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Abstract

For vertices u,v in a connected graph G, a u — v chordless path
in G is a u — v monophonic path. The monophonic interval Jg[u, v]
consists of all vertices lying on some u—v monophonic path in G. For
8§ C V(G), the set Jg[S] is the union of all sets Jg[u,v] for u,v € S.
A set § C V(G) is a monophonic set of G if Jg[S] = V(G). The
cardinality of a minimum monophonic set of G is the monophonic
number of G, denoted by mn(G). In this paper, bounds for the
monophonic number of the strong product graphs are obtained and
for several classes improved bounds and exact values are obtained.
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1 Introduction

By a graph G = (V(G), E(G)) we mean a finite undirected connected graph
without loops or multiple edges. The distance dg(u,v) between two vertices
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u and v in a connected graph G is the length of a shortest u - v path in
G. A u - v path of length dg(u,v) is called a u - v geodesic. A chord of a
path P :ug,u,...,un is an edge u;u;, with j > ¢ + 2. Any chordless path
connecting v and v is a u-v monophonic path or an m-path. The geodesic
closed interval Ig[u,v] is the set of vertices of all u—v geodesics. Similarly,
the monophonic closed interval Jg[u,v] is the set of vertices of all u — v
monophonic paths. The monophonic open interval is the set Jo(u,v) =
Jelu, v)—{u,v}. For § C V(G), the geodetic closure Ig[S] of S is defined as
the union of all geodesic closed intervals Ig[u, v] over all pairs u,v € §. The
monophonic closure Jg|S] is the set formed by the union of all monophonic
closed intervals Jg[u,v] with u,v € S. A vertex z in S is a monophonic
interior verter of S if z € Jg[S — {z}]. The set of all monophonic interior
vertices of S is denoted by S°. A set S of vertices of G is a geodetic set
of G if Ig[S] = V(G) and S is a monophonic set if Jg[S] = V(G). The
monophonic number mn(G) (geodetic number g(G), respectively) of G is
the minimum cardinality of a monophonic (geodetic, respectively) set in G.
Since every geodetic set is a monophonic set, mn(G) < g(G). The geodetic
number of a graph was introduced and studied in (2, 3, 4, 5, 7, 8]. The
geodetic number of Cartesian product graphs was discussed in [1]. In [13],
the behaviour of intervals and the characterization of convex sets are given
for the strong product of graphs. Also, recently Santhakumaran and Ullas
Chandran [15] studied the geodetic number for strong product of graphs.

For a non-empty set W C V(G), a connected subgraph of G with the
minimum number of edges that contains all of W is necessarily a tree. Such
a tree is called a Steiner W-tree. The Steiner interval S(W) of W consists of
all vertices that lie on some Steiner W-tree of G. If S(W) = V(G), then W
is called a Steiner set of G. The Steiner number of a graph was introduced
by Chartrand and Zhang [6]. Steiner sets in a graph G could be understood
as a generalization of geodetic sets in G. Nevertheless, its relationship is
not exactly obvious. In (6], the authors tried to show that every Steiner
set in G is also geodetic. Unfortunately, this particular result turned out
to be wrong and was disproved by Pelayo [14]. However, in [9], the authors
proved that every Steiner set is monophonic. This motivated us to study
further monophonic sets in graphs. The concepts of monophonic sets and
the monophonic number of a graph have not yet been fully explored and
investigated. These concepts appeared in [3] and were studied by Pelayo et
al. in [9, 10, 17]. Recently, the monophonic numbers of join and composition
of graphs were discussed in [12]. The monophonic number of the Cartesian
product graphs was studied in [16].

In this paper, we study monophonic sets and the monophonic number
in the strong product graphs.

