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1 Introduction

The concept of a locating-total dominating set and a differentiating domi-
nating set in a graph was introduced in [6, 7]. It has been studied in [1]-[4]
and elsewhere. The problem of placing monitoring devices in a system such
that every site (including the monitors themselves) in the system is adjacent
to a monitor can be modelled by total domination in graphs. Applications
where it is also important that if there is a problem in a device, its location
can be uniquely identified by the set of monitors, can be modelled by the
combination of total domination and locating in graphs. In this paper, we

consider two different variations of this combination.

Loops and parallel edges are admissible in a graph here. Given a graph
G = (V,E), the degree of v in G, denoted by d(v), is the number of edges
incident with v, each loop counting as two edges. The mazimum degree of
G, denoted by A(G) or A, is equal to max{d(v) | v € V}. A vertex of
degree one is a leaf and the edge incident with a leaf is a pendent edge. A
support vertez is a vertex adjacent to a leaf and a strong support vertex is
a support vertex adjacent to at least two leaves. We denote by L(G) the
set of leaves of G, S(G) the set of support vertices of G and S1(G) the set
of strong support vertices of G, respectively. G is simple, if G has neither
loops nor parallel edges. G is connected, if for any two vertices = and y,
there is an zy-path in G. For a subset S of V, we use G[S] to denote the
subgraph induced by S. If A and B are two disjoint subsets of V/, then
(A,B} = {uv € E(G)|u € A,v € B}. Let G and H be two disjoint graphs.
The disjoint union of G and H, denoted by G+ H, is the graph with vertex
set V(G)U V(H) and edge set E(G)UE(H). If G, = --. = Gy, we write
kG, for Gy + - -+ + Gy.

Let G = (V,E) be a simple graph on n vertices. For a vertex v in G,
the set N(v) = {u € V | uv € F} is called the open neighborhood of v and
N[v] = N(v) U {v} is the closed neighborhood of v. For a subset S C V,
N(S) = U,es N(v) is the open neighborhood of S and N(S] = N(S)u S
is the closed neighborhood of S. A subset S of V is a dominating set
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(DS) of G if N[S] = V and S is a total dominating set (I'DS) of G if
N(S) = V. A TDS S is a locating-total dominating set (LTDS) if for
every pair of distinct vertices v and v in V — S, N(u) N S # N(v) N S,
and S is a differentiating-total dominating set (DT DS) if for every pair
of distinct vertices u and v in V, NfuJNn S # N[vJn S. The locating-
total domination number (or differentiating-total domination number) of
G, denoted by 7£(G) (or v2(G)), is the minimum cardinality of a LT DS
(or DTDS) of G. A LTDS (or DTDS) of cardinality vZ(G) (or ¥ (G))
is a vE(G)-set (or 7P (G)-set).

A path of order n is P,. A star of order n is denoted by S,. A tree
is called a double star S(p,q), if it is obtained from Sp42 and Sg+1 by
identifying a leaf of Sp4 with the center of Sg41, where p,¢ > 1.

A connected graph of order n and size n is a unicyclic graph. By defini-
tion, a unicyclic graph might have loops and parallel edges. Given a graph
G = (V,E), the corona, cor(G), is a graph obtained from G by adding a
pendent edge to each vertex of G.

Locating and differentiating-total dominating sets in trees and other
graphs have been studied in several papers, see [2]-[5], [7] and [8]. In
this paper, we investigate the bounds of locating and differentiating-total

domination numbers of unicyclic graphs.

2 Locating-total domination number of a u-
nicyclic graph

Throughout this section, let G = (V, E) be a simple unicyclic graph. Let
L(G) = L,S(G) = §,5,(G) = 51,5 — 51 = Sz and A be a vF(G)-set of
G that contains a minimum number of leaves. Then we have S C A. If
S # 9, then for every v € S, exactly one leaf adjacent to v is not in A.
Let B={v ¢ A| INw)NA| =1} and C = {v ¢ A| [N(v) N A| > 2}. Let
Li=LNA Q =A—-(LiuS), Ly =L - L, and Q2 = B— L. Then
A=L,USUQ,, B=LUQ,, V =AUBUC and we have the following
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lemma.

