Density of integral sets with missing differences
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Abstract

Motzkin posed the problem of finding the maximal density u(M)
of sets of integers in which the differences given by a set M do not
occur. The problem is already settled when |M| < 2 or M is a finite
arithmetic progression. In this paper, we determine u(M) when M
has some other structure. For example, we determine u(M) when
M is a finite geometric progression.
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1 Introduction

Let N be the set of all nonnegative integers. For a positive real number z
and S C N, we denote by S(x) the number of elements n € S such that
n < z. The upper and lower densities of S, denoted by §(S) and §(S)
respectively, are given by
8(S) := limsup —'S'—(Z:-)-, §(S) = liminf :S'_(_;c—)
z—00 x z—00 z

If 3(S) = §(S), we denote the common value by §(S), and say that S has
density §(S).

1Supported by the Project of Graduate Education Innovation of Jiangsu Province

(CXZZ12-0381). Email: yangquanhui01@163.com
2Supported by the National Natural Science Foundation of China, Grant No.10801002

and Anhui Provincial Natural Science Foundation, Grant No.1208085QA02. Email:
tmzzz2000@163.com

ARS COMBINATORIA 132(2017), pp. 231-239



Given a set of positive integers M, we call a set S C N is an M -set
ifa € S,b e S impliesa—b ¢ M. In an unpublished problem collection,
Motzkin [9] posed the problem of determining the quantity

H(M) = sgﬁ(s),

where the supremum is taken over all M-sets S. In [2], Cantor and Gordon
proved that if |M| = 1, then u(M) = 1/2 and that if M = {m, mz}, then
w(M) = [(my + m2)/2]/(m; + ms). The following result is also proved.
Theorem A. Let M; = {m;,mg,...} and Mz = {dm,,dms,...}, where d
is a positive integer. Then p(M,;) = p(M,).

By Theorem A, we may assume that ged(m;, ma,...) =1 for the pur-
pose of determining p(M). Later, Haralambis (7] determined p(M) for
most members of the families {1, 7, k} and {1,2, j,k}. In 1999, Gupta and
Tripathi (6] completely determined u(M) when M is a finite arithmetic
progression.

Theorem B. If M = {a,a+d,a+2d,...,a+ (n—1)d} with ged(a,d) =1
andn > 1, then

2a+(n—1)(d—1 . , :
L(M) = B (e if d is odd;
% if d is even.

In 2011, Pandey and Tripathi [12] investigated this quantity when M
is related to arithmetic progressions. For related results, one may refer to
(5], [10] and [11].

Motzkin’s problem has connections with some other problems, such
as the T'-colouring problem, problems related to the fractional chromatic
number of distance graphs and the Lonely Runner Conjecture. One may
refer to (1], 3], {13].

Recently, Chen and Yang [4], Khovanova and Konyagin [8] studied the
upper density among sets of nonnegative integers in which no two elements

have quotient belonging to M.
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In this paper, the following results are proved.
Theorem 1. Let M = {1,q,m3, my,...,m,}, where1 < g < mzg <my <
- < my. If m; = £1 (mod q + 1) for all integers i € {3,4,...,s}, then

we have
1/2 if q is odd,

5?39475 if q is even.

From Theorem A and Theorem 1 we obtain the following corollary.

u(M) =

Corollary 1. If M = {a,aq,...,aq"}, where a,q,n are positive integers

with q > 2, then p(M) = 1/2 if q is odd, and u(M) = 53 if g is even.

In the next theorems, we shall consider some other sets M with special

structure.

Theorem 2. Suppose that M = {m;,ma,...,mp} withm; <ma <--- <
my and satisfy the following two conditions:
(i) {mj —m;:2<i<j<n}CM;
(ii) the set M does not contain a multiple of n.
Then we have u(M) =1/n.