The strong product of graphs G and H, denoted by GKIH, has a vertex set
V(G) x V(H), where two distinct vertices (x;,y1) and (x2,y2) are adjacent
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if, (a) z1 = zo and y1y2 € E(H), or (b) y1 = y2 and z122 € E(G), or
(c) zyz2 € E(G) and y1yo € E(H). The mappings 7g : (z,y) — = and
Ty ¢ (z,y) — y from V(G R H) onto G and H, respectively, are called
projections. For a set S C V(G ® H), we define the G-projection of S
on G as ng(S) = {z € V(G) : (z,y) € S for some y € V(H)}, and
the H-projection ng(S) = {y € V(H) : (z,y) € S for some = € V(G)}.
For a path P : (z1,41), (z2,¥2),...,(Zn,¥n) in GB H, we define the G-
projection mg(P) of P as a sequence that is obtained from (z,, z2,...,Z5)
by changing each constant subsequence with its unique element. The H-
projection 7wy (P) is defined similarly. It is clear from the defintion of the
strong product that for any path P in GX H, both ng(P) and 7wy (P) are
walks in the factor graphs G and H, respectively. For a path P : v =
UQ,Ul,..., U = t' in G and y € V(H), we use P, to denote the path
Py : (u9 y) = (uo,y), (ul’ y); ERE) (u‘nv y) = (u” y) in G® H. Similarly, we
can define Q., where @ is a path in H and z € V(G). For a vertex v in G,
N(v) denotes the set of all neighbors of v, and N[v] = N(v)U{v}. A vertex
v in G is an extreme verter if the subgraph induced by N(v) is complete.
The set of all extreme vertices is denoted by Ezt(G) and e(G) = |Ext(G)|.
A graph G is an extreme monophonic graph if all its extreme vertices form
a monophonic set. Given a path P in a graph and two vertices z,y on P,
we use P[z,y] to denote the portion of P between = and y, inclusive of =
and y. For basic graph theoretic terminology, we refer to 7). We also refer
to [3] for results on distance in graphs and to [11] for metric structures in
strong product graphs. Throughout the following G denotes a connected
graph with at least two vertices. The following theorems will be used in
the sequel.

Theorem 1.1. [10] Each extreme vertez of a connected graph G belongs
to every monophonic set of G.

Theorem 1.2. [15] Let G and H be connected graphs. Then Ext(GRH) =
Ezxt(G) x Ext(H).

2 Bounds for the monophonic number of the
strong product graphs

In this section we determine possible bounds for the monophonic number of
the strong product of two connected graphs. The following lemma is used
to prove an upper bound for the monophonic number of the strong product
graphs.

Lemma 2.1. Let G and H be connected graphs. Then for u,u’ € V(G)
and v,v' € V(H), Jelu,v'] x Ju(v,v") € Jomu ((w,v), (v’,v")).
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Proof. Let i € {0,1,...,n} and P : u = wug,uy,...,Ui =&,...,up =t a
u—u' m-path in G containing the vertex z; and for j € {1,2,...,m—1} let
Q:v=w,v1,...,V =¥,...,U;m =V be av—v m-path in H containing
the vertex y. We consider two cases

Case 1. 1 < i < n—1. Since (uj—1,v)(z,v1), (%, Vm-1)(uis+1,V") €
E(GR H), it follows that R = P,[(ug,v), (vi-1,v)] U {(¢i-1,v), (z,v1)} U
Q:I:[(‘T’ vl), ('T, vm—l)] U {(z”um—l)) (ui-}-l)U’)} U P‘U' [(ui+lyv,)1 ('U,n, vl)] is a
(u,v)— (u', ') path in G® H containing the vertex (z,y). We show that R
is a (u,v) — (¢/,v") m-path in G® H. Since P and Q are m-paths, we see
that Pv[(u()s ’U), (ui—-lv U)]a Q.’t [(2:, vl)s (3’:, Um_l)] and Pv’ [(ui-i-l, 'U’), ('U.n, 7),)]
are m-paths in G ® H. Now, since z # uj are non-adjacent for k =
0,1,...,i—2(¢ > 2); and v # v; are non-adjacent for l = 2, 3,...,m—1, there
is no chord between the vertices of P,[(uo, v), (vi-1,v)] and Qz[(z, v1), (z, ¥m-1)).
Note that if ¢ = 1, then P,{(uo,v), (ui—1,v)] is the single point (uo,v)
and so there is no chord between the vertices of P,[(uo,v), (ui-1,v)] and
Qz[(z,v1), (z,vm-1)]- Similarly, we can show that there is no chord between
the vertices of Qz((z,v1), (%, Vm-1)] and Py [(%it1,7"), (un,?’)]. Also, since
v and v’ are distinct and non-adjacent, there is no chord between the ver-
tices of P,[(uo,v), (vi-1,v)] and Py [(uis1,v'), (un,v’)]. Hence it follows
that R is a (u,v) — («/,v') m-path in G ® H containing the vertex (z,y).
Since (z,y) # (u,v), (u',v'), we have (z,y) € Jogn((u,v), (v',v')).