Lemma 2.1 Let |L| =1, |S| = s and |S1| = s;. Suppose s # 0. Then

(1) |[A,BUC]| 2 |B| +2|C| = 2n — 2|A| —| B| and the equality holds if
and only if |N(v) N A| = 2 for every vertexv € C;

(2) |[A, BUC]| =n - |E(G[A])| —| E(G[Q2 L C])|;

(3) |L1| =1=s, |La| = s, |Qr] = |A| = 1, |Q2| =|B| —s;

(4) 1Q2| < |Qul, |B| £ [A] =1+ s and |B| = [A| — 1 + s if and only if
Q1] = 1Q2|;

(5) |[E(G[Qz2U C))| > ]9231 and the equality holds if and only if G[Q2 U
C|= J%ale + |C|K and C is an independent set in G[Q2 U C);

(6) |[E(G[SUQu])| = 3(s — 81+ |A| — 1) and the equality holds if and
only if GISU Q1] & 1K1 + %Kz and S; is an independent set in
GSu@);

(7) |[E(G|A])| = 1-2’11 and the equality holds if and only if G[A] =¢ L‘z‘lKg;

(8) |E(G[A])| =2 ! — s and the equality holds if and only if |Q1] = O,
|E(G[S])| = 0 and every component of G[A] is a star.

Proof. (1)-(3) are obvious.

(4) As A is an LTDS of G, for every v € Q2, we have N(v)NA C @, and
N(u)N A # N(v) N A for every u,v € Q2 with u # v. Then |Q2| <| Q|-
By (3), |B| = |Q2| + |L2| <| @] + |L2| = |A] = L +.

(5) Since d(v) > 2 for any v € Q2 C B, N(v) N (C U Q2) # 0. Thus,

BGRUC) =5 Y doaa) 23 - doraaae) = 12,

vEQUC veQz
and the equality holds if and only if G{Q, U C] = BﬂKg +|C|K; and C is
an independent set in G[Q2 U C].

(6) For every v € S, UQy, N(v) N (SUQ;) # 0 by the definition of
LTDS. Thus,

1 1 1
IBGSUQDI 25 Y darsuai(v) 2 51520Q] = 5(s—s1+14] 1),
VESUQ)
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and the equality holds if and only if G[SUQ,] = s, K; + Ls’+q’-lK2 and Sy
is an independent set in G[S U Q).

(7) By the definition of LTDS, we have |E(G[A])| = § 3,4 do(4)(v) =
%l and the equality holds if and only if G[A] = ]%11{2.

(8) Firstly, we have |E(G[A])| 2| E(G[L, U S1])| 2| Li|. By (3),
|E(G[A])] > | — s. By the definition of an LTDS, the equality holds if
and only if |Q1| = 0, |E(G[S])| = 0 and every component of G[4] is a star.
]

In (8], the following result was stated.

Theorem 2.2 [8] Forn >3, v£(Crn) = [n/2] + [n/4] — |n/4].

Let & be the family of simple unicyclic graphs that can be obtained
from any simple unicyclic graph G’ by first attaching at least two leaves to
each vertex of G’, and then subdividing each edge of G’ exactly once.

Theorem 2.3 If G is a simple unicyclic graph of order n, |L(G)| =1
and |S(G)| = s, then yE(G) > (n+2(l - s))/3 and the equality holds if and
only if G € &.

Proof. If G = C,, then v¥(Cn) = |n/2] + [n/4] — [n/4] > n/3
by Theorem 2.2. Now suppose s # 0. From Lemma 2.1 (1) and (4), we
obtain |[4, BUC]| > 2n — 3|A|+!—s. By Lemma 2.1 (2) and (8), we have
I[4,BUC]| =n—|E(G|A])| —| E(G|Q:UC]) < n— |E(G[A])| S n—l+s.
Thus, v#(G) = (n+2(l — 5))/3.

The equality v£(G) = (n + 2(l — s))/3 holds if and only if |Q2| = |Q:],
|IN(v)N A| = 2 for every vertex v € C, |E(G[Q2UC])| =0 and |E(G[4])| =
I —s. By Lemma 2.1 (5) and (8), C is an independent set in G[Q2 U C],
|Q2| = |@:1] = 0, |E(G[S])| = 0 and every component of G[A] is a star.
Thus, every connected component of G[AU B] is a star on at least three
vertices and then G € &;. ]

Let us define a set of trees 7, = { P4} U{Ssla > 3}. Let & be the family
of simple unicyclic graphs that can be obtained from r disjoint copies of
several trees in 7; by first adding r edges so that they are only incident
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with support vertices, each pair of them are non-parallel and the resulting
graph is connected and has no loops, and then subdividing each new edge
exactly once.

