On the signless Laplacian spectral
radius of tricyclic graphs with n
vertices and diameter d

Xinying Pai*® , Sanyang Liu®*
@ Department of Mathematics, Xidian University,
Xi’an, Shanxi 710071, P. R. China
b College of science, China University of Petroleum,
Qingdao, Shandong 266580, P. R. China

Abstract: Let G be a tricyclic graph. Tricyclic graphs are connected
graphs in which the number of edges equals the number of vertices plus
two. In this paper, we determine graphs with the largest signless Laplacian
spectral radius among all the tricyclic graphs with n vertices and diameter
d.

Keywords: Signless Laplacian spectral radius; Tricyclic graph; Diam-
eter.

Document code A

MR(2000) Subject Classification 05C05;15A18

1 Introduction

In this paper all graphs are undirected finite graphs without loops
and multiple edges. Let G = (V, E) be a graph with vertex set V(G) =
{v1,v2,+++ ,vs} and edge set E(G). Denote by d(v;) the degree of the graph
G, N(v;) the set of vertices which are adjacent to vertex v;. Let A(G) be
the adjacency matrix and Q(G) = D(G) + A(G) be the signless Laplacian
matrix of the graph G, where D(G) = diag(d(vi),d(v2),- - - ,d(vs)) denotes
the diagonal matrix of vertex degrees of G. The characteristic polynomial
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¥ (G, z) of G is defined as (G, z) = det(z]— A(G)). The signless Laplacian
characteristic polynomial ®(G,z) of G is defined as ®(G,z) = det(zI —
Q(G)). The spectrum of Q(G) is also called the signless Laplacian spectrum
of G.

The matrix @ is real symmetric and positive semidefinite, the eigenval-
ues of @ can be arranged as

1(Q)2¢(@Q)2--2¢(Q)20

where the largest eigenvalue ¢q;(Q) is called @- index of graph G. When
G is connected, Q(G) is irreducible and by the Perron-Frobenius Theorem,
the signless Laplacian spectral radius is simple and there is a unique pos-
itive unit eigenvector corresponding to g;(G). We shall refer to such an
eigenvector as the Perron vector of G.

A tricyclic graph is a connected graph with the number of edges equaling
the number of vertices plus two. Recently, the problem concerning graphs
with maximal spectral radius or the Laplacian spectral radius of a given
class of graphs has been studied by many authors. Guo (3] determined
the spectral radius of trees with fixed diameter. Tan [4] determined the
largest eigenvalue of signless Laplacian matrix of a graph. Geng and Li [5)
determined the graph with the largest spectral radius among all the tricyclic
graphs with n vertices and diameter d. Guo (6] determined the Laplacian
spectral radius of trees with fixed diameter. He and Li [19] identified graphs
with the maximal signless Laplacian spectral radius among all the unicyclic
graphs with n vertices and diameter d. In this paper, we determine the
unique graph with the largest signless Laplacian spectral radius among all
the tricyclic graphs with n vertices and diameter d.

T X 8-
(K =000 050

Fig.1The base of three cycles in T

“ B(R.P,.P,)

Fig.2 The base of four cyclesinT?

Let C, and P, the cycle and the path, on n vertices, respectively.
Let G — u or G — uv denote the graph obtained from G by deleting the
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vertex u € V(G) or the edge uv € E(G). Similarly, G + uv is a graph
obtained from G by adding an edge uv, where u,v € V(G) and wv ¢ E(G).
For two vertices u and v (u # v), the distance between u and v is the
number of edges in a shortest path joining v and v. The diameter of a
graph is the maximum distance between any two vertices of G. For a real
number z, we use |z] to represent the largest integer not greater than z
and [z] to represent the smallest integer not less than z. By [7], it is
easy to know that a tricyclic graph G contains at least 3 cycles and at
most 7 cycles, furthermore, there does not exist 5 cycles in G. Then let
[, =3 UTAUTE UTY, where I, denotes the set of tricyclic graphs in
I',, with exactly i cycles for i = 3,4,6,7. [see Fig. 1-Fig. 4]

CLO. O

Fig.3 The base of six cclesin T,

Fig.4 The base of seven oyeles in r

An internal path of a graph G is a sequence of vertices v1,v2, -+ ,vm
with m > 2 such that:
(1) The vertices in the sequences are distinct (except possibly v; = vp,);
(2) v; is adjacent to viyy, (1 =1,2,--- ,m —1);
(3) The vertex degrees d(v;) satisfy d(v1) > 3, d(v2) = - = d(vm-1) =2
(unless m = 2) and d(v,) > 3.

2 Preliminaries

In this section, we give the following lemmas which will be used to prove
our main results.
Lemma 1.1 ([1]). Let G be a connected graph, and u,v be two vertices
of G. Suppose that v;,vs,...,vs € N(w)\N(u) (1 < s <d(v)) and z =
(z1,%2,...,Z,) is the Perron vector of G, where z; corresponds to the
vertex v; (1 <4 < n). Let G* be the graph obtained from G by deleting
the edges vv; and adding the edges wv;(1 < ¢ < s). If z, > =z, then
9(G) < q(G").

