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Abstract Hypergraph is a useful tool to model complex systems and it could be
considered as a natural generalizations of graphs. In this paper, we define some
operation of fuzzy hypergraphs and strong fuzzy r—uniform hypergraphs, such
as Cartesian product, strong product, normal product, lexicographic product,
union, join and we proved if hypergraph H is formed by one of these operations,
then this hypergraph is fuzzy hypergraph or strong fuzzy r—uniform hypergraph.
Finally, we discuss an application of fuzzy hypergraphs.
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1 Introduction

In 1965, Zadeh [27] introduced the notion of a fuzzy subset of a set as a method
for representing uncertainty. Since then, the theory of fuzzy sets has become a
vigorous area of research in different disciplines including medical and life sci-
ences, management sciences, social sciences, engineering, statistics, graph theory,
artificial intelligence, signal processing, multi-agent systems, pattern recognition,
robotics, computer networks, expert systems, decision making and automata the-
ory.

In 1975, Rosenfeld [21] introduced the concept of fuzzy graphs. The fuzzy
relations between fuzzy sets were also considered by Rosenfeld and he developed
the structure of fuzzy graphs, obtaining analogs of several graph theoretical con-
cepts. Later on, Bhattacharya [7] gave some remarks on fuzzy graphs, and some
operations on fuzzy graphs were introduced by Mordeson and Peng [17]. Shan-
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non and Atanassov [22] introduced the concept of intuitionistic fuzzy relations
and intuitionistic fuzzy graphs, and investigated some of their properties in [23].
Parvathi et al. defined operations on intuitionistic fuzzy graphs in [20]. Recently,
the bipolar fuzzy graphs, interval-valued fuzzy graphs and strong intuitionistic
fuzzy graphs have been discussed in [1, 2, 3, 4, 26].

Hypergraphs are natural generalizations of graphs in case of set of multi-
ary relations, see [6]. It means the expansion of graph models for the modeling
complex systems. In case of modeling systems with fuzzy binary and multi-
ary relations between objects, transition to fuzzy hypergraphs, which combine
advantages both fuzzy and graph models, is more natural. It allows to realize
formal optimization and logical procedures. However, using of the fuzzy graph-
s and hypergraphs as the models of various systems (social, economic systems,
communication networks and others) leads to difficulties. Lee-kwang and Lee
[16] generalized and redefined the concept of fuzzy hypergraphs whose basic idea
was given by Kaufmann (13]. Further the concept of fuzzy hypergraphs was also
discussed in [25] and [10]. Chen [9] introduced the concept of interval-valued
fuzzy hypergraphs, Parvathi et al. [20] defined intuitionistic fuzzy hypergraphs.
Recently, Akram and Dudek in [5] apply the concept of intuitionistic fuzzy set
theory to generalize results concerning hypergraphs. In this paper, we use the
definition of fuzzy hypergraphs which is proposed by Yu Bin in [25] to define
some operation of fuzzy hypergraphs, such as Cartesian product, union, join of
two fuzzy hypergraphs, the strong product, normal product and lexicographic
product of two strong fuzzy r-uniform hypergraphs and investigate some of their
important properties. Finally, we discuss application of fuzzy hypergraphs.

2 Preliminaries

In this section, we first review some definitions of undirected graphs that are
necessary for this paper.

A (crisp) hypergraph is a generalized form of a graph that can have edges
containing any number of vertices. A hypergraph is illustrated with H = (V, E)
with V' and E representing the vertices and edges of the hypergraph, respectively.
A hypergraph H = (V, E) is called simple if no edge is contained in any other
edge. A hypergraph is trivial if |V| = 1.

H is called k-uniform if every edge in E contains exactly k vertices. If k = 2,
then H is a graph. Two examples of simple hypergraphs are shown in Fig 1.

Definition 2.1 A fuzzy set A defined on a non empty set X is the family A =
{(z,pa(z))| = € X} where pa : X — [0, 1] is the membership function such that
#a = 0 if £ does not belong to A, pa = 1 if z strictly belongs to A and any
intermediate value represents the degree in which z could belong to A, where
pa(z) < pa(z') indicates that the degree of membership of z to A is lower than
the degree of membership of z'.