Case 2. i = 0 or ¢ = n. Without loss of generality assume that i = 0
and so £ = u = ug. Since (¥,¥m-1) and (u;,v') are adjacent, R =
Q‘u[(u’ UO)’ ('U, 'Um_])]U{(u, vm—l)a (ulr 'U’)}UPvl [(uh vl)7 (un1 ’U’)] isa (u7 'U)"'
(u/,v') path in G ® H containing the vertex (z,y). Now, since u # uy
are non-adjacent for k = 2,3,...,n; and v’ # v; are non-adjacent for [ =
0,1,...,m—2, there is no chord between the vertices of Q. [(u, vo), (¥, Um—-1)]
and P, ((u1,?), (un,v’)]. Hence R is a (u,v) — (v/,v’) m-path in GR H
containing the vertex (z,y). Since y # v,v’, we have (z,y) # (u,v), (u/,v').
Thus (xi y) € JG@H((“’! U)) (u,! ‘U’)).

Proposition 2.2. Let G and H be connected graphs. Let S and T be
monophonic sets of G and H, respectively. Then S x T is a monophonic
set of GRW H.

Proof. Let (z,y) € V(G X H). Since S and T are monophonic sets of
G and H respectively, we have z € Jg[u,u'] and y € Jy(v,?’] for some
u,u' € Sand v,v' € T. If z € Jg(u,v) or y € Jy(v,v’), then by Lemma
2.1, (z,y) € Joru((u,v), (¥',v")). Otherwise, (z,y) € S x T. Thus S x T
is a monophonic set of GR H. [ |

Proposition 2.3. Let G and H be non trivial connected graphs.
Then maz{2,e(G)e(H)} < mn(G R H) < mn(G)mn(H).
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Proof. Let S and T be minimum monophonic sets of G and H respectively.
By Proposition 2.2, S x T is a monophonic set of GRH and so mn(GRH) <
|S x T| = mn(G)mn(H). The other inequality follows from Theorems 1.1
and 1.2. [ |

Corollary 2.4. Let G and H be extreme monophonic graphs. Then mn(GR
H) = mn(G)mn(H) = e(G)e(H).

In view of Corollary 2.4, we leave the following problem as an open
question.

Problem 2.5. Let G and H be connected graphs such that GRH is an ex-
treme monophonic graph. Is it true that G and H are extreme monophonic

graphs ?

In the following we introduce the concepts of open monophonic sets
and open monophonic number of a graph and obtain an upper bound of
mn(GR H) in terms of the open monophonic numbers of the factor graphs.
Also, we find the exact value of the monophonic number of several classes
of the strong product graphs.

A set S C V(G) is an open monophonic set if for each vertex v, either
(1) v is an extreme vertex of G and v € S, or (2) v lies as an internal vertex
of an z-y m-path for some z,y € S. An open monophonic set of minimum
cardinality is a minimum open monophonic set of G and this cardinality is
the open monophonic number og(G). It is clear that a monophonic set S
of G is an open monophonic set if and only if §° = S — Ext(G).

Theorem 2.6. Let G and H be connected graphs. Let S and T' be mono-
phonic sets of G and H, respectively. Then mn(GRH) < |S||T|-min{|S|, |T°|}.

Proof. Let S = {g1,92,...,9p} and T = {hy, hy,..., hy} be monophonic
sets of G and H respectively. If T° = ¢, then the result follows from
Proposition 2.2. So, assume that T° # ¢. Let T° = {hy,ho,...,hn},
where 1 <m < g.

Case 1. p>m. Let W = S x T — i%,{(gi, hi)}. Then |W| = pg—m.
We show that W is a monophonic set of G® H. Let (z,y) be a vertex of
G® H. Since S and T are monophonic sets of G and H respectively, we
have = € Jg[gi,9;] and y € Jy[hk, ] for 0<i<j<pand0<k<I<gq.
We consider two subcases.

