Density of integral sets with missing differences

Quan-Hui Yang¹ and Min Tang²

- School of Mathematics and Statistics, Nanjing University of Information Science and Technology, Nanjing, 210044, P. R. China
- 2. Department of Mathematics, Anhui Normal University, Wuhu 241003, China

Abstract

Motzkin posed the problem of finding the maximal density $\mu(M)$ of sets of integers in which the differences given by a set M do not occur. The problem is already settled when $|M| \leq 2$ or M is a finite arithmetic progression. In this paper, we determine $\mu(M)$ when M has some other structure. For example, we determine $\mu(M)$ when M is a finite geometric progression.

2010 Mathematics Subject Classification: 11B05.

Keywords and phrases: density, M-sets, geometric progression.

1 Introduction

Let \mathbb{N} be the set of all nonnegative integers. For a positive real number x and $S \subseteq \mathbb{N}$, we denote by S(x) the number of elements $n \in S$ such that $n \leq x$. The upper and lower densities of S, denoted by $\overline{\delta}(S)$ and $\underline{\delta}(S)$ respectively, are given by

$$\overline{\delta}(S) := \limsup_{x \to \infty} \frac{S(x)}{x}, \quad \underline{\delta}(S) := \liminf_{x \to \infty} \frac{S(x)}{x}.$$

If $\overline{\delta}(S) = \underline{\delta}(S)$, we denote the common value by $\delta(S)$, and say that S has density $\delta(S)$.

¹Supported by the Project of Graduate Education Innovation of Jiangsu Province (CXZZ12-0381). Email: yangquanhui01@163.com

²Supported by the National Natural Science Foundation of China, Grant No.10901002 and Anhui Provincial Natural Science Foundation, Grant No.1208085QA02. Email: tmzzz2000@163.com

Given a set of positive integers M, we call a set $S \subseteq \mathbb{N}$ is an M-set if $a \in S, b \in S$ implies $a - b \notin M$. In an unpublished problem collection, Motzkin [9] posed the problem of determining the quantity

$$\mu(M) := \sup_{S} \overline{\delta}(S),$$

where the supremum is taken over all M-sets S. In [2], Cantor and Gordon proved that if |M| = 1, then $\mu(M) = 1/2$ and that if $M = \{m_1, m_2\}$, then $\mu(M) = [(m_1 + m_2)/2]/(m_1 + m_2)$. The following result is also proved.

Theorem A. Let $M_1 = \{m_1, m_2, \ldots\}$ and $M_2 = \{dm_1, dm_2, \ldots\}$, where d is a positive integer. Then $\mu(M_1) = \mu(M_2)$.

By Theorem A, we may assume that $gcd(m_1, m_2, ...) = 1$ for the purpose of determining $\mu(M)$. Later, Haralambis [7] determined $\mu(M)$ for most members of the families $\{1, j, k\}$ and $\{1, 2, j, k\}$. In 1999, Gupta and Tripathi [6] completely determined $\mu(M)$ when M is a finite arithmetic progression.

Theorem B. If $M = \{a, a+d, a+2d, ..., a+(n-1)d\}$ with gcd(a, d) = 1 and n > 1, then

$$\mu(M) = \begin{cases} \frac{2a + (n-1)(d-1)}{2\{2a + (n-1)d\}} & \text{if d is odd;} \\ \frac{1}{2} & \text{if d is even.} \end{cases}$$

In 2011, Pandey and Tripathi [12] investigated this quantity when M is related to arithmetic progressions. For related results, one may refer to [5], [10] and [11].

Motzkin's problem has connections with some other problems, such as the *T-colouring problem*, problems related to the fractional chromatic number of distance graphs and the Lonely Runner Conjecture. One may refer to [1], [3], [13].

Recently, Chen and Yang [4], Khovanova and Konyagin [8] studied the upper density among sets of nonnegative integers in which no two elements have quotient belonging to M.

In this paper, the following results are proved.

Theorem 1. Let $M = \{1, q, m_3, m_4, \ldots, m_s\}$, where $1 < q < m_3 < m_4 < \cdots < m_s$. If $m_i \equiv \pm 1 \pmod{q+1}$ for all integers $i \in \{3, 4, \ldots, s\}$, then we have

$$\mu(M) = \begin{cases} 1/2 & \text{if } q \text{ is odd;} \\ \frac{q}{2(q+1)} & \text{if } q \text{ is even.} \end{cases}$$

From Theorem A and Theorem 1 we obtain the following corollary.

Corollary 1. If $M = \{a, aq, ..., aq^n\}$, where a, q, n are positive integers with $q \ge 2$, then $\mu(M) = 1/2$ if q is odd, and $\mu(M) = \frac{q}{2(q+1)}$ if q is even.