Definition 2.2[25] Let V be a finite set and let E be a finite family of nonempty
set V. The fuzzy hypergraphs with underlying set V is a pair (o, 1), where o
is a fuzzy subset of V' and pu is a fuzzy subset of E such that Vv € V| pu(e) <
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v/e\ea'(v). For convenience, we use H = (o, ) to denote a fuzzy hypergraph. The
hypergraphs H = (V, E) is called the elementary hypergraph of fuzzy hypergraph
H = (o, ).
If H = (V,E) is graph G, then # = (o, ut) is the fuzzy graph.
(3

*©

Figure 1: A simple hypergraph with 7 vertices and 3 edges and cyclic
hypergraph with 14 vertices and 7 edges.

Example 2.3 Consider a hypergraph H = (V, E), where V = {v1,v2,vs,vq,
vs, v, 07}, E = {e1,e2,€3,€4}, and e = {v1,v2,v3}, e2 = {v3, va}, €3 = {v4, vs, v},
ea = {v2,v7}, such that o(v1) = 0.7, o(v2) = 0.5, a(v3) = 0.3, o(vs) = 0.6,
o(vs) = 0.5, o(vs) = 0.4, o(vr) = 0.8, pu(er) = 0.1, p(e2) = 0.2, p(es) = 0.3,
u(eq) = 0.5, then H = (o, 1) is a fuzzy hypergraph. See Fig 2.

Figure 2: A fuzzy hypergraph with 7 vertices and 4 edges.

Definition 2.4 A fuzzy hypergraph is called strong fuzzy hypergraph if p(e) =
A o(v).

vEe

Definition 2.5 Let H = (V, E) be a hypergraph, and o : V = [0,1], p: E —

[0,1], suppose 0 < A < 1, then the A-cut is defined by
or={veV|o() 2 A}, = {e € E | ule) 2 A).

As shown in [11], it is possible to find several non-equivalent generalizations of
the standard graph products to hypergraph products. In [12], Marc Hellmutha

205



et al. define the Cartesian product (J, the normal product EI and the strong

product X in the following, where the latter two products can be considered as
generalizations of the usual strong graph product.
In all of these three products, the vertex sets are the Cartesian products of

the vertex sets of the factors: =
V(H\0H,) = V(H, B H;) = V(H, ® H) = V(H,) x V(Ha,).

For an arbitrary Cartesian product V = x; V; of (finitely many) sets V;, the
projection p; : V = V; is defined by v = (v1,...,vn) — vj. We will call v; the
jth coordinate of v € V. With this notation, the edge sets are defined as follows.

Cartesian product: e € E(H,0H>) if and only if pi(e) € E(H;), pi(e) € V(Hj;)
with i,j € {1,2},i # j.

Strong product: e € E(H, R H;) if and only if (i) e € E(H10H3z) or (ii) pi(e) €
E(H;), for i = 1,2 and |e| = maxi=1,2{|p:(€)|}.

Normal product: e € E(H; B Hz) if and only if (i) e € E(H,\0H2) or (ii)
pi(e) C e; € E(H;), for i = 1,2 and |e} = |p:(e)| = minj=1,2{|e;]}.

In a hypergraph without defined adjacency functions, in a simple way it is
considered that all the vertices of an edge will be adjacent to each other. In
literature [8, 14, 18], the Cartesian product, Strong product, Normal product
and lezicographic product of hypergraphs is defined in the following form that
can be considered as a numeral definition rather than an algebraic one.

Definition 2.6 Let H; = (Vi, F1) and Ha = (V, E;) be hypergraphs. The
Cartesian product of Hy and H, is the hypergraph H 0 H, with set of vertices
V1 x V2 and set of edges:

E\OE; = {{n1} x e2:v1 € Vi,e3 € B2} U {e1 x {v2} : e1 € E1,v2 € Vo).

For r—uniform hypergraphs, the Strong product of two r—uniform hyper-
graphs could be defined as follows.