Subcase 1.1. z € Jg(gi,9;) or y € Juy(he, hi). Suppose that i = k. Then
i # 1l and j # k so that (gi, ), (g;,hx) € W. It follows from Lemma
2.1 that (.‘B, y) € JGEH((giyhl):(gJ”hk)) - JG’EH[W]' Now, suppose that
i#k Ifj=1 theni # [l and j # k. Hence this is similar to the above
case. If j # I, then (g;, hi) € W. Since i # k, we have (g;, hx) € W. Now,
it follows from Lemma 2.1 that (z,y) € Jowmau((gi, h«), (9j, )). Hence
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(z,y) € Jogu([W).

Subcase 1.2 = € {gi,g;} and y € {hx,li}. Let y = he. If k > m +1,
then it is clear that (z,y) € W C Jegy[W]. If k£ < m, then hy € T° and
so hi € Jy(hr,hs) for 0 < r < s < ¢q. Hence we have z € Jg[gi, 9;] and
y = hi € Jy(he,hs). Then as in Subcase 1.1 we can prove that (z,y) €
Jowu|[W). If y = hy, then we can prove similarly that (z,y) € Jogy[W].
Hence W is a monophonic set of G X H.

Case 2. p<m. Let W =8 xT —|J_,{(9i,hi)}. Then, as in Case
1, we can prove that W is a monophonic set of G ® H. Hence the result
follows. |

Corollary 2.7. Let G and H be connected graphs. Then
mn(G & H) < mn(Glomn(H) — min{mn(G),omn(H) — e(H)}.

Proof. Let S be a minimum monophonic set of G and T a minimum open
monophonic set of H. Then mn(G) = |S| and omn(H) = |T| and T° =
T — Ext(H). Hence the result follows from Theorem 2.6. ]

Proposition 2.8. Let G be a connected graph. If S is a monophonic set
of GBR K, then mg(S) is a monophonic set of G.

Proof. Let = be a vertex of G such that z ¢ 7ng(S). Then (z,y) ¢ S
for any y € V(K,). Since S is a monophonic set of G ® K,,, there ex-
ist (u,v),(«',v') € S such that (z,y) lies on an m-path P : (u,v) =
(uwo,v0), (¥1,v1)s .-y (Uk, k) = (2,9), . - -, (Um, V) = (W/,v') With 1 < k <
m — 1. We first claim that all the u;’s (1 < i < m) are distinct. Suppose
that u; = u; for some i < j. If j = i + 1, then it follows that either
(¥i-1,vi-1) is adjacent to (u;,v;) or (ujt+1,v541) is adjacent to (u;,v;),
which is a contradiction to the fact that P is an m-path in GR K,,. If
J # i+ 1, then the edge (ui,v:)(u;,v;) is a chord of the path P, which
is also a contradiction. Thus all the u;’s are distinct and it follows that
me(P) : v = ug,u1,...,up = T,..., Uy, = u' is an m-path in G with
u,u’ € mg(S). Hence 7g(S) is a monophonic set of G. |

Corollary 2.9. Let G be a connected graph. Then mn(G) < mn(GR K,).
Proof. Let S be a minimum monophonic set of G® K,,. Then by Proposi-
tion 2.8, mg(S) is a monophonic set of G. Hence mn(G) < |mg(S)| < |S| =
mn(GR K,). |
3 Exact monophonic numbers

In this section we determine the exact values of the monophonic numbers
of the strong product for several classes of graphs. G o H denotes the
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composition of two graphs G and H. It is proved in [12] that mn(GoK,) =
min{n|S| — (n — 1)|S°| : S is a monophonic set of G}, where we observe
that G o K,, = G ® K, and so the next theorem follows directly.

Theorem 3.1. Let G be a connected graph. Then
mn(G B K,) = min{n|S| — (n — 1)|5°| : S is a monophonic set of G}.

Using this result, further we attain bounds for the monophonic number
of the strong product of a connected graph G and the complete graph K,
in terms of the monophonic number and the open monophonic number of

G.

Corollary 3.2. Let G be a connected graph. Then
e(G)(n — 1) + mn(G) < mn(G R K,) < e(G)(n — 1) + omn(G).