In the next theorems, we shall consider some other sets M with special structure.

Theorem 2. Suppose that $M = \{m_1, m_2, ..., m_n\}$ with $m_1 < m_2 < \cdots < m_n$ and satisfy the following two conditions:

- $(i) \{m_j m_i : 2 \le i < j \le n\} \subseteq M;$
- (ii) the set M does not contain a multiple of n.

Then we have $\mu(M) = 1/n$.

Theorem 3. Let $M = \{i + kj : 0 \le k \le n-1\} \cup \{j\}$ with gcd(i, j) = 1 and $n \ge 1$. Let $i + nj \equiv r \pmod{n+1}$ with $0 \le r \le n$. If gcd(r, i + nj) = 1, then $\mu(M) \ge \frac{i + nj - r}{(n+1)(i+nj)}$. Furthermore, if r = n, then $\mu(M) \ge \frac{i + nj - n}{(n+1)(i+nj)}$.

By Theorem 2 and Theorem 3, we have the following corollary.

Corollary 2. If $M = \{i, j, i + j, i + 2j\}$ with i < j and gcd(i, j) = 1, then

$$\mu(M) \begin{cases} = 1/4 & \text{if } i + 3j \equiv 0 \text{ or } 2 \pmod{4}; \\ \geq \frac{i+3j-r}{4(i+3j)} & \text{if } i + 3j \equiv r \pmod{4}, \text{ where } r = 1 \text{ or } 3. \end{cases}$$

Theorem 4. If $M = \{i + k_1 j : 0 \le k_1 \le n - 1\} \cup \{k_2 j : 1 \le k_2 \le n\}$ with $n \ge 1$, gcd(i, j) = 1 and $i + nj \equiv 1 \pmod{n + 1}$, then

$$\mu(M) = \frac{i+nj-1}{(n+1)(i+nj)}.$$

2 Preliminary Lemmas

In this section, we state two useful lemmas which give the lower and upper bound for $\mu(M)$.

Lemma 1. (See [2, Theorem 1].) Let $M = \{m_1, m_2, m_3, \ldots\}$, and let c and m be positive integers such that gcd(c, m) = 1. Put

$$d = \min_{k} |cm_k|_m,$$

where $|x|_m$ denotes the absolute value of the absolutely least remainder of $x \pmod{m}$. Then $\mu(M) \geq d/m$.

Lemma 2. (See [7, Lemma 1].) Let M be a given set of positive integers, α a real number in the interval [0,1], and suppose that for any M-set S with $0 \in S$ there exists a positive integer k (possibly dependent on S) such that $S(k) \leq (k+1)\alpha$. Then $\mu(M) \leq \alpha$.

3 Proof of Theorem 1

Suppose that q is odd. For any M-set S, by $1 \in M$, we know that it contains no two consecutive integers. Thus, $\mu(M) \leq 1/2$. On the other hand, by $m_i \equiv \pm 1 \pmod{q+1}$ and $2 \mid q+1$, we know that M consists of only odd numbers. Hence, the example $S = \{0, 2, 4, \ldots\}$ shows that equality can hold, and so $\mu(M) = 1/2$.

Now we consider the case in which q is even. If $\mu(M) > \frac{q}{2(q+1)}$, then there exists an M-set S and an interval [c,c+q] such that $|S\cap[c,c+q]| > q/2$. That is, $|S\cap[c,c+q]| \geq q/2+1$. Noting that $1\in M$, we know that S does not contain consecutive integers, and so $S\cap[c,c+q]=\{c,c+2,\ldots,c+q\}$. It follows that $q\in S-S$, a contradiction. Hence, $\mu(M)\leq \frac{q}{2(q+1)}$.

Next we shall prove that $\mu(M) \geq \frac{q}{2(q+1)}$. Since

$$\frac{q}{2} \times m_i \equiv \pm \frac{q}{2} \pmod{q+1}$$

for all integers $i \in \{3, 4, \ldots, s\}$ and $1 \cdot \frac{q}{2} \equiv \frac{q}{2} \pmod{q+1}$, $q \cdot \frac{q}{2} \equiv -\frac{q}{2} \pmod{q+1}$, by Lemma 1, taking c = q/2 and m = q+1, we have $\gcd(c, m) = 1$ and d = q/2. Thus, $\mu(M) \geq \frac{q}{2(q+1)}$.

Therefore, $\mu(M) = \frac{q}{2(q+1)}$ if q is even.

4 Proof of Theorem 2

For any positive integer x and an M-set $S \subseteq [0, x]$, we shall prove that $|S| \leq (x + m_n + 1)/n$.