Definition 2.7 Let H; = (W, E1) and Ha = (V4, E2) be two r—uniform hyper-
graphs. The Strong product of Hy and H; is the hypergraph H; ® H, with set
of vertices V; x V2. For two edges e; € E) and ex € E», the edge set is defined
as:
E\ R E; = E\OE; U {e € e1 X e2le; € E; and pi(e) = e;,i = 1,2}
The edge of E; ® E; is consisted with the Cartesian product edge and the

non-Cartesian product. In other words, a subset which is the non-Cartesian
product edge e = {(v11,v12), (v12,v22), ..., (vir,v2,)} of Vi x V2 is an edge in
H, ® H; if and only if {v11,v12,...,v1+} is an edge in H; and {v21,v22, - .., v2.}
is an edge in Ha.

Definition 2.8 Let H; = (W3, E1) and Ha = (V, E;) be two r—uniform hyper-
graphs. The Normal product of H, and H, is the same as Strong product of H,
and Hz.

Definition 2.9 Let H, = (V1, E1) and Hz = (V, E2) be two r—uniform hyper-
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graphs. The lezicographic product H = H) o H has vertex set V(H) =Vi x V2
and edge set
E(H) = {e1 xesles € Er,plez) € Va, Ipa(e)| <| el}u{{z}xelz € Vi, ez € Ea).
Since [p1{e)| = |e| there are |e] vertices of e that have pairwise different first
coordinates.

Definition 2.10 Let H, = (V1,E1) and Hz = (V2, E2) be hypergraphs. The
union of Hy and H: is the hypergraph H = H; U H with set of vertices V1 U V2
and set of edges E1 U E».

Definition 2.11 Let H, = (W, Ey) and Hs = (V2, E3) be hypergraphs. The
join of Hy and Ha is the hypergraph H = H) + Hj with set of vertices V, U V;
and set of edges:

E(H) = {ele € E(H,),or e € E(Hz),0or eNV(H1)| > 1and [eNV(Hz2)] > 1
and e ¢ E(H,) and e ¢ E(H2)}.

e

LK K LSS

i
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®

Figure 3: Two examples of Cartesian product of two hypergraphs G and
H.

3 The Product of Fuzzy hypergraphs

In this section, .we defined the operations of Cartesian product of two fuzzy
hypergraphs, the strong product, normal product and lexicographic product of
two strong fuzzy r-uniform hypergraphs.

Let Hi = (oi,u:) be a fuzzy hypergraph, i = 1,2. And we suppose its
elementary hypergraphs H; contains m vertices.
Definition 3.1 Let H; = (01,#1) and H2 = (o2, u2) be two fuzzy hypergraphs,
respectively, where o1 and o2 be fuzzy subsets of V; and V3, and g1 and u2 be
fuzzy subsets of E; and E;. Then we denote the Cartesian product of two fuzzy
hypergraphs H; and Hz by H = H,0H2 and define as follows:

Y(v1,v2) € V, (01 % 02)(v1,v2) = A{o1(v1), 02(v2) },
Yu; € Wi,Vea € Ea, pipa({n1} % e2) = A{or(w), pafe2)},
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Ve, € E1,Vua € Vo, pypa(er x {v2}) = A{pi(er), o2(v2)}.

Theorem 3.2 If H; and H: are the fuzzy hypergraphs, then H,0H; is a fuzzy
hypergraph.

Proof. Let v; € V1, e; € E1, suppose e; contains p vertices, where 1 <p < m
and vy € Vi, ez € E5, suppose ez contains g vertices, where 1 < ¢ < n. Then we
have

(p1p2)({n1} x e2)
= Alo1 (1), pa(e2)]
< Aloa(), A, oa(v2)]
= AMo1(wn), Aloa(va1), 02(v22), - . ., 02(v29)]}
= MAlo1(n1), o2 (var)], Aloi(v2), 02(v22)); - -, Al (vg), 02(v2q)]}
= Al(or x o2)(v1,vm), (01 X 02)(v1,v22), ..., (@1 X G2)(vn, v2g)]

= u1€e1/1\02€‘2(01 X 0’2)(‘01,‘02),

(p1p2)(e1 x {v2})
= Almi(er), o2(1))
<Al A, g1(w), o2(v2)]
= MA[o1(v11),01(v12), - .., 01 (1)), 02(v2) }
= MAlo1(vn1), 02(v2)], Alo1(vi2), 02(v2)), - . ., Aloa (v1p), 02(v2)] }
= Al(o1 X o2)(v11,v2), (01 X 02)(v12,v2), ..., (01 X 02)(v1p, v2)]

