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Abstract: A pebbling move on a graph G consists of taking two pebbles
off one vertex and placing one on an adjacent vertex. The pebbling number
of a graph G, denoted hy f(G), is the least integer n such that, however n
pebbles are located on the vertices of G, we can move one pebble to any
vertex by a sequence of pebbling moves. For any connected graphs G and
H, Graham conjectured that f(Gx H) < f(G)f(H). In this paper, we give
the pebbling number of some graphs and prove that Graham’s conjecture
holds for the middle graphs of some even cycles.
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1 Introduction

Pebbling in graphs was first introduced by Chung [2]. Consider a connected
graph with a fixed number of pebbles distributed on its vertices. A peb-
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bling move consists of the removal of two pebbles from a vertex and the
placement of one pebble on an adjacent vertex. The pebbling number of
a vertex v, the target vertex, in a graph G is the smallest number f(G,v)
with the property that, from every placement of f(G,v) pebbles on G, it
is possible to move one pebble to v by a sequence of pebbling moves. The
pebbling number of a graph G, denoted by f(G), is the maximum of f(G,v)
over all the vertices of G.

There are some known results regarding the pebbling number (see
[2-5,7]). If one pebble is placed on each vertex other than the vertex v,
then no pebble can be moved to v. Also, if u is at a distance d from v, and
2¢ — 1 pebbles are placed on u, then no pebble can be moved to v. So it is
clear that f(G) > max{|V(G)|,2P}, where D is the diameter of graph G.
Furthermore, we know that f(K,) = n and f(P,) = 2" —1 (see [2]), where
K, is the complete graph and P, is the path, respectively on n vertices.

The middle graph of a graph G, denoted by M(G), is obtained from G
by inserting a new vertex into each edge of G, and joining the new vertices
by an edge if the two edges they inserted share the same vertex of G.

Given two disjoint graphs G1 = (V1,E1) and Gy = (W, Ey), the
Cartesian product of them is denoted by G; x Ga. It has vertex set
Vi x Vo = {(ui,v5)|ui € Vi,v; € Va}, where (u1,v1) is adjacent to (uz,vs)
if and only if u; = u2 and (v;,v2) € Ey, or (u1,up) € E; and vy = vs.
Clearly, we have that G; x G2 = G5 x G1. One may view G; x G as the
graph obtained from G, by replacing each of its vertices with a copy of G,
and each of its edges with |V}| edges joining corresponding vertices of G; in
the two copies. Let u € G,v € H, then uH and vG are subgraphs of G x H
with V(uH) = {(u,v)|lv € V(H)}, E(uH) = {(u,v)(u,v")|vv’ € E(H)}
and V(vG) = {(u,v)|u € V(G)}, E(vG) = {(u,v)(v',v)|uv’ € E(G)}. It is
clear that uH & H and vG = G.

The following conjecture (see [2]), by Ronald Graham, suggests a con-
straint on the pebbling number of the product of two graphs.

Conjecture (Graham): The pebbling number of G x H satisfies f(G x
H) < f(G)f(H).

Ye et al. (see [6]) proved that f{M(Cont+1) XM (Caom+1)) € F(M(Cant1))

F(M(Cam1)) and f(M(Con) x M(Cam+1)) < f(M(Con))f(M(Cam+1)). In
this paper, we will prove that f(M(C2,)x M (Ca2r)) £ fF(M(C2:)}f(M(C2m))
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for m,n>5and [n—m| > 2.

Throughout this paper, G will denote a simple connected graph with
vertex set V(G) and edge set E(G). P, and C, will denote a path and a
cycle with n vertices, respectively. Given a distribution of pebbles on the
vertices of G, define p(K') to be the number of pebbles on a subgraph K of
G and p(v) to be the number of pebbles on a vertex v of G. Moreover, we
let 5(K) and p(v) denote the numbers of pebbles on K and v after some
sequence of pebbling moves, respectively.

2 Main results

Definition 2.1. (see [5]) Let P, = viv2::-v, be a path. We say that P,

n—1
has weight Y 2~ 1p(v;) with respect to v, and this is written as wp, (vn).
Proposition 2.2. (see [5]) Let P, = viva---vn be a path. If wp, (va) 2
k271 then at least k pebbles can be moved from P,\v, to v,.
k=1

Corollary 2.3. Let P, = vyv - - - v, be a path. Letwp, (vi) = Z 2i=1p(v;)+

n . =

> 2 Ip(v;) for 2 < k < n—1. Ifwp, (vg) > t25"1 +277% —1 for
j=k+1
24l <k <n, wp,(vk) > 2571 82"k — 1 for 1 < k < 2fL, then at least t
pebbles can be moved from P,\vi to vg.

