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Abstract

Graph embedding is an important factor to evaluate the quality
of an interconnection network. It is also a powerful tool for imple-
mentation of parallel algorithms and simulation of different intercon-
nection networks. In this paper, we compute the exact wirelength of
embedding circulant networks into cycle-of-ladders.

Keywords: Embedding; Congestion; wirelength; circulant networks; cycle-
of-ladders.

1 Introduction

The interconnection networks play a major role in the performance of
distributed-memory multiprocessors and the one primary concern for choos-
ing an appropriate interconnection network is the graph embedding ability.
Recently, many interconnection networks and their properties have bheen
studied in the literature [2, 3, 6, 11, 17, 19, 25]. Graph embedding is a
technique in interconnection networks that maps a guest graph into a host
graph (usually an interconnection network). Many applications, such as ar-
chitecture simulations and processor allocations, can be modeled as graph
embeddings (1, 2, 4, 5, 13, 14, 17, 19, 28]. The quality of an embedding can
he measured by certain cost criteria. One of these criteria which is consid-
ered very often is the dilation. The dilation of an embedding is defined as
the maximum distance between a pair of vertices of H that are images of
adjacent vertices of G. It is a measure for the communication time needed
when simulation one network on another [15].
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Another important cost criteria is the wirelength. The wirelength of a
graph embedding arises from VLSI designs, data structures and data repre-
sentations, networks for parallel computer systems, biological models that
deal with cloning and visual stimuli, parallel architecture, structural en-
gineering and so on [16, 18]. Grid embedding plays an important role in
computer architecture. VLSI layout problem [21], crossing number prob-
lem [22], edge embedding problem [23], are all a part of grid embedding.
Embedding problems have been considered for binary trees into paths [16],
complete binary trees into hypercubes [24], tori and grids into twisted cubes
[27], meshes into locally twisted cubes [29], paths into twisted cubes [30],
cycles into twisted cubes [31], meshes into faulty crossed cubes [32], star
graph into path {33], snarks into torus [34], generalized ladders into hyper-
cubes [35], grids into grids [36], binary trees into grids [37], hypercubes into
cycles [38], generalized wheels into arbitrary trees [26], and hypercubes into
grids [39]. Even though there are numerous results and discussions on the
wirelength problem, most of them deal with only approximate results and
the estimation of lower hounds (38, 40]. The embedding discussed in this
paper produce exact wirelengths.

In this paper, we produce the exact wirelength of circulant networks
into cycle-of-ladders. The rest of the paper is organized as follows. Section
2 gives definitions and other preliminaries. Section 3 gives basic results of
circulant networks. Section 4 establishes the main results. Finally, Section
5 concludes the paper.

2 Preliminaries

Definition 2.1. (See [46].) A drawing of a geometric representation of a
graph on any surface such that no edges intersect is called embedding.

In this paper we consider the network embedding and defined as follows.
Let G and H be finite graphs with n vertices. An embedding f of G into
H is defined [40] as follows:

1. f is a bijective map from V(G) —» V(H)

2. f is a one-to-one map from E(G) to {Ps(u,v) : Ps(u,v) is a path in
H between f(u) and f(v) for (u,v) € E(G)}.

The edge congestion of an embedding f of G into H is the maximum
number of edges of the graph G that are embedded on any single edge of
H. Let ECf(G, H(e)) denote the number of edges (u,v) of G such that e
is in the path Pr(u,v) between f(u) and f(v) in H. In other words,

EC{{(G,H(e)) = |{(u,v) € E(G) : e € Pg(u,v)}|
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Figure 1: Wiring diagram of a grid G into a path H with WL;(G, H) = 24.

where P;(u,v) denotes the path hetween f(u) and f(v) in H with respect to
f. If we think of G as representing the wiring diagram of an electronic cir-
cuit, with the vertices representing components and the edges representing
wires connecting them, then the edge congestion EC(G, H) is the mini-
mum, over all embeddings f : V(G) — V(H), of the maximum number of
wires that cross any edge of H [42].

The Wirelength Problem The wirelength of an embedding f of G
into H is given by

WLi(G, H)= Y du(f(w),f(v))= Y  EC(G, He))

(v,v)EE(G) e€E(H)

where dy (f(u), f(v)) denotes the length of the path Ps(u,v) in H. See
Figure 1. Then, the wirelength of G into H is defined as

WL(G, H) = min WL(G, H)

where the minimum is taken over all embeddings f of G into H. The
wirelength problem [26, 37, 38, 39, 40, 43], of a graph G into H is to find an
embedding of G into H that induces the minimum wirelength WL(G, H).