= vxeel/.\vzeez((al X 0’2)(1)1,1)2)). (]

Definition 3.3 Let H1 = (01, 1) and Hz = {02, u2) be two fuzzy r—uniform
hypergraphs, respectively, where o1 and o2 be fuzzy subsets of V; and V3, and
u1 and g2 be fuzzy subsets of E; and E;. Then we denote the strong product of

two strong fuzzy r—uniform hypergraphs H; and Ha by H = H; gHa and define
as follows:

V(v1,v2) €V, (01 X 02)(v1,v2) = A{o1(n1),02(v2)},
Vei € E1,Ves € Ey, ujp2(er x e2) = A{pi(er), p2(e2)}.

Theorem 3.4 If H; and H; are the strong fuzzy r—uniform hypergraphs, then
H, B H, is a strong fuzzy hypergraph.
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Proof. Let e; € 1, ez € E3, then we have
(r1p2)(er x e2)
= Alp1(er), p2(e2)]
=A, A, 1), A aa(va)]
= MAlo1(v11), 02(v21)], Al (v12), 02(v22)), - . ., Aloa (v1r), 02(v2r)]}
= Al(o1 x a2)(v11,v21), (01 X 02)(v12,v22), - -, (01 X T2)(V1r, V2r)]
= A _ (01x02)(n1,v2). O

vi€e,v2€eg

Definition 3.5 Let Hi = (o1,u1) and Hz = (o2,pu2) be two strong fuzzy
r—uniform hypergraphs, respectively, where o1 and o2 be fuzzy subsets of V)
and Va2, and p1 and us2 be fuzzy subsets of Ey and E;. Then we could know, for
two strong fuzzy r—uniform hypergraphs, the normal product H = H; BH; is
the same as the strong product of two strong fuzzy r—uniform hypergraphs.

Obviously, according to representation of normal product, strong product
and r-uniformity of Hi1 and Ha, [e] = maxi=i2{|pi(e)|} is the same as |e|] =
|p:(€)] = minj=1,2{|e;j|}. Furthermore, limited by le] = max;=1,2{|p:(e)|} and
le] = |pi(e)] = minj=1,2{|e;|}, the edges p:(e) € E(H;) is the same as pi(e) C
e; € E(H;) for i = 1,2. Hence, the normal product H = H1 B H is the same as
the strong product of two strong fuzzy r—uniform hypergraphs.

Theorem 3.6 If H; and H2 are the strong fuzzy r—uniform hypergraphs, then
‘H, B Hz is a strong fuzzy hypergraph.
Proof. The proof is the same as Theorem 3.4.

Definition 3.7 Let #; = (o1,¢1) and Hz = (o02,p2) be two strong fuzzy
r—uniform hypergraphs, respectively, where o, and o2 be fuzzy subsets of V)
and V,, and p; and p; be fuzzy subsets of Ey and E;. Then we denote the
lexicographic product of two strong fuzzy r—uniform hypergraphs H; and H2
by H = H; o H2 and define as follows:

Y(v1,v2) € V, (01 X 02)(v1,v2) = A{o1(v1),02(v2)},

Ve1 € Ey,Vez € Ey, if e1 € E1,p(e2) C Va,|p2(e)| <| ], then
pipa({er x e2) = A{pi(e1), ua2(e2)},

Vv € Ey,Vez € Ez, papa({v1} x e2) = A{o1(v1), pa(e2)}.