Theorem 2.4  Suppose G is a simple unicyclic graph of order n,
IL(G)| =1, |S(G)| = s and |S1(G)| = s1. Then

1 (G) 2 (2n+3(1 = 5) — 51)/5,

with equality if and only if G € &5.

Proof. If G = C,, then v£(Cy) = |n/2] + [n/4] — |n/4] > 2n/5 by
Theorem 2.2. Now suppose s # 0. From Lemma 2.1 (1) and (4), we obtain
{[A,BUC]| > 2n — 3|A| +1 — 5. By Lemma 2.1 (2) and (6), |[4,BUC]| <
n—|E(GA])| =n~|Li| - |B(GISUQ1])| S n—(1=s)— 3(s —s1+|A| 1),
Thus v (G) = |[A]| = (2n + 3(1 — 5) — 51))/5.

The equality v*(G) = (2n + 3( — s) — 51))/5 holds if and only if
|E(G[Q2UC])| =0, IN(v) N A| = 2 for every vertex v € C, |Q:1]| = |Q2],
G[SUQ,] = lel-i-Js’—L.;Q-lle and S; is an independent set in G[SUQ;|. By
the same argument as that of Theorem 2.3, we have that 0 = |Q2| = |Q]
and A = L, U S. Hence G[S] = s, K; + 252 K. Consequently, every con-
nected component of G[A U B is either a P,, or a S,, where a > 3. Thus,
G eé,. .

Let us define a set of trees 73 = {Syla > 3} U {P| b =0 (mod 4)}
and a set of cycles 73 = {C/| n’ =0 (mod 4)}. For every tree T € 7, if
T = S, for some a > 3, we define Dy = S(S,); if T = P, =vjv2--vp € 1
for some b = 0 (mod 4), then we define Dy = Uffl {vai—2,v4i—1}. For
every cycle Cp: = v1vy -+ - vy € 13, we define D¢, = U;';/lq{v“_z,v“_l}.

Let & be the family of simple unicyclic graphs that can be obtained
from r disjoint copies of several trees in 72 by first adding r edges so that
they are only incident with vertices in Upe,, Dr, each pair of them are
non-parallel and the resulting graph is connected and has no loops, and

then subdividing each new edge exactly once.

Let £4 be the family of simple unicyclic graphs that can be obtained from
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a C, € n3 and r(r > 0) disjoint copies of several trees in 72 by first adding
r edges so that they are only incident with vertices in (Ureqn, D) U D,
and the resulting graph is connected, and then subdividing each new edge
exactly once.

Theorem 2.5 Suppose G is a simple unicyclic graph of order n,
|L(G)] =1, |S(G)| = s and |S1(G)| = s1. Then

YE(G) =2 (n+1-5)/2—(s+s1)/4,

with equality if and only if G € §3U &4.

Proof. If G = C,, then v£(Cy) = |n/2] + [n/4] - |n/4] = n/2
by Theorem 2.2 and v/(C,) = n/2 if and only if n = 0 (mod 4), i..,
C, € &4. Now suppose s # 0. From Lemma 2.1 (1), we obtain [[4, BUC]| >
2n — 2|A| —| B|. On the other hand,

[[4, BUC]| = n - |E(G|A)])] | E(G[Q2 L C])| Lemma 2.1 (2)
< n- |E(G[A])| g Lemma 2.1 (5)
= f — (L] ¥ IE(G[S u Qi) Lemma 2.1 (3)
< 2 —((I—8)+ 3(s—s1 +|A] - 1)) Lemma 2.1 (6).

Combining with |[4, BU C]| > 2n — 2|A| —| B|, we have

_ 1Bl I s
—|A|>n - — =
L R o
By Lemma 2.1 (4), we have 2|A| > n+!—s— 22 which implies v£(G) =

[A| > (n+1—38)/2 - (s+ s1)/4

The equality vX(G) = (n +1 — s)/2 — (s + s1)/4 bolds if and only if
Q1] = |Q2], G[Q2UC] = J%lKg +|C|K; and C is an independent set in
GlQ2:UC], GISUQy] = s, Ky + Jﬁ’—uﬁ—‘lKg and S, is an independent set in
G[SUQy], and |N(ug) N A| = 2 for every uy € C. For every u) € Q2 C B,
N(u1) N A C Q, by the definition of an LTDS and |N(u;) N Q| = 1.