Proof. Without loss of generality, we assume that 23 < k <n.
If k = n, it follows from Proposition 2.2.
If2 <k<n-1,let Ly = viva---vk, Ly = vpvss1--vn be two
subpaths of P,.
k=1
Suppose wp, (vx) > t25~1 4+27~*k —1 then either 3 2'~!p(v;) > t2k-1
=1
n .
or Y 2" 7Jp(v;) > 2"k holds.
j=k+1

k=1
Case 1. 3 2¢-!p(v;) > t2%~1, by Proposition 2.2, we can move t
i=1

pebbles from LT\‘Uk to vg.

n L .
Case2. Y. 2" Jp(v;) > 2" % wemayassumethat ) 2" 7p(v;) =
j=k+1 j=k+1

s2"~k 4 h, where s and h are integers satisfying s > 1 and 0 < h < on—k,
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With p(v;) pebbles on v; (k+1 < j < n), we can move s pebbles from
Lo\v to v.
Note that 2¥=1 > 27~* for k > 2!, we have

k-1 n

D 27 p(vi) =we, (vk) — Y 2" Ip(v;)

i=1 j=k+1
>t2k-t 4 on=k _ 1 (s2""F 4 h)
=(t2k-1 — sonky 4 (ank —p) -1
>(t —s)2k-1,

So we can move ¢ — s pebbles from Li\vx to v, with p(v;) pebbles on
v; (1 £i < k—1). That is to say we can move s + (¢t — s) = t pebbles to
Vk. 1

Corollary 2.4. Let P, = v va -+ - v, be a path. Then f(M(Pp)—{v1,vn}) =
"2 +n-2.

Figure 1: The graph M(P,) — {v1,v.} in Corollary 2.4.

Proof. To get M(FP,), we insert one new vertex u; into the edge v;v;41 and
add the edge u;uiyy for each i € {1,2,...,n —2}. Let U = wyug+--up_
be a subpath of M(P,) — {v1,vn}.

It is clear that f(M(Pn)—{v1,vn}) = 2""2+4+n—2. If we place one peb-
ble on each of vertices v, . .., vn—1, and place 2"~2—1 pebbles on the vertex
Un—1, then we can not move one pebble to u;. So f(M(P,) — {v1,v.}) =
"2 4 —2.

Now, assume that 2”2 4+ n — 2 pebbles are located at V(M (P,) —
{vlivﬂ})'

First, we prove that one pebble can be moved to ux (1 <k <n—1).
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For m < k, we move |p(vm)/2] pebbles from vy, to um. For m > k,
we move |p(vm)/2] pebbles from vy to um_y. Then we have

n—1 n—1
wy(ue) 22" 2 40 —2- > plue) +2 > p(ve)/2]
t=2 t=2

>2n-—2

It is clear that 2"~2 > 2k-1 p on~k=1 _ 1 for 1 < k < n—1. By
Corollary 2.3, we can move one pebble from the vertices of U\ux to the
vertex up for L <k <n-—1.

Second, we prove that one pebble can be moved to vk, for2 < k < n—1.
Without loss of generality, we assume that k > 231,

If m < k, we can move |p(v,,)/2| pebbles from v, to um. If m > k,
we can move |p(vm)/2] pebbles from vy, to upm-_.

We will prove that after a sequence of pebbling moves above, two
pebbles can be moved from U to ux—_1, so that one pebble can be moved
from ux_; to vi.

We consider the worst case: p(ux—-1) =0.

n—1 n—1
wy(ue=1) 22" 2 +n-2-Y p(v;) +2>_|p(v;)/2]

i=2 j=2
i#k J#k

>on2 41,

It is clear that 27241 > 2 x 2k-D-1pgn-(k-1-1_1 for 22l < k1<
n — 2. By Corollary 2.3, we can move two pebbles from U\uig—; to ug—_1
(251 < k—1< n—2). So we can move one pebble to vy, (2 < k <n-1),
and we are done. 1

Definition 2.5. (see [5]) The t-pebbling number of a graph G is the smallest
number f,(G) with the property that from every placement of fi(G) pebbles
on G, it is possible to move t pebbles to any verter v by a sequence of
pebbling moves.