Theorem 3.8 If 1, and Hz are the strong r—uniform fuzzy hypergraphs, then
‘Hi o Hz is a strong fuzzy hypergraph.
Proof. Suppose e; € Ei,p(e2) C V2, |p2(e)| <| €|, then we have

(1p2)(e1 x e2)
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= Alpi(er), p2(e2)]

= /\[”’/e\nm (1), A 02(v2)]

= A{A[o1(v11), 02(v21)], Aloa (vi2), 02(v22)), - . . Aloa(v1r), o2(var) ]}
= Al(g1 x a2)(v11,v21), (01 X 02)(v12,v22), ..., (01 X 02)(vir, vor)]
= A (01 % 02)(w1,02).

vi€ey,va€eg

Suppose v; € E1, ez € E3, then we have
(p1p2)({v1} x e2)
= Alo1(v1), p2(e2))
S Aor(ur), A o2(v2)]
= No1(v1), Aloz(va1), 02(va2), . . ., 02(v2¢)]}
= /\{/\[0’1 (vl), 02(1121)], /\[0'1 (‘Uz), 02(1)22)], ey /\(01 (v,-), (72(1)2,-)]}
= /\[(61 bed 02)(’01,‘02;), (dx X 02)(1)1,’022), ey (0’1 X 0’2)(’01,‘021-)]
= vleel/'\uzew(o; x o2)(v1,v2). O
4 Union and Join of fuzzy hypergraphs

In this section, we defined the operations of union and join of two fuzzy
hypergraphs.

Definition 4.1 Consider the union H = H; U H; of two hypergraphs H; =
(W1, Er), Ha = (V2, E2). Let 0; be a fuzzy subsets of V; and u; be a fuzzy subset
of E:, i = 1,2. Define the fuzzy subsets oy Uz of ViUV and p1 U ps of X; U X,
as follows:

(o1 Ua)(v) =0o1(v) ifve Vi but v ¢ Vp,

(o1 U0o2)(v) =02(v) ifve Vabut v ¢ Wy,
and (o1 U 02)(v) = V]o1(v),02(v)] if v € Vi NVy;

(p1 U p2)(e) = pa(e), if e € Ey but e ¢ Es,
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(/"’1 U[.Lz)(e) = Il'l(e)r ife€ Ez but e ¢ E,

and (p1 U pa)(e) = Vipa(e), p2(e)), if e € Ey N Es.

Theorem 4.2 Let H be the union of the hypergraphs H; and Ha. Let (o1, pi) be
a fuzzy hypergraph of H;, i = 1,2. Then (o1 U o2, u1 U u2) is a fuzzy hypergraph
of H.

Proof. Suppose that e € E; but e ¢ E2. Then

U pa(e) = p(er) < o, 0 (v1)
= A{o(vi1),0(vn12),...,0(v1p)}. (1)
If vi1,v12,...,v1p € Vi but v13,v12,...,v1p € V2, then
(D)= Al(o1 Ua2)(v11), (01 Uaa)(viz), . . ., (01 U a2)(v1p))

If vi1,n2,...,v1t € Vi — Vo, w1, %2,...,%s € ViNV,, wherei = 1,2, t,s > 1,
and t + s = p, then

(1)= A{(e1 U 0o2)(v11), (01 Uo2)(v12), . . ., (01 U 2)(v1e), V]o1 (vir), o2(vir)),

V(o1 (vi2), o2(vi2)], V[o1(vis), 02(vis)]}

= A[(o1 U o2)(v11), (01 Uo2)(n12), . .., (o1 U o2)(v1e), (01 U o2)(var),
(o1 Vo2)(vi2),. .., (01 U o2)(vis)]

= Al(01 U 02)(v11), (01 U 02)(v12), - . -, (01 U a2) (1))

The last equation is due to v, vi2,...,vis € Vi NV and there is no order of
the vertices in the hyperedge, so we could look vi1,vi2,...,vis as the t 4+ 1, ¢ + 2
to the p vertices in the hyperedge e;.

If vi1, via, ..., vip € V1 N V3, then
(1) = A{Vio1(var), o2(var)], Vo (vi2), o2(vi2)), - . ., VIo1 (vip), 02(vip)]}

= A[(01 U a2)(wir), (01 U g2)(viz), - . ., (01 U a2)(vip)].
Suppose that e € E2 but e ¢ E;. Then

p1 U pa(e) = pa(e2) < uaé\qzaz(vz)

= Alo(va1),0(v22), ..., 0(v2p)].  (2)

211



If vay, veo, ... ,v2p € Vo but vy, vag,. .. , V2p ¢ V4, then
(2): /\[(01 U (72)(1121), (01 @] dz)(vgz), ceny (0’1 U Uz)('uzp)].

