for p.(n)

The method to find the generating function for p.(n) was suggested by
Graham, Knuth and Patashnik in [3]. Following this, Costello and Osborne
proved in [2] that the generating function for p.(n) is

= 1 1 1 1
n peoed . . .
(1) 2 pe(n)e" = 1oz 1-28 1—210 1-25"

n=0

where |z| < 1. We adopt the convention that p.(n) = 0 if n < 0. Using
Sage, we illustrate the first 60 values of p.(n) as follow:

Table 1. Values of p.(n) for 0 < n < 59.

n 01 2 3 4 5 6 7 8 9 10 11 12 13 14
1

pe(n) 1 1 11 2 2 2 2 2 4 4 4 4 4
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29
6 6 6 6 6 9 9 9 9 9 13 13 13 13 13
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
18 18 18 18 18 24 24 24 24 24 31 31 31 31 31
45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
39 39 39 39 39 49 49 49 49 49 60 60 60 60 60

From Table 1, it is easy to find that for 0 < n <11,
(2) Pc(5n) = pe(5n + 1) = Pc(sn + 2) = Pc(sn +3) = Pc(5n +4).

Indeed, this is true for all n > 0. Because after making change for 5n, you
must use pennies for the remaining 1,2, 3,4 cents. Note that the identity (2)
is mentioned in [2] without mathematical proofs. Here, using the generating
function for p.(n), we give two proofs of this fact.

The first proof is based on the following observation from (1):

Z(Pc(n) —pe(n-1))z" =(1-2) ZPC("')Z” =1 _125 1 __1210 1 _1325'

n=0 n=0

Since the expansion of the right hand side of the identity has the form
3, cn2z°™, we conclude that p.(n) — pc(n — 1) = 0 for all n coprime to 5.
This implies (2).
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For the second proof, we define an operator Us : Z[[z]] — Z[[z]] as

follows:
o0 00
(Z anz") |Us := Z as,z".
n=0 n=0

It is easy to see that

(e (S-S

n=0

For i =1,2,3,4,5, we observe that

zt bl ad z
_ n — n _ .
(1_2)|U5-—(;z)|U5—§=:1z 1-2

By (1.1) of [1], we get

[o <] o0 oo o0
(Z anz" Z bnzs") |Us = Z a2 - Z bp2"™.

n=0 n=0 n=0 n=0

Now multiplying z* on both sides of (1) and using Us, we have

: 1
(z 1 1 1 )|U5= 2 1 1

1—2z 1—25 1~210 1—2% 1—2 1—2z 1—22 1-25

On the other hand,

(Z pc(n)z""") Us =) pe(5n — i)2".
n=0 n=1

It follows that for : = 1,2, 3,4, 5,

> z 1 1 1
- n — . . . .
(3) Z;lpc(Sn i)z 1—2z 1—2z 1-2%2 1-25

This proves (2).
In view of (2), to determine the values of p.(n), it suffices to compute
pe(5n). In section 5 of [2], Costello and Osborne proved a recurrence for

Pe(5n):

pe(5n) = 2pe(5n — 5) — 2pc(5n — 15) + pc(5n — 20) + pc(5n — 25)
— 2pc(5n — 30) + 2p.(5n — 40) — pc(5n — 45).
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This recurrence is crucial for their proof of the periodicity of the parity
of p.(n). Here we give a shorter recurrence for p.(5n). We remark that,
following the arguments of section 7 of [2], we can also prove p.(n) modulo
2 is periodic. In section 3, we will give a simple proof of the periodicity of
the parity of p.(n) independent on this recurrence. Qur recurrence states
that

(4) pc(5n) =n+ 1+ pe(5n — 10) + pc(5n — 25) — p(5n — 35), n >0.

To prove this, we take i = 5 in (3) and obtain

(e~} n z
L pelon = 8" = A )

Multiplying by (1 — 22)(1 — 2°) on both sides, we get

Z(pc(Sn—S) — pe(5n — 15) — pe(5n — 30) + pe(5n — 40)2" ﬁ

n=1

Since
(1—z)2 an :

we deduce that for n > 1,
Pe(5n — 5) — pe(5n — 15) — p(5n — 30) + p.(5n — 40) = n.

This yields the desired recurrence (4).
We remark that the recurrence (4) holds for all n > 0, and with the aid
of (2), all values of p.(n) are determined.

3. Periodicity of p.(n) modulo 2

The periodicity of the sequence {p.(n) (mod 2)} was proved in [2] by
recurrence. In this section, employing the generating function, we give
a simple proof. Moreover, we find that p.(n) (mod 2) possesses certain
symmetrical properties.

Firstly, we show {p.(n) (mod 2)} is periodic with period length 200.
By (1) we find that

1—2 200

S g s s 01 g5 = > (puto

‘n=0

— pc(n — 200))z™.
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It is easy to verify that (1 — 225)% = (1 — 22%°) (mod 2) by the binomial
theorem. Hence

(6) 1-— 2200 _ (1 _ 225)8
1-2)(1-25)(1-2%(1 - 2B) ~ (1-2)(1-25)(1-20)(1 - 2%)

Since the right hand side of (6) is a polynomial of degree 159, it follows by
(5) that for n > 159,

(mod 2).

) Pe(n) — pe(n —200) =0 (mod 2).
This shows that p.(n) (mod 2) has period 200.

Using the recurrence (4), we compute p.(5n) (mod 2) for 0 < n < 39
to observe an additional interesting property mod 2.