First, we prove $|S+M| \ge (n-1)|S|$ by induction on |S|. Clearly, it is true for |S|=1. Now suppose that $|S'+M| \ge (n-1)|S'|$ holds for all M-sets S' with |S'| < |S|. Write $S = \{b_1, b_2, \ldots, b_{|S|}\}$. By $\{m_j - m_i : 2 \le i < j \le n\} \subseteq M$, it follows that

$$(b_{|S|} + \{m_2, m_3, \ldots, m_n\}) \cap (\{b_1, b_2, \ldots, b_{|S|-1}\} + M) = \emptyset.$$

Otherwise, there exist three integers i, j, k with $2 \le i < j \le n$ and $1 \le k \le |S| - 1$ such that $b_{|S|} + m_i = b_k + m_j$, and then $b_{|S|} - b_k = m_j - m_i \in M$, a contradiction. Hence, by the induction hypothesis, we have

$$|\{b_1,\ldots,b_{|S|}\}+M|\geq (n-1)+|\{b_1,\ldots,b_{|S|-1}\}+M|\geq (n-1)|S|.$$

By $S \cap (S+M) = \emptyset$ and $S \cup (S+M) \subseteq [0, x+m_n]$, it follows that $n|S| \leq |S| + |S+M| \leq x + m_n + 1$, and so $|S| \leq (x+m_n+1)/n$.

Hence, $\mu(M) = \sup_{S} \overline{\delta}(S) \le \lim_{x \to \infty} (x + m_n + 1)/(nx) = 1/n$.

On the other hand, since M does not contain a multiple of n, the set $\{0, n, 2n, \ldots\}$ is an M-set. So $\mu(M) \geq 1/n$.

Therefore, $\mu(M) = 1/n$.

5. Proof of Theorem 3

Let t = i + nj. Then $t \equiv r \pmod{n+1}$. We consider the following two cases.

Case 1: gcd(r,t) = 1. By gcd(i,j) = 1, we have gcd(j,t) = 1. Then there exists an integer x such that

$$xj \equiv \frac{t-r}{n+1} \pmod{t}.$$

Since gcd(r,t) = 1, it follows that $gcd(\frac{t-r}{n+1},t) = 1$, and then gcd(x,t) = 1. For such x we have

$$x(i+kj) \equiv \frac{(k+1)(t-r)}{n+1} + r \pmod{t}$$

for k = 0, 1, ..., n - 1. Noting that gcd(x, t) = 1 and

$$x(i + (n-1)j) \equiv \frac{n(t-r)}{n+1} + r \equiv -\frac{(t-r)}{n+1} \pmod{t},$$

by Lemma 1, we have $\mu(M) \ge \frac{t-r}{(n+1)t} = \frac{i+nj-r}{(n+1)(i+nj)}$.

Case 2: r = n and gcd(r, t) > 1. Then there exists an integer x' such that

$$x'j \equiv \frac{t+1}{n+1} \pmod{t}.$$

Since $gcd(\frac{t+1}{n+1},t)=1$, we have gcd(x',t)=1. For such x' we have

$$x'(i+kj) \equiv \frac{(k+1)(t-n)}{n+1} + k \pmod{t}$$

for $k = 0, 1, \ldots, n - 1$. Noting that gcd(x', t) = 1,

$$x'i \equiv \frac{t-n}{n+1} \pmod{t},$$

and

$$x'(i+(n-1)j) \equiv \frac{n(t-n)}{n+1} + n - 1 \equiv -\frac{(t+1)}{n+1} \pmod{t},$$

by Lemma 1, we have $\mu(M) \ge \frac{t-n}{(n+1)t} = \frac{i+nj-n}{(n+1)(i+nj)}$.

6 Proof of Corollary 2

We consider the following three cases.

Case 1: $i+3j \equiv r \pmod{4}$ with r=1 or 3. By Theorem 3, we have $\mu(M) \geq \frac{i+3j-r}{4(i+3j)}$.

Case 2: $i + 3j \equiv 0 \pmod{4}$, then we have $i \equiv j \equiv 1 \pmod{4}$ or $i \equiv j \equiv 3 \pmod{4}$. In this case, the set M does not contain a multiple of 4, thus by Theorem 2, we have $\mu(M) = 1/4$.

Case 3: $i + 3j \equiv 2 \pmod{4}$, then we have $i \equiv 1 \pmod{4}$, $j \equiv 3 \pmod{4}$ or $i \equiv 3 \pmod{4}$, $j \equiv 1 \pmod{4}$. In this case, we know that the set M contains only one even number i + j. Let

$$S = \bigcup_{k=0}^{\infty} (2k(i+j) + \{0, 2, 4, \dots, i+j-2\}).$$

Clearly, S is an M-set and $\delta(S) = 1/4$. Hence $\mu(M) \ge 1/4$. By the proof of Theorem 2, we have $\mu(M) \le 1/4$. Therefore, $\mu(M) = 1/4$.