Theorem 3. Let M = {i+kj:0< k <n—-1}U{j} with ged(3,j) =1 and
n>1. Leti+nj=r (mod n+1) with0 <r < n. Ifged(r,i+nj) =1,

then p(M) > {5 Furthermore, if r = n, then p(M) > 505

By Theorem 2 and Theorem 3, we have the following corollary.
Corollary 2. If M = {i,4,i + j,i + 2} with i < j and ged(, j) =1, then

=1/4 if i+3j5=00r2 (mod 4);
(M) s
>HU-t i i1 3j=r (mod4), wherer =1 or3

< 4(i+3;
Theorem 4. If M = {i + k15 :0 < ky <n—1}U {koj : 1 < ko < n} with
n>1, ged(i,j) =1 andi+nj =1 (mod n + 1), then
i+nj—1

HM) = D )
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2 Preliminary Lemmas

In this section, we state two useful lemmas which give the lower and upper
bound for p(M).

Lemma 1. (See [2, Theorem 1].) Let M = {my,m3,m3,...}, and let ¢

and m be positive integers such that gcd(c,m) = 1. Put
d = min|emy|m,

where |z|, denotes the absolute value of the absolutely least remainder of
z (mod m). Then u(M) >d/m.

Lemma 2. (See [7, Lemma 1].) Let M be a given set of positive integers,
a a real number in the interval [0, 1], and suppose that for any M-set S
with 0 € S there exists a positive integer k (possibly dependent on S) such
that S(k) < (k+ 1)a. Then u(M) <a.

3 Proof of Theorem 1

Suppose that ¢ is odd. For any M-set S, by 1 € M, we know that it
contains no two consecutive integers. Thus, u(M) < 1/2. On the other
hand, by m; = £1 (mod ¢+ 1) and 2 | ¢ + 1, we know that M consists
of only odd numbers. Hence, the example S = {0,2,4,...} shows that
equality can hold, and so u(M) =1/2.

Now we consider the case in which ¢ is even. If (M) > 5ri4y, then
there exists an M-set S and an interval [c, c+q] such that |SN[c, c+¢]| > ¢/2.
That is, |SN(ec,c+¢]| > q/2+ 1. Noting that 1 € M, we know that S does
not contain consecutive integers, and so SN[c,c+g] = {¢,c+2,...,c+q}.
It follows that ¢ € S — S, a contradiction. Hence, u(M) < 5(71g+_1)'

Next we shall prove that (M) > 525y Since

%xm,-s:l:% (mod g +1)
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for all integers i € {3,4,...,s}and 1-4 =1 (modg+1),q-% = -4
(mod ¢ + 1), by Lemma 1, taking ¢ = ¢/2 and m = g + 1, we have
ged(c,m) =1 and d = /2. Thus, u(M) 2 5%-

Therefore, u(M) = 344y if g is even.

4 Proof of Theorem 2

For any positive integer = and an M-set S C [0,z], we shall prove that
|S| < (z+m, + 1) /n.

First, we prove |S + M| > (n — 1)|S] by induction on |S]|. Clearly, it
is true for |S| = 1. Now suppose that |S’ + M| > (n — 1)|5’| holds for all
M-sets S’ with |S’| < |S|. Write S = {b1,b,...,bg}. By {mj —m;:2 <
i< j<n}C M, it follows that

(blsl + {m21m3$' v 1mn}) N ({blsb2,~ "’b|sl“‘1} +M) = 0.

Otherwise, there exist three integers 4,7,k with2<i<j<nand 1<k <
|S| — 1 such that bjg + m; = by + m;, and then bg — by =m; —m; € M,

a contradiction. Hence, by the induction hypothesis, we have
[{b1, .-, bysi} + M| > (n = 1) + |{b1,..., bsj—1} + M| = (n — 1)|8].

By SN(S+ M) = 0 and SU(S+ M) C [0,z + m,], it follows that
n|S| < |S|+|S+ M| <z+mp+1, and so |S] < (z +mn, +1)/n.

Hence, p(M) = supg §(S) < limz—y00(z + mn + 1)/(nz) = 1/n.

On the other hand, since M does not contain a multiple of n, the set
{0,n,2n,...} is an M-set. So u(M) > 1/n.

Therefore, u(M) = 1/n.