If |Q2| = 0, then G € & C &3 by the same argument as that of Theorem
2.4, where &; is defined as in Theorem 2.4.

Now we consider the case |@;| = |Q2| # 0. Note that |Q;| = |Q2|, every
vertex in Q3 is adjacent to exactly one vertex in Q;, G{S20UQ;] = J§’—L;9—’-IK2

247



and G[Qq] = J%ﬂK 2. Thus, every connected component of G[Q; UQ2U So)
is either a cycle of order n’, where n’ = 0 (mod 4), or a path of order
ai, where a; =2 (mod 4). Consequently, every component of G[A U B] is
either in 73, or in 7s.

Suppose X1, X, -+, X., are the components of G[A U B|. For every
Xj, if X; = Py, = vjva---vp; for some b; with b; = 0 (mod 4), then
we define Dx; = U?;/f{v“_g,m,-_l}; if X; = S, for some a; > 3, then
we define Dx; = S(Xj;); if X; = Cpr = v1v3---vp for some n' with
n' = 0 (mod 4), then we define Dx, = U;‘;14{v4i_2,v4g-1}. Thus, we
have SUQ; = U‘J?’;IDXJ. by relabelling the vertices of Cy- if possible. Note
that for every vertex u € C, [N(u)NA| = [N(u)N(SUQ,)| = 2. If G[AUB]
contains a cycle, then G € &;; otherwise, G € £3. Thus, G € £3U &,. (]

Remark. If n > ! — s + 3s;, the lower bound in Theorem 2.4 is better
than that given in Theorem 2.3. If n > (2! + 3s + 5;)/2, the lower bound
in Theorem 2.5 is better than that given in Theorem 2.4.

3 Differentiating-total domination number of
a unicyclic graph

Note that not every unicyclic graph has a DT DS. In Theorem 3.1, we
characterize the simple unicyclic graphs having a DT DS.

Let © be the family of simple unicyclic graphs G in which the unique
cycle C is of length three and C has at least two vertices of degree 2.

Theorem 3.1 Suppose G is a simple unicyclic graph. Then G has a
DTDS if and only if G ¢ Q.

Proof. It suffices to show G has no DT'DS if and only if G € Q.

If G € Q, then we may assume the unique cycle C = uvwu in G satisfies
d(u) = d(v) = 2. Then N[u] = N[v] = {u, v, w}. For every subset S of V,
we have N[u)NS = N[v] N S. Thus, G has no DTDS.

On the other hand, if G has no DT DS, then V is not a DTDS of G.
Since V' is a TDS of G, by the definition of a DT DS, there exists a pair



of distinct vertices u and v in V such that N[u] = N[v]. As G is a simple
unicyclic graph, we have N[u] = N[v] = {u,v,w} for some w € V and
d(u) = d(v) = 2. Thus, G € Q. .

In the following, let G be a simple unicyclic graph with G ¢ Q. Let
L(G) = L,S(G) = S and A be a vP(G)-set of G. Then S C A. Let
B={v¢g A |[NwynA| =1} and C = {v ¢ A| [N(v) N A| > 2}. Let
Li=LNA Q =A-(L1US),Ly=L~ L, Q2 =B — Lz and w be the
number of components of G{A]. Then A =L, USUQ,, B= Lz UQ; and
V = AuBUC. We have the following lemma.

Lemma 3.2 Let |L| =1, |S| =s. Suppose s #0. Then

(1) |[A,BUC]| = |B| +2|C| = 2n - 2|A| —| B| and the equality holds if
and only if IN(v) N A| =2 for everyv € C;

(2) |[4,BUC]| = n - |E(G[A])| -| E(G[Q2 U C])I;

(3) |La 21— s and |Lo] < 5;

(4) 1Q2| < |A] =| L1| —| La|, i.e., |B| < JA| | Lu|;

(5) |E(GIQ2 U C))| > 122l and the equality holds if and only if G[Qz U
Cl=|C|K, + 192311{2 and C is an independent set in G[Q, U CY;

(6) w < 1Bl |E(G[A)])| > H2& and the equality holds if and only if
GlA) = &l py;

(7) |E(G[A])| 2| Li1| and the equality holds if and only if |Q:] = 0,
|[E(G[S))] = 0 and every component of G[A] is a star on at least three
vertices.