If vo1,v22,...,v2t € Vo — V4, v, vi2,...,vis € Vi N Vo, where i = 1,2, ¢t,s > 1,
and t + s = p, then

(2)= A (a1 Ua2)(v21), (01 U 02)(v22), . .., (01 U 02)(v2e), Vo1 (vir), o2 (vaa)],

V[o1(viz), 2(viz)), V[o1(vis), o2(vis)]}

= A[(g1 Uoz)(va1), (01 Uaz)(va2), ..., (o1 Uoz)(vae), (01 U o2)(var),
(o1 Vo2)(vi2), ..., (01 Uo2)(vis)]

= Al(o1 Uaz)(va1), (01U o2)(vaz), - . ., (01 Uo2)(v2p)]

The last equation is due to vi1, vi2,...,v;is € V1 NV, and there is no order of
the vertices in the hyperedge, so we could look v, vi2,...,vis asthet + 1, ¢t + 2
to the p vertices in the hyperedge e;.

If vi1, vi2, ..., vip € Vi N V3, then
(2) = A{Vlor(va), o2(var)], V(o1 (viz), o2(vi2)]s - - -, Vio1 (vip), o2 (vip)]}

= Al(o1 Uoz)(var), (01 VU 02)(viz), . ..., (01 U 02)(vip)).
Suppose that e € E2 N E;. Then

(11 U p2)(e)
= Vi e}, a(e)]
S V{A[o1(var), 01(viz), . . ., 01(vip)], Alo2(vir), o2(vi2), - - -, 02(vip)]}
< AMVlor(va), o2(va)], Vio1(viz), o2(vi2)), - . ., V(o1 (vip), o2(vip)]}

= /\[(01 U 0‘2)(1.!,'1), (0‘1 U 0'2)(‘0,‘2), ey (0‘1 U ag)(v.-,,)]. (]

Example 4.3 Let Vi = {a,b,c,d,e}, Vo = {a,c,d,e, f} and E; = {en1,e12},
E; = {ea1,e22}, where enn = {a,b,c}, e12 = {c,d,e}, ea1 = {c,d,e}, ez =
{e, f,a}. Define the fuzzy subsets o1, o2, 1, 2 of Vi Vo, E1, E, respectively as
follows:

o1(a) = 0.3, g1(b) = 04, 0:(c) = 0.3, 01(d) = 0.5, o1(e) = 0.2, u1{e11) = 0.3,
mie12) = 0.5, a2(c) = 0.3, o2(d) = 0.1, o2(e) = 0.4, g2(f) = 0.2, g2(a) = 0.5,
p2(e21) = 0.1, pz(ez2) = 0.2
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From Definition 4.1 and Theorem 4.2 we could get H = H; U H2 with the set

of vertices V(H) = {a,b,c,d, e, f} and the set of edges E(H) = {e}, €5, 3}, where
ey = {a,b,¢c}, &2 = {c,d, e}, e5 = {e, f,a} and o(a) = 0.5, o(b) = 0.4, o(c) = 0.3,
o(d) = 0.5, o(e) = 0.4, o(f) = 0.2, u(e}) = 0.3, u(ez) = 0.3, u(es) = 0.2, See
Fig 4.
Definition 4.4 Consider the join H = Hi1 + Ha = (V1 + V2, Ey + Ez + E') of two
hypergraphs H, = (V1, E1), H2 = (V2, E2). Let o; be a fuzzy subsets of V; and
wi be a fuzzy subset of E;, i = 1,2. Define the fuzzy subsets o1 + g2 of V1 + V2
and u; + po of Ey + E2 + E’ as follows:

(01 + 02)(v) = (01 U 02)(v),
(1 + p2)(e) = (p1 U p2)(e) if e € Ey U Ea,

and (g1 + p2)(e) = Alo1(vi1), o1(viz), - - -, 01(v1s), 02(v21), 02(v22), . . . , 02(v2e)),
where e = {v11,%12,. .., V1s,V21,22,...,V2t} € E".

Figure 4: An example of the union of two fuzzy hypergraphs.