Lemma 2.6. (see [6]) Ifn > 2, then f(M(C2y)) =27% +2n 2.
Corollary 2.7. Ifn > 2, then fy(M(Can)) < 271 + 2n - 2.

Proof. Let Co, = wov1 - - - Van—1v0, M(Cay) is obtained from Ca, by in-
serting u; into v;V(;41)mod(2n)s and connecting %;U%(i4+1)mod(2n) for0<i<
2n ~ 1.
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Without loss of generality, we may assume that our target vertex is ug
or vg.

Case 1. The target vertex is up. In this case, we prove the result by
using induction on ¢.

The result is obvious for ¢ = 1 from Lemma 2.6.

Now suppose that t2"+! + 2n — 2 pebbles are located at the vertices
of M(Czn).

We consider the worst case: p(ug) = 0.

Let A = {uo,v1,u1,...,%n,Un}, B = {Un,Vn41,...,V20-1,U2n—1, V0, U0}
and G = M(Cs,). Then we know that either A or B contains more than
2™ + n pebbles.

Note that G[A] & G[B] = M(Pp+2) — {v1,Unt2}, according to Corol-
lary 2.4, with 2" + n pebbles on A or B, one pebble can be moved to
Uug.

Note that 2" + n < 27+1, the number of remaining pebbles is more
than (¢t — 1)2"*! 4 2n — 2. So we can move t — 1 pebbles to ug with the
remaining pebbles by the induction hypothesis, and we are done.

Case 2. The target vertex is vg.

Let A" = {uo,v1,...,Un-1,Un-1}, B’ = {wan-1,%20-1,.- ., Uny1,un}.

Suppose that t2"+! + 2n — 2 pebbles are located at the vertices of
M(Csy).

We consider the worst case, that is p(vg) = 0.

By proposition 2.2, if p(v,) > t27+1, then ¢ pebbles can he moved to
Vo.

Now suppose that ¢2"+! — h pebbles are located at v,,, without loss of
generality, we assume that p(A’) > p(B’), namely p(4’) > n— 1+ [h/2].

Let L = voupuy - - - un—1¥n be a subpath of G with length n + 1 and
n—1

=3 p(ui).
i=0

n-1
If ¢ > [h/2], then wy(vo) = p(vn) + 3 2" 'p(us) 2 12"+ —h 4+ 2¢ >
t2n+l. =0

By Proposition 2.2, t pebbles can be moved from the vertices of L\vg
to vg.

n—1
If g < [h/2], then ) p(vj) 2 n—1+[h/2] —q. So we can move at
i=1
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least [%([-’21] +1- q)_| pebbles to the vertices of the set {ug, u1,...,un—2}.
Then we have

n—1
wp(0) = p(on) + 30 2" 5(u) 2 127~ h k2 + 4 x (0 —q) 42",
=0

By Proposition 2.2, t pebbles can be moved from the vertices of L\vp to
vo. The result follows. 1

Theorem 2.8. If m,n > 5 and |n —m| > 2, then

F(M(Can) x M(Cam)) £ f(M(C20))f(M(Cam)).

Proof. Without loss of generality, we assume that n > m + 2 (m > 5).
Let V(M (C2,)) = {u1,u2,...,uan}, V(M(Com)) = {v1,v2,...,v4m}. For
simplicity, let G = M(C2,) x M(Cam).

Now we assume that (2"*! + 2n — 2)(2™+! + 2m — 2) pebbles have
been distributed arbitrarily on the vertices of G. Suppose the target vertex
is (ui,vj). Note that the vertex (u;,v;) belongs to both V(u;M(Cam))
and V(v; M (Can)). If p(usM(Cam)) 2> 2™ + 2m — 2 or p(v; M (Can)) 2
2n+1 4 9n — 2, then we can move one pebble to (u;,v;) by Lemma 2.6.

Suppose that p(u; M (Czm)) < 2™+ + 2m — 3 and p(v;M(Can)) <
ntl 4 9n - 3.

We will prove that if we move as many as possible pebbles from the
vertices of wM(Cap) to (u,v;) which belongs to v;M(Ca,) (1 <1 < 4n),
then one pebble can be moved from v; M (Cs,) to (us, vj).

We may assume that
pr = p(uc(M(Cam))) 2™ +2m -3 (1 <k <)

and
i = p(ur(M(Can))) 2 oM+l L om—2 (s+1<k<4n).