Proof. From the fact that A is a 72 (G)-set of G, (1)-(2) hold.

(3) Since N[u|N A # N[v] N A for every u,v € Lg with u # v, |L2| < s.
Note that |L;| + |Lo| = . Thus, |L1| > 1 —s.

(4) Since for every u € Ly and v € Qa, NfujNn A # N[v]N A and
N()NL; = 0, Q2| < |A|~|L1|~|L2|- |B| < |A|—|L1| holds by B = Q2ULs.

(5) By a similar proof as in Lemma 2.1 (5), (5) holds.

(6) By the definition of the DTDS, every component of G[A] has at
least 3 vertices. Thus, w < ]%l. Note that either |[E(G[A])| = |A| —w or
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|E(G[A])| = |A] — w + 1. Hence |E(G[A])| 2| A] - —|3—l Moreover,
the equality |E(G{A])| = M holds if and only if G'[A] = %l

(7) Obviously, we have |E(G[A])] > |E(G[L1 U S])| 2 |Li|. By the
definition of a DTDS, the equality holds if and only if |Q:| = 0, |E(G[S])| =
0 and every component of G[A] is a star on at least three vertices. n

In {7], the following result was stated.

Theorem 3.3 (7] Forn >

P ={ [&

] fn#3 (mods5),
2]+ ifn=3 (mod 5).

ml"’ﬂ‘l?

Theorem 3.4 For n > 4, we have 7P (Cy) = v2 (P,).

Proof. Suppose C, = vivg---v,v;. Let Dy be a DTDS of P, =
Cy, — vqve. It is easy to check that D, is also a DT DS of C,. Thus, we
obtain v; (Pn) = (Cn —vvp) 2 ’YcD(Cn)-

On the other hand, suppose D, is a v2(Cy,)-set of Cy,. Since 72 (P,) >
P (Cr) = | D2|, we obtain |D;| < n — 1 by Theorem 3.3. Thus, there is a
vertex of C,, which is not contained in D,. Without loss of generality, we
assume vy ¢ D;. By the definition of a DTDS, {v3,v,} N Dy # 0. We
assume v, € Dj and let P, = C,, — v1vs. It is easy to check that D, is also
a DT DS of P,. Thus, we have v2(C,,) = |D2| > vP(P,). [

Let &5 be the family of simple unicyclic graphs that can be obtained
from r disjoint copies of a cor(P3), a S2; and a star S by first adding
T edges such that they are incident only with support vertices, each pair
of them are non-parallel and the resulting graph is connected and has no
loops, and then subdividing each new edge exactly once.

Theorem 3.5 Suppose G is a simple unicyclic graph of order n with
G ¢ Q, |L(G)| =1 and |S(G)| = 5. Then vP(G) = 3(n +1 — s5)/7, with
equality if and only if G € &.

Proof. If G = Ch, then v?(Cr) > [32] > 3* by Theorems 3.4 and
3.3. Now suppose s # 0. From Lemma 3.2 (1), (4) and (3), we obtain
||[A,BUC]| = 2n — 3|A| + ! — 5. By Lemma 3.2 (2) and (6), |[4,BUC]| <
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n—|B(GA)| < n— Z. Thus, v(G) = |4] 2 3(n +1 - 5)/7.

The equality 72 (G) = 3(n + ! — s)/7 holds if and only if |E(G[Q2 U
C))| =0, [N(v) N A|] = 2 for every vertex v € C, [Ly]| =1 —s, |L2] = s,
Q2| = |A| = |L1| —|Lo| and G[A] = 141 Ps. The equality | E(G[Q2UC])| = 0
implies |Q2| = 0 by Lemma 3.2 (5). Combining |Q1| = |A| —|L1| —|S| and
|A| = |L1| +|L2| with |Lg| = s, we have @, = @, which implies A = L, US.
For every component P; of G[A], [V(Ps) N Ly| < 2. Thus, G[AU B] is
composed of several disjoint copies of a corona cor(P;3), a double tree Sz ;
and a star Sy. Since |N(v) N A| = 2 for every vertex v € C and G is a
simple unicyclic graph, we get G € &s. L]

Let £ be the family of simple unicyclic graphs that can be obtained
from a simple unicyclic graph G’ by attaching at least three leaves to each
vertex of G', and then subdividing each edge of G’ exactly once.