The following two versions of the edge isoperimetric problem of a graph
G(V, E) have been considered in the literature (43}, and are N P-complete
(23].

Problem 1 (Minimum Cut Problem): Find a subset of vertices of a given

graph, such that the edge cut separating this subset from its complement

has minimal size among all subsets of the same cardinality. Mathematically,

for a given m, if Og(m) = AC‘}nliﬂl |0c(A)| where 8g(A) = {(u,v) € E:
N =m

u € A,v ¢ A}, then the prof)lem is to find A C V such that |A] = m and
66(m) = 86 (A)].
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Figure 2: A={0,1,2,3} is a maximum suhgraph of G on 4 vertices whereas
B={0,1,6,7} is not a maximum subgraph of G.

Problem 2 (Maximum Subgraph Problem): Find a subset of vertices of
a given graph, such that the number of edges in the subgraph induced by
this subset is maximal among all induced subgraphs with the same number

of vertices. Mathematically, for a given m, if Ig(m) = Ac &n?f)‘(l__m [ Ia(A)|

where Ig(A) = {(u,v) € E : u,v € A}, then the problem is to find AC V
such that |A] = m and Ig(m) = |Ig(A)|. See Figure 2.

For a given m, where m = 1,2, ..., n, we consider the problem of finding
a subset A of vertices of G such that |A| = m and |g(A)| = 8¢(m). Such
subsets are called optimal. We say that optimal subsets are nested if there
exists a total order O on the set V such that foranym = 1,2, ..., n, the first
m vertices in this order is an optimal subset. In this case we call the order

O an optimal order [41, 43]. This implies that WL(G, P,,) Z fc(m).

Further, if a subset of vertices is optimal with respect to Problcm 1,
then its complement is also an optimal set. But, it is not true for Problem
2 in general. However for regular graphs a subset of vertices S is optimal
with respect to Problem 1 if and only if S is optimal for Problem 2

Notation: For convenience we write ECy(e) instead of EC(G, H(e)
in the sequel.

For any set S of edges of H, EC((S) = }_,.5 EC(e).

Lemma 2.2. (Congestion Lemma) (See [39].) Let G be an r-regular graph
and f be an embedding of G into H. Let S be an edge cut of H such
that the removal of edges of S leaves H into 2 components Hy; and H,
and let Gy = f~Y(H)) and G, = f~1(H2). Also S satisfies the following
conditions:

(1) For every edge(a.b) € G;, i = 1,2, Pr(a,b) has no edges in S.
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Figure 3: Circulant graph G(10; +£{1, 2, 3}).

(i) For every edge (a,b) in G with a € Gy and b € G2, Ps(a,b) has
exactly one edge in S.

(iii) Gy is a maximum subgraph on k vertices where k = |V (Gh)|.

Then EC{(S) is minimum,that is, ECf(S) < EC,(S) for any other em-
bedding g of G into H, and EC¢(S) = vk — 2|E(G1)| = 6c(k) [43].

Lemma 2.3. (Partition Lemma) (See [39].) Let f : G — H be an embed-
ding. Let {Sy,S2,...,5p} be a partition of E(H) such that each S; is an
edge cut of H. Then

WLs(G,H) =Y ECy(S)).

i=1

3 Circulant networks

The circulant is a natural generalization of the double loop network and
was first considered by Wong and Coppersmith [7]. Circulant graphs have
been used for decades in the design of computer and telecommunication
networks due to their optimal fault-tolerance and routing capabilities [8].
It is also used in VLSI design and distributed computation (9, 10, 20]. The
term circulant comes from the nature of its adjacency matrix. A matrix
is circulant if all its rows are periodic rotations of the first one. Circulant
matrices have been employed for designing binary codes[12]. Theoretical
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properties of circulant graphs have been studied extensively and surveyed
in [9]). Every circulant graph is a vertex transitive graph and a Cayley graph
[18]. Most of the earlier research concentrated on using the circulant graphs
to build interconnection networks for distributed and parallel systems (8, 9].

Definition 3.1. (See [18].) A circulant undirected graph G(n; £S), where
S C{1,2,...,|n/2]}, n > 3 is defined as a graph consisting of the vertex
set V ={0,1,...,n — 1} and the edge set E = {(¢,7) : |7 — | = s(mod n),
s € S}.

The circulant graph shown in Figure 3 is G(10; £{1,2,3}). It is clear
that G(n; 1) is the undirected cycle C,, and G(n;£{1,2,...,|n/2]}) is
the complete graph K. Further G(n;£{1,2,...,|j]}), 1 £ j < [n/2],
n > 3 is a 2j-regular graph.