7 Proof of Theorem 4

First we follow the proof of Theorem 3 and show that $\mu(M) \ge \frac{i+nj-1}{(n+1)(i+nj)}$. Let i+nj=t. Then there exists an integer x such that

$$xj \equiv \frac{t-1}{n+1} \pmod{t}.$$

Clearly, gcd(x, t) = 1. For such x we have

$$x(i+k_1j) \equiv \frac{(k_1+1)(t-1)}{n+1} + 1 \pmod{t}$$

for $k_1 = 0, 1, ..., n-1$ and

$$x(k_2j) \equiv \frac{k_2(t-1)}{n+1} \pmod{t}$$

for $k_2 = 1, 2, \ldots, n$. Noting that

$$x(i+(n-1)j) \equiv \frac{n(t-1)}{n+1} + 1 \equiv -\frac{t-1}{n+1} \pmod{t}$$

and

$$x(nj) \equiv \frac{n(t-1)}{n+1} \equiv -\frac{t-1}{n+1} - 1 \pmod{t},$$

by Lemma 1 we have $\mu(M) \geq \frac{t-1}{(n+1)t}$.

Now we will prove $\mu(M) \leq \frac{t-1}{(n+1)t}$. Let S be any M-set with $0 \in S$. Then for t = i + nj,

$$\bigcup_{m=1}^{(t-n-2)/(n+1)} A_m \cup B$$

is a decomposition of $\{0, 1, 2, \dots, t-1\}$ into disjoint sets, where

$$B = \{0, j\} \cup \{i + kj : 0 \le k \le n - 1\},\$$

$$A_m = \{(j-i)m + i + kj : 1 \le k \le n-1\} \cup \{(j-i)m, (j-i)m + j\}$$

with $1 \le m \le (t - n - 2)/(n + 1)$ and the elements of each set A_m are considered modulo t.

Since S is an M-set and $0 \in S$, it follows that $|A_m \cap S| \le 1$ for each m and $|S \cap B| = 1$.

Hence, $S(t-1) \le 1 + (t-n-2)/(n+1) = (t-1)/(n+1)$ for any M-set S. By Lemma 2, it follows that $\mu(M) \le (t-1)/((n+1)t)$.

Therefore, we obtain

$$\mu(M) = \frac{t-1}{(n+1)t} = \frac{i+nj-1}{(n+1)(i+nj)}.$$

8 Acknowledgments

We sincerely thank the anonymous referee for his/her detailed comments.

References

- [1] W. Bienia, L. Goddyn, P. Gvozdjak, A. Sebő and M. Tarsi, Flows, view obstructions, and the lonely runner, J. Combin. Theory Ser. B 72 (1998), 1-9.
- [2] D. G. Cantor and B. Gordon, Sequences of integers with missing differences, J. Combin. Theory Ser. A 14 (1973), 281-287.

- [3] G. J. Chang, D. D.-F. Liu and X. D. Zhu, Distance graphs and Tcoloring, J. Combin. Theory Ser. B 75 (1999), 259-269.
- [4] Y. G. Chen and H. X. Yang, Sequences of integers with missing quotients, Discrete Math. 310 (2010), 1105-1111.
- [5] S. Gupta, Sets of integers with missing differences, J. Combin. Theory Ser. A 89 (2000), 55-69.
- [6] S. Gupta and A. Tripathi, Density of M-sets in arithmetic progression, Acta Arith. 89 (1999), 255-257.
- [7] N. M. Haralambis, Sets of integers with missing differences, J. Combin. Theory Ser. A 23 (1977), 22-33.
- [8] T. Khovanova and S. Konyagin, Sequences of integers with missing quotients and dense points without neighbors, Discrete Math. 312 (2012), 1776-1787.
- [9] T. S. Motzkin, Unpublished problem collection.
- [10] R. K. Pandey, Some results on the density of integral sets with missing differences, PhD thesis, Department of Mathematics, Indian Institute of Technology, Delhi, 2008.
- [11] R. K. Pandey and A. Tripathi, A note on a problem of Motzkin regarding density of integral sets with missing differences, J. Integer Seq. 14 (2011), Article 11.6.3, 8 pp.
- [12] R. K. Pandey and A. Tripathi, On the density of integral sets with missing differences from sets related to arithmetic progressions, J. Number Theory 131 (2011), 634-647.
- [13] J. Wu and W. Lin, Circular chromatic numbers and fractional chromatic numbers of distance graphs with distance sets missing an interval, Ars Combin. 70 (2004), 161-168.