The coalescence of G and H with respect to v; € V(G) and vy € V(H)
is formed by identifying v; and va, and is denoted by G - H. In other
words, V(G - H) = V(G) UV (H) U {v*} — {v1,v2}, with two vertices in
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G - H adjacent if they are adjacent in G or H, or if one is v* and the other
is adjacent to v, or v in G or H.[see [2]]

Lemma 1.2([2]). Let G- H be the graph obtained from disjoint graphs
G and H by coalescing the vertex u of G with the vertex v of H. Then

¥(z,G-H) =9(z,G)¥(z, H —v) + ¥(z,G — v)¥(z, H)
—z¥(z, G — u)¥(z, H — v).

By similar reasoning as that of Theorem 3.1 of [6] and Lemmas 2 and
7 of [15], we have the following result.
Lemma 1.3([15]). Let P : vyvz...v(k > 2) be an internal path of a
connected graph G. Let G’ be a graph obtained from G by subdividing
some edge of P. Then we have ¢:(G') < q1(G).

Let S(G) be a graph obtained by subdividing every edge of G.
Lemma 1.4([2,12]). Let G be a graph on n vertices and m edges. Then

Us(g) = 2" "Da(z?).

Lemma 1.5([13]). Let u be a vertex of a connected graph G and d(u) > 2.
Let Gk i(k,! > 0) be the graph obtained from G by attaching two pendant
paths of lengths k and ! at u, respectively. If k > [ > 1 then

q1(Grt) > q1(Grq1,0-1)-

Lemma 1.6([1]). Let G be a simple graph on n vertices which has at least

one edge. Then
A(G)+1 < q1(G) £2A(G),

where A(G) is the largest degree of G. Moreover, if G is connected, then
the first equality holds if and only if G is the star K ,_1; and the second
equality holds if and only if G is a regular graph.

Lemma 1.7([14]). Let e be an edge of the graph G. Then

1(G)2q1(G-€) 20(G) 2q(G—€) 2+ 2 ¢a(G) 2 qn(G —€) 2 0.

Lemma 1.8([4]). Let e be an edge of a graph G, and let Eg(e) denote the
set of all edges (containing no e) adjacent to e in G and Jg(e) the set of all
distinct line graph cycles containing e in G. Then the signless Laplacian
characteristic polynomial of G satisfies that

-2 ®(G-e—¢rx) (G - E(Z),x)
®(G,z) = p ®(G—e,z)- Z ———xr—"? Z ZIE(2)]
z€Ec(e) ZeJs(e)

where E(Z) is the set of edges in a subgraph (or an edge sequence) Z,
|E(Z)| is the cardinality of F(Z).

298

)



Let G be a connected graph, and uv € E(G). The graph G,, is ob-
tained from G by subdividing the edge uv, i.e., adding a new vertex w and
edges wu,wv in G — wv.

Lemma 1.9([17]). Let G, be the graph obtained from a connected graph
G by subdividing its edge uv. Then the following holds:

(?) if uv belongs to an internal path then ¢,(Gy,) < ¢1(G);

(%) if G % Cy, for some n > 3, and if wv is not on the internal path then
q1(Guy) > q1(G). Otherwise, if G = C, then q;(Guy) = q1(G) = 4.
Lemma 1.10([18]). Let u be a vertex of a graph G, let (u) be the collec-
tion of all cycles containing u. Then the signless Laplacian characteristic
polynomial ®(G) satisfies

8(G,z) = (z—d(v))®(G-u,7)~ Y (G-u-v,z)-2 Y &(GC-V(2),x),
vEN(u) Zep(u)

where the first summation extends over those vertices v adjacent to u, and
the second summation extends over all Z € p(u).

Lemma 1.11. Let G be a connected graph and let e = uv be a non-
pendant edge of G with N(u) [N (v) = 0. Let G* be the graph obtained
from G by deleting the edge uv, identifying v with v, and adding a pendant
edge to u(= v). Then q,(G) < q1(G*).

Proof. Let z, and z, denote the components of the Perron vector of G
corresponding to u and v, respectively. Suppose that N(u) = {v,v1,...,vs}
and N(v) = {u,uy,...,u;}. Because e = uv is a non-pendant edge of G, it
is easy to see that s,t > 1. If z,, > z,, let

G' =G — {vuy,...,vu} + {uuy,...,uu}
If z, <z, let
G" =G - {uvy,...,uvs} + {vvy,..., vV}
Obviously, G* = G’ = G”. By lemma 1.1, we have
71(G) < q1(G”).