Theorem 3.2. (See [45].) A set of k consecutive vertices of G(n; £1), 1 <
k < n induces a mazimum subgraph of G(n; £S), where S = {1,2,...,5},
1<j< |n/2),n>3.

Theorem 3.3. (See [45).) The number of edges in a mazimum subgraph
on k vertices of G(n; £85), S = {1,2,...,j}, 1 <j< |n/2],1 <k <n,
n > 3 is given by

k(k—1)/2 ; k<ji+1
§=4 ki—-ji(G+1)/2 i jHl<k<n—j
{n—k?+(4j+1)k—(2+1)n} ; n—j<k<n.

4 Wirelength of circulant networks into cycle-
of-ladders

In this section, we compute the exact wirelength of circulant networks into
cycle-of-ladders.

Fang [44], propounds a kind of a new cycle-embedding aspect called
the bipancycle-connectivity and a new graph called the cycle-of-ladders.
By presenting algorithms to embed the cycle-of-ladders graphs into the
hypercube and by generating the bipanconnected cycles in the cycle-of-
ladders graphs, the hypercube has proved to be a bipancycle connected
graph.

The work will help engineers to develop corresponding applications on
the multiprocessor systems that employ the hypercube as the interconnec-
tion network. It will also help further investigations on the hypercube, for
example, to find a fault tolerant algorithm to generate the bi-pan connected
cycles on the hypercube appears interesting.
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Figure 4: The structure of a ladder L(s).
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Figure 5: Cycle-of-ladders.
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A path of length s is denoted by P(s) and a cycle of length s is denoted
by C(s). A ladder of length s, denoted by an L(s), is a P(s) x K,. Each
vertex of an L(s) is labelled by (bo,b1), where by = 0 or by = 1, and
0 < b, < 5. Each edge ((0,b1), (1,b;)) is called a rung of the ladder L(s),
where 0 < b; < s. Specifically, it is called the b} rung. The 0** rung is
called the bottom rung of the ladder. The two paths ((0,0), (0,1),...,(0,s))
and ((1,0),(1,1),...,(1,s)) are called the hands of the L(s). Specifically,
the former is called the 0% band and the latter is called the 1°¢ band.
Clearly L(s) contains 2(s + 1) vertices and 3s + 1 edges. See Figure 4.

Definition 4.1. (See [44].) A cycle-of-ladders is a graph unified by a bone
cycle BC and k ladders LD(0),

LD(1),...,LD(k — 1) with BR(0), BR(1),...,BR(k — 1) as the bottom
rungs, respectively, such that each BR(i) is contained in the BC where 0 <
i<k-1.

The structure of a cycle-of-ladders graph is shown in Figure 5, where
(z0, 1,22, 23,4, 5, Ts, T7) is the bone cycle and (xo, z1), (T2, z3), (T4, T5)
and (z¢, z7) are the BR(0), BR(1), BR(2) and BR(3), respectively.

In this paper we assume that each ladder LD(i) 0 €< i < k—1, is of
length s. Clearly this type of cycle-of-ladders contains 2k(s + 1) vertices
and it is denoted by COL(k, s).

Embedding Algorithm

Input : A circulant network G(n;+£{1,2,...,5}), 1 < j < |[n/2]) and a
cycle-of-ladders COL(k, s) where n = 2k(s + 1).

Algorithm: Label the consecutive vertices of G(n; £1) in G(n; £{1,2,...,7}),
as 0,1,...,n — 1 in the clockwise sense. Label the vertices of COL(k, s)

as follows: Label the 0** band vertices of LD(0) from top to bottom as
0,1,...,s. For1 <i < k-1, label the 1** band vertices of LD(i) from bot-

tom to top as (2i —1)(s+1),(2i—1)(s+1)+1,...,2i(s+ 1) — 1 and the 0**
band vertices from top to bottom as 2i(s+1),2i(s+1)+1,...,2i(s+1) +s.
Label the 1** band vertices of LD(0) from bottom to top as (2k — 1)(s +
1),(2k—1)(s+1)+1,...,2k(s+1) - 1.

Output : An embedding f of G(n; +{1,2,...,7}) into COL(k, s) given
by f(z) = z with minimum wirelength.

Proof of correctness : We assume that the labels represent the vertices
to which they are assigned.
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Figure 6: The edge cuts of COL(4, s).

Case 1 (k even):
For1<i< '5, let A; be the set of edges which contains all the rungs of

LD(i—1)and LD(§ +i—1). For 1 <j < ';, let B; be the set of edges
which contains the edge between LD(i—1) and LD() and the edge between
LD(% +i—1)and LD(X +1i). For 1 <i<k,1<j<s,let S! be the set
of edges in LD(i — 1) which contains the edges between (s — j + 1)** rung
and (s — j)** rung. See Figure 6. Then {4;:1<i< 5}U{B;:1<j <
¥Ju{S{:1<i<k1<j<s}is a partition of E(COL(k, s)).