Theorem 4.5 Let H be the join of two hypergraphs H; and Ha. Let (o3, u:) be
a fuzzy hypergraph of H;, i = 1,2. Then (o1 + 02, 41 + p2) is a fuzzy hypergraph

of H.
Proof. Suppose that e € E; U E;. Then the desired result follows from Theorem

4.2. Suppose e € X', then
(11 + p2)(e)

= Alo1(v11),01(v12), . . -, 01(v1s), 02(v21), 02(v22), . . . , 02 (v2e)]

= Allo1 U 02)(vn1), (01 U 02)(w12), -, (01 U 02)(v1s), (@1 U 02) (v1), (01 U
a2)(va2), ..., (01 U o2)(var)]

= Al(o1r + o2)(vi1), (o1 + o2)(v1z)s- . -, (01 + 02)(115), (01 + o2)(va1), (o1 +
02)('022), ey (01 + 02)(‘022)]- ]

The fuzzy subhypergraph (o1 + o2, #t1 + p2) of Theorem 4.5 is called the join
of (o1, 1) and (o2, u2).
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Definition 4.6 Let (o, ) be a fuzzy hypergraph of a hypergraph H = (V, E).
Then (o, 1) is called a strong fuzzy hypergraph of H if and only if u(e) = /e\ o(v).

Theorem 4.7 If H is the join of two hypergraphs H; and H2, then every strong
fuzzy hypergraph (o, u) of H is a join of a strong fuzzy hypergraph of H; and a
strong fuzzy hypergraph of H,.
Proof. Define the fuzzy subsets oy, 02, u1 and ug of V3, Vo, E; and E; as follows:
oi(v) = o(v) if v € V; and pi(e) = p(e) if e € E;, i = 1,2. Then (o3, i) is a fuzzy
hypergraph of H;, i = 1,2, and 0 = 01 + 02 as in the proof of Theorem 4.2.

If e € Ey U Es, then u(e) = (p1 + u2)(e) as in the proof of Theorem 4.2.

Suppose that e € E’, where v11,v12,...,v1s € E; and va1,v22,...,v2¢ € Va.
Then
(11 + p2)(v) = Alor(vir), 01(v12), ..., 01(v15), 02(v21), 02(v22), - . ., T2 (v2e)]
= Alo{vi1),o(v12), ..., 0(v1s), 0(v21), 0(v22), . . . , O (v2e)]
= ple)

where the latter equality holds because (o, ) is strong. O

Remark 4.8 Let 0,1, 02, u1, p2 be fuzzy subsets of V;, Va, E,, E; respectively.
Then (o1 U 02,1 U p2) is a fuzzy hypergraph of H; U Hj, but (o:,u:) is not a
fuzzy hypergraph of G;, i = 1,2.

Example 4.9 Let Vi = Vo = {a,b,c} and E;, = E; = {q,b,c}. Define the fuzzy
subsets 01, 02, p1, p2 of Vi Vo, E), E; respectively as follows:

o1(a) = 02(b) = 1, 01(b) = 02(c) = %, o1(c) = o2(a) = %, m(e) = pa(e) = 3.
Then (o3, 1;) is not a fuzzy hypergraph of H;, i = 1,2. However,

(B1U p2)(e) = V{p(e) Upa(e)He) = 3 < 1
= AM{V{01(a),02(a)}, V{o1(b), 02(b) }, V{o1(c), 72(c) } }
= A{(o1 U 02)(a), (01 U a2)(b), (01 Uo2)(c)}-

Thus (01 U 02), (g1 U u2) is a fuzzy hypergraph of H, U H,.

Theorem 4.10 Let H; = (V}, 1) and Hy = (Vz, E?) be hypergraphs. Suppose
that ViNV, = 0. Let 01, 02, 1, p2 be fuzzy subsets of V3, Va, E), Ea respectively.
Then (01 U 02, 41 U p2) is a strong fuzzy hypergraph of H; U H, if and only if
(o1,41) and (o2, p2) are strong fuzzy hypergraphs of H; and Ho, respectively.
Proof. Suppose that (g3 U oz, p1 U p12) is a strong fuzzy hypergraph of Hy U H,.
Let e € Ey, then e ¢ E> and the vertices in e belong to V; but not belong to Vz,
suppose e = {v11,%12,...,V1s}. Hence
p1(e) = (p1 U p2)(e)
< min[(g1 U o2)(v11), (01 U a2)(v12), . . ., (01 Uoz)(v1s)]
= min[o(v11),01(v12), . . ., 01(v15)].
Thus (01, 1) is a strong fuzzy hypergraph of H;.
Similarly, (o2, u2) is a strong fuzzy hypergraph of Hz. The converse is Theo-
rem 4.2,