Now we consider the worst case scenario (i.e. the most wasteful dis-
tribution of pebbles possible). Therefore we may assume that

2m+l 4 om — 3, if 1<k<s,
pe=4{ t2mt 42m—24 (2™ 1), if s+1<k<4n-1,
t:2™+1 + 2m — 2 + R, if k=4n,

where 0 < R < 2m+1 _ 1 and t;. is a positive integer. According to Corol-

4n
lary 2.7, we can move at least Y. tx pebbles to v;(M(Can))-
k=s+1
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Let
A= (2" 420 - 2)(2™ ! 4 2m — 2) — (2™ + 2m - 3)
—(4n—-s-1)@2™! -1) - (4n-s)2m —2)
=@ —2n-2)2™* +2m —2) + 2™ +4n - 1.

Therefore,
A n+1 n+1
srT =2 == 1t o [(2"t! —2n - 2)(2m —2) + 4n —1].

4qn qn
Note that A = < > tk) 2™+l R so Ytk > 5,%1-—1. It follows

k=s+1 k=541
that
an
P;M(Cam)) = > ti> 2" —2n -2
k=s+1 .
+ -27,1+—1 [(2™*! —2n - 2)(2m - 2) + 4n — 1].

To the end, we only need to prove that we can move one pebble from
[(2"+1-2n-2)(2m—2)+4n—1]

v;(M(Ca2n)) to (ui,v;) with 27+ —2n -2+ FET peb-
bles.
So we only need to prove that
1
gn+l =22+ oy (@ —2n-2)2m - 2) +4n—1] > 2" t2n-2.

(%)
After some direct simplifications and calculations, we reduce the in-
equality of () to its equivalent form as follows:

-1 1
S T2 - ) —m 2 (+%)

It is clear that the right side of the inequality (* x) is an increasing
function of n, for 7 < m +2 < n. So we only need to show that (x *) holds
when n = m + 2. Substituting n = m + 2 into (x *), we have

"'+1<ﬁ__1 m4+2 _ 1y _ __1_
2 _m+2(2 1)-m+2 4(m +2)’
namely,
(m—4)2™* —m? —m 4 14—9 >0. (% %)
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The left side of (x*x*) is an increasing function of m if m > 5. Clearly,
(**%) holds for m = 5. This completes the proof. 1

In this paper, we have shown that if m,n > 5 and |m — n| > 2, then
f(M(CZn) X M(C2m)) < f(M(CZn))f(M(C2m)) Howevera the rema.ining

question is open.

Problem 2.9. f(M(Cz2n)xM(Cam)) < f(M(C2n))f(M(C2m)), form =n

orm=n-1.

3 Remark

Let Con = wovy -+ -von—1vp, M(C2,) is obtained from Ci, by inserting
u; N0 Y;¥(iy1)mod(2n), aNd connecting u;U(;y1ymod(2n) for 0 < ¢ < 2n —
1. For any vertex u € V(M(Cy,)), we say u ¢ V(Can) means that
u € {ug,u1,...,U2n-1}, similarly, for any vertex (u,v) € V(M(Cs,) X
M(Csp)), we say (u,v) € V(Con X Com) means that u € V(Cy,) or
v g V(CZm)

Then, by a similar argument as the proof of Corollary 2.7, we can
prove that

Corollary 3.1. For any vertezx u € V(M(Ca,)), we have that if u &
V(Cap), then fo(M(Can),u) < 2™ +2n—2+4 (¢t —1)(2" +n).

Moreover, we can prove the following theorem.

Theorem 3.2. For any vertez (u,v) € V(M(Csn) x M(Cam)), we have
that if (u,v) € V(Can X Cay), then

F(M(Ca2n) x M(Cam), (u,v)) £ F(M(Can))f(M(Cam)),
where m, n > 5.

Proof. If (u,v) € V(C2, x Ca;), then we can get u ¢ V(Ca,) or v ¢
V(C2m). Without loss of generality, we assume that u & V(Ca,).

Let V(uM(Cgm)) = {'Ul, V2yeony ’U4m}.

If we move as many as possible pebbles from v; M (Csn) to the vertex
(u,v;) € V(uM(Cam)), for 1 < j < 4m, then by a similar process as in
the proof of Theorem 2.8, if (27*! 4 2n — 2)(2™*! + 2m — 2) pebbles have
been distributed arbitrarily on the vertices of M(Ca,) x M(Cam), then at
least 2™+ 4+ 2m — 2 pebbles can be moved to the vertices of uM (C2), and
therefore at least one pebble can be moved from uM(Cs,) to (u,v) with
these pehbles. 1
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