For eachi,1 <1 < '2°, E(COL(k,s)) \ A; has two components H;; and
H;s where

V(Ha)={2G-1)(s+1),2(i —1)(s+ 1) +1,...,2(i = 1)(s + 1)
+k(s+1)-1}.
Let Gy = f~1(H;1) and Giz = f~'(Hi2). By Theorem 3.3, Gi1, is an opti-
mal set, and each A; satisfies conditions (), (#7) and (iiz) of the congestion

lemma. Therefore ECf(A;) is minimum.
For each j, 1 < j < &, E(COL(k, 5)) \ B; has two components Hj; and

Hj, where

V(Hj))={(27 - 1)(s+1), 25 —D(s+1)+1,...,(25 - 1)(s +1)
+k(s+1)-1}.
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Figure 7: The edge cuts of COL(5, 3).

Let Gj) = f~1(H;1) and G2 = f~1(H;2). By Theorem 3.3, G;), is an opti-
mal set, and each B; satisfies conditions (¢), (i¢) and (#%?) of the congestion
lemma. Therefore EC;(B;) is minimum.

Foreachi, j,1<i<k 1<j<s, E(COL(k, s))\S{ has two compo-
nents H, and HJ, where

{0,1,...,5 -1} U{2k(s+1) -1,
2k(s+1)—2,...,2k(s+1)—35} ; if i=0
{2i(s+1)—1,2i(s+ 1) —2,...,2i(s+ 1) — j}U{2i(s + 1),
2i(s+1)+1,...,2i(s +1)+j—1} : if i#0

V(H}) =

Let G, = f~'(H},) and G}, = f~1(H}). Since G}, is an optimal set, each
S} satisfies conditions (i), (i) and (iii) of the congestion lemma. Therefore
EC(S}) is minimum. The Partition Lemma implies that the wirelength is
minimum.
Case 2 (k Odd):

For 1 <1 < k, when i is odd, let S; be the set of edges which contains all
the rungs of LD(i — 1) and the edge between LD( ’2°+ i—1) and LD( £+1)
a when 1 is even, let S; be the set of edges which contains the edge hetween
LD(i—1) and LD(z) and all the rung of LD( ’§°+i). For1<i<k1<j<s,
let S;’ be the set of edges in LD(i — 1) which contains the edges between
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(s — j + 1)** rung and (s — j)** rung. See Figure 7. Then {S; :1 <4 <
k}U{S/:1<i<k1<j<s}is a partition of E(COL(k, s)).
As in Case 1, it is easy to prove that the wirelength is minimum.

Theorem 4.2. The ezact wirelength of circulant graph G(n; £{1,2,...,j}),
1< j < |n/2] into COL(k,s) is given by
WL(G,COL(k, s)) = k{8c(m(s + 1)) + 3 _0c(2)}
i=1

Proof: Following the notations of the Embedding Algorithm, we divide the

proof into two cases.
Case 1 (k even): By congestion lemma,

i) ECf(Ai) =f8a(m(s+1)), 1<i<§
i) EC;(B;) =0c(m(s +1)),1<j< %
iti) EC;(S7) = 06(2j), 1<i<kand1<j<s.
Then by partion lemma,

WL(G,COL(k,s)) = ZEC,(A )+ ZEC, Bj) + ZZECf (879)

i=1 j= i=1j=1

= ioc( (s+1) + ZGG (m(s+1)) + ZZ% 25)
i=1

i=1j=1

— *ggtm(s + 1) + o(mls + 1) + K3 0 (29)

=1
= k{6c(m(s + 1)) + Zec(Qj)}-
j=1

Case 2 (k Odd):
By congestion lemma,

i) EC;(Si) =8c(m(s+1)), L<i<k
i) EC;(S)) = 05(2j), 1<i<kand1<j<s.
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Then by partion lemma,

k k s
WL(G,COL(k,s)) = Y ECy(Si)+ > Y _ECs(S])

i=1 i=1j=1
k k s
= {bo(m(s + 1)} + D> 6a(2))
i=1 t=1j=1

= k{fa(m(s +1)) + > _8c(24)}.

i=1

Hence the proof.

5 Conclusion

In this paper, we embed circulant networks into cycle-of-ladders to yield the
minimum wirelength. In our opinion, the reduction technique developed
in this paper is very powerful and may be applied to the fault-tolerant
embeddings of cycle-of-ladders in other kinds of interconnection networks.
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