Proof. Suppose that mn(G ® K,) < e(G)(n — 1) + mn(G). Then, by
Theorem 3.1, there exists a monophonic set S of G such that n|S| - (n —
1)|5°| < e(G)(n — 1) + mn(G). Thus, n|S| < &(G)(n — 1) + mn(G) + (n —
1)|5°|. Since S° C S — Ext(G), we have n|S}| < e(G)(n—1)+mn(G)+(n—
1)(|S| — e(G)). This implies that n|S| < mn(G) + (n — 1)|S|. Hence |S| <
mn(G), which is a contradiction. Thus e(G)(n—1)+mn(G) < mn(GRK,).
For the other inequality, let S be a minimum open monophonic set of G.
Then omn(G) = |S|. By Theorem 3.1, we have mn(GR K, ) < n|S| —(n -
1)|5°| = n|S| - (n — 1)(|S] — e(G)) = e(G){(n — 1) + omn(G). |

Now, we proceed to characterize graphs G for which mn(G ® K,) =
e(G)(n - 1) + mn(G).

Corollary 3.3. Let G be a connected graph. Then
mn(GR K,) = e(G)(n — 1) + mn(G) if and only if mn(G) = omn(G).

Proof. Suppose that mn(G) = omn(G). Then the result follows from
Corollary 3.2. Conversely, assume that mn(GRK,) = e(G)(n—1)+mn(G).
By Theorem 3.1, there exists a monophonic set S of G such that mn(G
K,) =n|S| — (n — 1)|8°| and so n|S| — (n — 1)|5°| = e(G)(n — 1) + mn(G)
=(Equ. 1). Since $° C S—Ezt(G), we have ¢(G)(n—1)+mn(G) = n|S|-
(n—1)|S°| > nlS|~(n—1)(|S|=e(G)) = |S|+(n-1)e(G). Thus |S| < mn(G)
and so S is a minimum monophonic set of G. Hence mn(G) = |S|. Now
we claim that S is an open monophonic set of G From (Equ. 1), we have
(n—=1)|5°| = n|S|—e(G)(n—1)-mn(G) = n.mn(G)—e(G)(n—1) —mn(G).
Hence (n —1)|5°| = (n — 1)(mn(G) — e(G)) and so |S°| = mn(G) —e(G) =
|S|—e(G). Therefore, S° = S— Ezt(G) and hence S is an open monophonic
set of G. Thus omn(G) < |S| = mn(G). Since mn(G) < omn(G), the result
follows. n
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Next, we proceed to find certain classes of graphs for which the upper
bound of Corollary 3.2 is attained.

Corollary 3.4. If G is a connected graph such that omn(G) = mn(G) +1,
then mn(G® K,,) = e(G)(n - 1) + mn(G) + 1.

Proof. This follows from Corollaries 3.2 and 3.3.

[ |
Theorem 3.5. Let G be a connected graph. Then maz{2,e(G)} < mn(G) <
omn(G) < 3mn(G) — 2¢(G).

Proof. The lower bound follows from Theorem 1.1. To prove the upper
bound of omn(G), let mn(G) = p. If p = ¢(G), then omn(G) = p so
that omn(G) = 3mn(G) — 2¢(G). So, assume that e(G) < p. Let S be a
minimum monophonic set of G. Then Ext(G) C S. Let S — Ext(G) =
{vi,v2,...,vp—e(c)}. For each j with 1 < j < p—e(G), let v;,; and v;
be two non-adjacent neighbors of v;. Then v; lies on the m-path P :
Vj,1, Vj, V5,2. LetT = SU{’ULl, V1,2, V2,1, V2,24« + +  Up—g(G), 19 'Up—-e(G)‘2}~ Then
IT| € p+ 2(p - e(@)) = 3mn(G) — 2¢(G). We show that T is an open
monophonic set of G. Let x € T — Ext(G). If z ¢ S, then = € Jg(y, 2)
for some y,z € S and so z € T°. If z € S, then z = v; for some j
with 1 < j < p—e(G) and so x € Jg(v;,1,v5,2). Hence z € T° and so
T° = T — Ext(G). This shows that T is an open monophonic set of G.
Thus omn(G) < |T| = 3mn(G) — 2¢(G). |

Theorem 3.6. Let G be a connected graph and n > 2(mn(G) — e(G)) + 1.
Then mn(G & K,,) = e(G)(n — 1) + omn(G).