Theorem 3.6 Suppose G is a simple unicyclic graph of order n with
G ¢ Q, |L(G)| =1 and |S(G)| = s. Then v2(G) > (n+ 2(l — 5))/3, with
equality if and only if G € &.

Proof. If G = C,, then v2(Cr) = [32] > % by Theorems 3.4
and 3.3. Now suppose s # 0. From Lemma 3.2 (1) and (4), we obtain
Il4,BUC]| 2 2n — 3|A| + |L,|. By Lemma 3.2 (2) and (7), |[A,BUC]| <
n — |E(G[A])| € n — |Ly|- Thus, we have v2(G) = |A| > (n + 2|L41)/3 2
(n+2(l - s))/3 by Lemma 3.2 (3).

The equality v2(G) = (n + 2(! — s))/3 holds if and only if |E(G[Q2 U
C))| =0, IN(v) N A| = 2 for every vertex v € C, |Ly| =1 —s, |L2| = s,
|Q2| = |A| = |L1] = |L2}, |Q1| = 0, |E(G[S])] = 0 and every component of
GJ[A] is a star on at least three vertices. The equality |E(G[Q2: U C])| =0
implies |Q2| = 0 by Lemma 3.2 (5). Since |N(v) N A| = 2 for every vertex
v € C and G is a simple and unicyclic graph, we get G € &. ]

Before we present the next result, we define two families of simple uni-
cyclic graphs, denoted by &7 and &s.

First let Ga<s = {G| G is a tree of order n > 2 and A(G) < 3,0r G is
a unicyclic graph of order n > 1 and Delta(G) < 3}. For every G € Gacas,
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we construct a new graph G’ from G as follows.

First for every edge e = ab € E(G), if a # b, we replace it with a path
P, = vyvyuzvy where v; = a and v4 = b; if a = b, we replace it with a cycle
C3 = vyvauzv; where v; = a = b. Then we obtain a new graph G;. We
perform the next three operations.

o Step 1. For every vertex v in V(@) with dg(v) = 3, suppose Ng, (v) =
{u1,uz,u3}. Replace v by a path P3 = vjvouz and add a new set M of
edges, where M = {vju;, vou;,vaux} with {i,7,k} = {1,2,3}. Note that
IM] = 3. Define Dv = {'ul,vg,v:;}.

Perform this operation on every vertex v € V(G) with dg(v) = 3 in Gy,
then we obtain a graph G2 and a set Dy = U, g (v)=3Dv.

e Step 2. For every vertex v in V(G) with dg(v) = 2, suppose Ng,(v) =
{v1,u2}. Then in Gg, replace v by a path Py = vjvov3vy and add a new
set M of edges, where M = {viu;,vou;} with {i,j} = {1,2}. Note that
M| = 2. Define D, = {v;,v2,v3}.

Perform this operation on every vertex v € V(G) with dg(v) = 2 in Gy,
then we obtain a graph G3 and a set D3 = U, 4. (v)=2Dv-

e Step 3. For every vertex v in V(G) with dg(v) = 1, suppose Ng,(v) =
{u}. We perform exactly one of the next two operations on v:

(1) Replace v by a double star Sy where V(S;,1) = {u1, uz, ua, uq, us},
ug, u4 are support vertices and N, , (u3) = {u1,u2}. Then add a new edge
uu and define D, = {u;,u3, uq}.