Theorem 4.11 Let H; = (Wi, E1) and Hz = (Vz, E2) be hypergraphs. Suppose
that VinVa = 0. Let 01, 02, w1, p2 be fuzzy subsets of Vi, Vz, By, E; respectively.
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Then (o1 + 02, 41 + p2) is a fuzzy hypergraph of Hy + Ha if and only if (o1, 1)
and (o2, u2) are fuzzy hypergraphs of Hy and Hj, respectively.

Proof. The desired result follows from the proof of Theorem 4.7 and Theorem
44.

5 Application of fuzzy hypergraphs

Graph models find wide application in many areas of mathematics, computer
science, the natural and social sciences, such as in [24], it introduces a hypernet-
works in a directed hypergraph. In social science, the structural approach that
is based on the study of interaction among social actors is called social network
analysis. In [19], it introduces the concept of fuzzy social network. Social network
analysts study the structure formed by the nodes (people or group) connected
by the links (relationships or flow). Mostly social network analysis considers the
links between its actors as binary (1 if present, or 0 if not). In reality, not all the
actors are related with the same degree. For example, hyperlinks between the two
websites belonging to the same college will exhibit strong ties while these same
websites will form weak ties with the third website belonging to some other col-
lege. But, based on the current methods these social links between all the three
websites will be considered with equal importance, as shown in figure 5, wherein
actors A and B are supposed to form stronger ties since they belong to the same
group. Thus, the ties between two actors cannot be effectively represented as
binary relation because these relations are inherently fuzzy.

° ° \
Strong Link -
° Weak Links

Social Networks Fuzzy Social Networks

Figure 5: Social networks and fuzzy social networks.

The definition of undirected fuzzy social networks could see in Definition 5.1.
Definition 5.1[15]. Let G = (V, E) be fuzzy social network structure, V' =
{v1,v2,...,vn} is the actors set,

€n1 ... €nn

is the fuzzy relationship on V, then G is a fuzzy social networks. If é; = &,
then G is called undirected fuzzy social networks.
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While this kind of graph-based model consider only pairwise relationships
between two person (or group), and they neglect the relationship in higher order.
Modeling the high-order relationship among person will significantly improve
group behaviour performance. Unlike a graph that has an edge between two
vertices, a set of vertices is connected by a hyperedge in a hypergraph. So we
consider fuzzy social hypernetwork. Let H = (V, E) be fuzzy social hypernetwork
structure, V = {v1,v2,...,vn} is the actors set, o : V' — [0, 1] denotes the degree
of actors take apart in this social hypernetwork, £ = {é),éa,...,€x} denotes
the set of fuzzy relationships, such as friendship, cooperation and trade relations,
etc., and due to the definition of fuzzy hypergraph, the degree of these relations is
decided by the membership degree of actors take apart in the relationship. Thus
this model uses the full definition of fuzzy hypergraph.

6 Conclusions

Theoretical concepts of graphs and hypergraphs are highly utilized by com-
puter science applications. Especially in research areas of computer science such
as data mining, image segmentation, clustering, image capturing and network-
ing. Because the complex graph can be obtained by the simple graph through
the operations of graphs, so study the operation of graphs is meaningful. We
used the definition of fuzzy hypergraphs which is proposed by Yu Bin in [25] to
define some operation of fuzzy hypergraphs, such as Cartesian product, strong
product, normal product and union, join and investigate some of their impor-
tant properties. We also present applications of fuzzy hypergraphs. We plan to
extend our research work to (1) Operations on intuitionistic fuzzy hypergraphs,
(2) More generalized operations on fuzzy hypergraphs and intuitionistic fuzzy
hypergraphs, (3) Applied models of fuzzy hypergraphs and intuitionistic fuzzy

hypergraphs.
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