Proof. Let S be a monophonic set of G. If S is an open monophonic
set, then $° = S — Ext(G). Hence n|S| — (n — 1)|S°| = n|S| — (n —
1)(|S] — e(G)) = e(G)(n — 1) + |S| = e(G)(n — 1) + omn(G). Now, if
S is not an open monophonic set of G, then S° ¢ S — Ezt(G). Thus,
n|S|~(n—1)|8°| 2 n|S|~(n—1)(|S|-e(G)—1) = (n—1)e(G)+|S|+(n—1) >
(n—1)e(G) + mn(G) + 2(mn(G) — e(G)) = (n—1)e(G) + 3mn(G) — 2¢(G).
By Theorem 3.5, we have n|S|—(n—1)|5°] > (n—1)e(G) +omn(G). Hence
the result follows from Corollary 3.2. |

Remark 3.7. The converse of Theorem 3.6 is not true. For the graph
G = Cg, we have that mn(Cg ® K3) = 3 (see Theorem 3.9). However,
n=3<5=2(mn(G) —e(G)) + 1.

In view of Theorem 3.6, we leave the following problem as an open
question.

Problem 3.8. Characterize the class of graphs G for which mn(GXRK,,) =
(n —1)e(G) + omn(G).
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In the following, we obtain the exact values of the monophonic numbers
of some standard classes of the strong product graphs.

Theorem 3.9. For integers m > 3 and n > 2,

3n ifm=3
mn(Cn, B K,)=1( 4 ifm=4,5
3 ifm>6

Proof. If m = 3, then C,,, ® K,, = K3, and so mn(Cr, ¥ K,,) = 3n. So,
assume that m > 4. Since any two non-adjacent vertices of Cp, form a
monophonic set of C,,,, we have mn(C,,) = 2. Let m =4 and let S be a
monophonic set of Cy. If |S| = 2, then |§°| = 0 and so n|S| — (n —1)|5°| =
2n > 4. If |S| = 3, then |S°| = 1 and so n|S| — (n — 1)|S°| =2n+1 > 5.
If |S| = 4, then S = V(C,) so that § = §°. This implies that n|S| — (n —
1)|S°| = 4. Hence it follows from Theorem 3.1 that mn(Cy R K,) = 4. Let
m = 5 and let S be a monophonic set of Cs. If |S| = 2, then |$°| =0
and so n|S| — (n — 1)|S°| = 2n > 4. If |S| = 3, then we have |S°| =1 or
|S°| = 2. Hence n|S| — (n —1)|S°| =2n+1or n|S| — (n - 1)|S°| =n+2,
which is greater than or equal to 4. Also, if |S| =4 or |S| =5, then § = §°
and so n|S| — (n — 1)|S°] = |S|. Hence it follows from Theorem 3.1 that
mn(Cs ® K,,) = 4 (n > 2). Finally, let m > 6. Then omn(Cp) =3 =
mn(Cp,) + 1 and so by Corollary 3.4, mn(C,, R K,,) = 3. | |

Theorem 3.10. For integers2<r <sandn > 2, mn(K, , K K,) =4.

Proof. If r > 4, then it is easily seen that mn(K, ;) = omn(K, ;) =4 and
so by Corollary 3.3, mn(K, s B K,) = 4. If r = 3, then mn(K, ;) = 3 and
omn(Krs) = 4. Hence, by Corollary 3.4, mn(K, s ® K,,) = 4. Now, let
r=2. If s =2, then K, ; = C4 and so by Theorem 3.9, mn(K, ;®KK,) = 4.
If s > 3, let (X,Y) be the partite sets of K3, with |X| = 2. Now, X and
Y are monophonic sets of K55. Let S be any monophonic set of Kj ;.
IfS=XorY, then S° = ¢ and so n{S| - (n — 1)|S°| = n|S| > 4.
Assume that S # X,Y. Then |S| > 3. If |S| = 3, then |S°| = 1 and so
n|S| - (n—-1)|S°| =2n+1 > 5. If |S| > 4, then S° = S or |S°| = 1.
If |S°| = 1, then n|S| — (n - 1)|S°| 2 3n+1 > 7. If S° = S, then
n|S| — (n — 1){S°| = |S|. Now, let S = {z1,22,11,y2}, where 1,20 € X
and y;,y2 € Y. Then S is a monophonic set of K, ; with $° = S. Hence it
follows from Theorem 3.1 that mn(K2 , 8 K,) = 4. |
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