(2) Replace v by a star S; where V(S;) = {wjwawaw,} and wy is a
support vertex of S;. Add a new edge uw; and define D, = {w;, w2, w4}

Perform either (1) or (2) on every vertex v € V(G) with dg(v) =1 in
G3, then we obtain a graph G’ and a set Dy = U, 45 (w)=1Dv-

Let Dgr = DU D3 U Dy, ggsa = {G’' |G’ is obtained from a graph G €
Gags as above} and T3 be the set of trees in G .3. Define a set D =
S(cor(Ps))US(82,1)US(S4)Ucreg:, ., Do and a set of trees ny = {cor(Ps)}U
{821} U {Ss} U i )
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Let &; be the family of simple unicyclic graphs that can be obtained
from r disjoint copies of several trees in 7y by first adding r edges such
that they are incident only with vertices in D, each pair of them are non-
paralell and the resulting graph is connected and has no loops, and then
subdividing each new edge exactly once.

Let £ be the family of simple unicyclic graphs that can be obtained from
r disjoint copies of several trees in 74 and a unicyclic graph Go € g,gsa by
first adding r edges such that they are incident only with vertices in D
and the resulting graph is connected, and then subdividing each new edge
exactly once.

Theorem 3.7 Suppose G is a simple unicyclic graph of order n with
G ¢Q, |LG)| =1, |S(G)| =s. ThenvP(G)> &(n+4i~s), with equality
if and only if G € & U &s.

Proof. If G = C,, then vyP(Cr) > [3] > %3 by Theorems 3.4
and 3.3. Now suppose s # 0. Let A, B, C, L, S, Ly, Lz, @1, Q2 and
w be defined as above. From Lemma 3.2 (1), we obtain |[4,BUC]| >
2n—2|A| - |B| = 2n—2|A] - (|Q2| + |L2])- By Lemma 3.2 (2), (5) and (6),
4, BUC]| = n — |E(G[A])| — |E(G[Q2UC))| < n— HA _ 122l Thus, we
have 22l > n — 122l _{L,|. By Lemma 3.2 (4), (£ + })|A| > n+ Ll oikal,
From Lemma 3.2 (3), we have |L;| — |L2| > I — 2s. Thus, v2(G) = |4| >
-ﬁ-(n + é —s).

The equality v2(G) = £ (n + £ — s) holds if and only if equalities (1)-
(6) in Lemma 3.2 all hold. As |Q:| = |A| — |Li1| —|S]| = |A| — |L1] — |L2|,
we obtain |Q;| = |Q;|. Note that G[Q; U C] = |C|K; + %l K; and €
is an independent set in G[Q2 U C], G[4] = L‘;lP:; and every vertex in
C is adjacent to exactly two vertices in A. On the other hand, for every
component P; in G[A}, |V(Ps)NL,| <2and V(P3) - L CSUQs.

If |Qz| = |Q1] = 0, then G € &5 C &7 by a similar proof as in Theorem
3.5.

Now we consider the case |Q2] = |Q1| # 0. In this case, every com-
ponent P; = v;vav3 of G[A] is in one of the next seven situations (up to
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switching the role of v; and v3):
l. v3,v3€ Ly and vy € S.
. v € L1 and vg,v3 € S.
. V1,Vp,V3 € S.

.v1 € L1, v2 €. S and v3 € Q.

2
3
4
5. v1,v2 € S and v3 € Q.
6. vy € S and v,v3 € Q1.
7

. v1,V2,v3 € Q1.

Let G1,Ga2,-+,G., be the components of G[A U B]. For a component
G, if V(G;) N Q2 = 8, then G; € {cor(Ps),S2,1,54}. If V(Gi)N Q2 # 0,
then we construct a graph G} from G; by contracting every edge e of G;
with e ¢ [Q1,Q2] U E(G[Q2]). Then we can see Gj is obtained from a
graph G;"” € Ga<s by replacing every edge e = ab € E(G;") with either
a path P; = vjvuzvug when a # b, where v; = a and vq4 = b, or a cycle
C3 = vyvgusv; when a = b, where v; = a = b. Because every component
of G[A4] is a path P; in one of the above seven situations and every vertex
of Q2 is adjacent to exactly one vertex in Q;, we have G; € g’Asa, where
Ga<s is defined as in the construction of £&. Thus, for i = 1,2,.--,w,
either G; € 14 or G; is a unicyclic graph in Gj, .3. Note that every vertex
in C is adjacent to exactly two vertices in A, thus G € £&7 U &s. =

Remark. If 2n > 5(1 — s), the lower bound in Theorem 3.5 is better
than that given in Theorem 3.6. If 3n > 4l + 3s, the lower bound in

Theorem 3.7 is better than that given in Theorem 3.5.
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