Table 2. Values of p.(5n) (mod 2) for 0 < n < 39.

n 0 6 7
pc(5n) (mod 2) 1 0 0 1 1 0

12 13 14 15 16 17 18 19 20 21 22 23 24 25
1 1 1 1 1 1 1 1 o0 1 1 1 O O

26 27 28 29 30 31 32 33 34 35 36 37 38 39
1 1.0 0 0 1 0 O O O O O O O

4 5 8 9 10 11
1 1 1

1 2 3
0 0 0
8

Observing the entries in Table 2, we find that the values of p.(5n)
(mod 2) indicate an interesting symmetrical property. In particular,

(8) P:(5(31 — n)) = pc(5n) (mod 2), 0<n <31

[Note that because of the zeroes from 32 to 39 and (2), we have p.(n)
(mod 2) for all 160 < n < 199.] To prove the congruence (8), we denote by
h(z) the right hand side of (6). Then h(z) is a polynomial of degree 159,
and we may write

(1 _ 225)8 159

®) he) = A-2)(1-2)(1 - 201 - 25) ;aﬂi'
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Now we have, on the one hand,

159 1\ _ 2159(1 — ;;3)8
H3) - e
_ (2%5(1 - 5))®
T D A0 3) 20 - ) (- )
200

1—-2
(1—2)(1 — 25%)(1 — 210)(1 — 225)
= —h(z2).

On the other hand,
1 159 .
zlsgh (—) = Ealsg_izt.
z =0
Thus for 0 < n < 159,
Qn = —Q159—-n-

Since p.(n) = 0 for n < 0, by (5), (6) and (9), we get
pe(n) =a, (mod 2).
Hence we conclude that for 0 < n < 159,
Pe(n) = pc(159 —n) (mod 2).

In particular, by (2) we establish the observation (8).
Combining (7), we deduce that for 0 < n < 79 and any integer k > 0,

Pe(n) = pe(159 — n) = pe(n + 200k) = p.(159 — n + 200k) (mod 2).

4. Periodicity of {p.(n)} modulo powers of a prime

In this section, £ is denoted by a prime. We shall show that {p.(n)} is
periodic modulo any powers of £.

Lemma 4.1. The sequence {p.(n) (mod £)} is periodic. Moreover, let
L(£) be the period length. Then L(2)=200, L(3)=450 and L(£) = 50¢ for
£>5.

Proof. We have

1-— 24

(1-2)(1 - 25)(1 — 219)(1 — 225) = Z(Pc(n) — pe(n — d))z"™.

n=0
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It follows that {p.(n) (mod #)} is periodic if and only if the left hand side
is a polynomial in z, and the smallest d is L(£).
For any integers a > 0 and 8 > 1, the binomial theorem gives

e-1, 0
1-22) =1+ (-)7P)+ ) ( f )(—zﬂ)"-

i=1
e&
Note that ( ; ) =0 (mod ¢) for 1 <7 < €> — 1. We obtain

(1-28)¢ =(1-2°) (mod ¢).

Thus
1 — z50¢° (1 - 250
=21 - (-)(1-2%)  (1-2)(1 - D)1~ 201 - 22

Since (1 — z¥)|(1 = 2%9) for i = 1,5,10 and 25, we deduce that if ¢ > 4,
then the right hand side of the identity above is a polynomial. If ap is the
smallest o such that £ > 4, then it is clear that L(€) = 50¢%°. Lemma 4.1
follows immediately.

The next lemma allows us to obtain the periodicity of {p.(n)} modulo
powers of £.
Lemma 4.2. Letd > 1, j > 1 be integers and f(z) be a polynomial. If
(1-2%/f(z) is a polynomial modulo ¢, then (1 — z%)/f(2) is a polyno-
mial modulo ¢7+1.

Proof. Let g(z) be a polynomial such that

(10) ! T z) = g(z) (mod £).
We have . e
-z f:(Z)) =g*(z) (mod £2).
Therefore
(11) (1f(:)) = &1 (2)g%(z) (mod £3).
Note that
e-1
Q-2 -Q1-2%)=)" ( f ) (-29)'=0 (mod £(1 ~ 2%)).
=1
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Hence we can find a polynomial h(z) such that
(1—2%%—(1-2%) = ¢(1 — z2%)h(2).
It follows from (10) and (11) that

1-2%  (1-29t o1 -2%)h(2)
flz) — f(2) f(z)
= f(2)*"19%(2) - £g(2)h(2) (mod £2).

Since the right hand side is a polynomial, Lemma 4.2 follows by induction.

Now taking d = L(¢) and f(2) = (1 — 2)(1 — 25)(1 — 2!%)(1 — 2%0) in
Lemma 4.2, we find that {p.(n) (mod ¢7*!)} is periodic. Following the
arguments in section 3 for £ = 2,5 = 0, one can easily prove that for
0<n<LOF —41,

pe(n) = —pe(L(€)# —41 —n) (mod #+1).

We omit the details here. According to [4], a polynomial P(2) = a,2z" +
@n-12*"1 4+ ... + a1z + ag of degree n is called anti-reciprocal if for each
0 <i<n, a; = —an—;. Hence the p;(n) (mod #*!) values are coefficients
in anti-reciprocal polynomials. In conclusion, we establish the following
Main theorem. For any prime powers ¢7, the sequence {p.(n) (mod &)}
is periodic and the p.(n) (mod &) values are coefficients in anti-reciprocal
polynomials.
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