5 Proof of Theorem 3

Let t = i + nj. Then t = r (mod n + 1). We consider the following two

cases.
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Case 1: ged(r,t) = 1. By ged(i,j) = 1, we have ged(j,t) = 1. Then

there exists an integer z such that

t
Tj = T’i (mod t).

Since ged(r,t) = 1, it follows that ged({3%,¢) = 1, and then ged(z,t) = 1.

n+l’
For such = we have

(k+1)(t —7)

por] +7 (mod ?)

z(i + kj) =
for k=0,1,...,n — 1. Noting that ged(z,t) =1 and

x(i+(n—1)j)En£:—_:1r)+rs (+’;) (mod t),

t—r_ __ __i+nj-r

by Lemma 1, we have u(M) > oD = GIDGE)

Case 2: r = n and ged(r,t) > 1. Then there exists an integer z’ such
that

t+1
-
i = (mod t).

Since ged(it: 11:t) = 1, we have ged(z',t) = 1. For such z’ we have

(k+1)(t—n)

e N\ —
z'(i+kj) = o)

+k (mod t)

for k=0,1,...,n — 1. Noting that ged(z/,t) =1,

o _t—m
Ti= (mod t),
and
‘e vy = B(t—n) o (E+1)
'@+ (n 1)])_——11_*_1 +n—-1= T 1 (mod t),

t—n itnj—n

by Lemma 1, we have u(M) > Il = GaDG

6 Proof of Corollary 2

We consider the following three cases.
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Case 1: i + 3j = r (mod 4) with r =1 or 3. By Theorem 3, we have
pM) > Fs.

Case 2: i+ 3j = 0 (mod 4), then we have i = j = 1 (mod 4) or
t = j = 3 (mod 4). In this case, the set M does not contain a multiple of
4, thus by Theorem 2, we have u(M) = 1/4.

Case 3: i+ 35 = 2 (mod 4), then we have ¢ = 1 (mod 4), j = 3
(mod 4) or i =3 (mod 4), j =1 (mod 4). In this case, we know that the

set M contains only one even number i + j. Let
[ o]
S=J (kG +5)+{0.24,...,i+j-2}).
k=0
Clearly, S is an M-set and §(S) = 1/4. Hence p(M) > 1/4. By the proof
of Theorem 2, we have p(M) < 1/4. Therefore, u(M) =1/4.

7 Proof of Theorem 4

First we follow the proof of Theorem 3 and show that u(M) > zﬁ';‘(&i—‘ﬁ

Let i + nj = t. Then there exists an integer z such that

t—1
zj = —1 (mod t).

+1
Clearly, ged(z,t) = 1. For such z we have

(e +1)(t—1)

— ) +1 (modt)

z(i + k1j) =
for k; =0,1,...,n—1and

z(kej) = -kz—(t-:l)- (mod t)

n+1
for k; = 1,2,...,n. Noting that
. N n{t-1) t—1
- == 4= —— dt
z(i + (n — 1)j) e + e (mod t)

and
n(t-1) _ t—-1

n+1 _n+1_1 (mod 2),

z(nj) =

237



by Lemma 1 we have u(M) > riry;-

Now we will prove u(M) < (#,_‘—llﬁ Let S be any M-set with 0 € S.
Then for t =i + nj,

(t-n—=2)/(n+1)
A,UB
m=1
is a decomposition of {0,1,2,...,t — 1} into disjoint sets, where

B={0,j}u{i+kj:0<k<n-1}

An={J-iym+i+kj:1<k<n-1}U{(F-i)m,(G—-i)m+j}

with1 <m < (t —n —2)/(n+ 1) and the elements of each set A,, are
considered modulo t.

Since S is an M-set and 0 € S, it follows that |A,, N S| < 1 for each m
and |[SNB|=1.

Hence, S(t—-1) <14+ (t—-n—-2)/(n+1) = (t-1)/(n+1) for any M-set
S. By Lemma 2, it follows that u(M) < (¢t — 1)/((n + 1)t).

Therefore, we obtain

_t=1  i4nj-1
wM) = (n+1t  (n+1D)(E+n5)"
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