The proof is completed.[]

Lemma 1.12. Let G,G’,G" be three connected graphs disjoint in pairs.
Suppose that u,v are two vertices of G, v’ is a vertex of G’ and u” is
a vertex of G”. Let G, be the graph obtained from G,G’,G” by iden-
tifying, respectively, u with u' and v with u”. Let G, be the graph
obtained from G,G’,G" by identifying vertices u,u’,u”. Let G3 be the
graph obtained from G, G’, G” by identifying vertices v, u’,«”. Then either
701(G1) < 1(G2) or 1(G1) < q1(Ga).
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3 Main results

In this section, we will determine the graph with the largest signless
Laplacian spectral radius among all tricyclic graphs with n vertices and
diameter d. Let T'n g = I3 ,UTA 4UTE ,UTY, 4, where T, 4 denotes the
set of tricyclic graphs with n vertices and diameter d, and I"f,'d denotes the
set of tricyclic graphs in I',, ¢ with exactly ¢ cycles for i = 3,4,6,7.

Suppose we have two graphs G and H with v € V(G) and v € V(H),
the coalescence of G and H with respect to u and v is formed by identifying
u and v, and is denoted by G, - H,.

Let @,(G) be the principal submatrix of Q(G) formed by deleting the
row and column corresponding to the vertex v.

Theorem 2.1([18]) Let G,,- H, be the graph obtained from disjoint graphs
G and H by coalescing the vertex u of G with the vertex v of H. Then

(G, Hyyz) = ¥(G,2)2(Qu(H),z) + B(Qu(G), ) ®(H, x)

—o®(Qu(G), 2)8(Qu(H),2). (3.1)

Theorem 2.2. Let G and H be two graphs.
(2)([20)) If ®(H;z) > ®(G;z) for =z > q;(H), then q;(G) > q1(H);
(#4)([19]) If H is a proper subgraph of G and G is a connected graph, then
2(G) > q(H);

(#42)([4)) If H is a proper subgraph of G and G is a connected graph, then
®(H;z) > ®(G;z), for z > 1(G).

Theorem 2.3. If d > 3, let T:ill),i, T:izl)_i, Tjﬁ)’i, T:-(rlll).' € I'46, we have

T

o~ d -4 g n-d-$
—s e o o—p —
Vi Vint ' d=1 v, ¢ -1 Y ¢ ud.:

6(1)
T o0 T.:6+‘|2_.-)
n-d-3
[
v*—.. 4 o 0 &
VagZe S Vi VA "iv... L
n-d-3 "
T6(3‘S T 6¢%)
dq,l"' d+1,i

. 6(1) p6(2) T 6(3) p6(d)
Fig 5T, Thvis Taois Tai

) @ (TG(I) ) > q,(Te(z) ), where 2 < i < d, and the equality holds if and

d+1,i d+1,i
only if i = 2.
() (T:fl)’i) > QI(T:.(,.41),i), where2 <i<d-1.
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Proof. Since T:j_ll)'i,T:ﬁ),i € I'dS, for 2 < i < d, and note that Tﬁ_ll)’z ~

ng)’z, obviously we have

6(1 6(2
41 (Tdil),z) =qQ (Tdi 1),2)a
when 3 < i < d. Suppose the new path P,_; : v;,vs,...,%—1 in Tj_f_ll)’i

(respectively, Tfﬁ),i), and let B = 34(_11),,. —{v1,v2,...,vi—2}. Thenlet u be
the vertex of degree 4 in the graph B, in which we also choose a pendent
vertex, say v, such that v # vgy; , we have Tj—f-ll),i = (Pi~1)v;_, - Bu, and

T3 . = (Pic1)vi_, - Bu. By using the Theorem 2.1, we have

ST L 2) — (T2 ., 2) = B(Pie1 - Bu,z) — ®(Pic1 - By, 7)

= Q(P'—lax)@(Bu’m) + (I)((P'—l)vi-ux)q’(B:x) - xq)((Pi—l)v.'-nx)Q(Buvx)
_q)(P'—lvx)@(Bv’x) - Q((P'—l)v.'—nz)q)(B!x) +$q)((P£—1)v.‘-nx)¢(Bv’$)

= ®(P;_1,7)®(By,z) — ®(Pim1,z)®(By, ) + 2((Pi=1)v;_,, Z)P(By, x)
~2®((Pi1)vi_1,Z)®(Bu, 2)

= (®(Bu,z) — ®(By, 2))(®(Pi-1,7) — 28((Pi-1)wi_1» Z))

= (®(Bu, ) — ®(B,), z)(®(Pi-1, %) — 2®(Pi2, 7)) (3.2)

Since B—u is a proper subgraph of B—v, by Theorem 2.2, for z > g, (B—v),
we have

®(B -u,z) —®B —v,z) >0 (3.3)
By using Theorem 2.2, for z > q;1(F;-1), we have
®(Pi-1,z) — 28(Pi-2,7) <0 (3-4)

It is easy to see that B — v and P;_» are the proper subgraph of T, f_ﬁ),i, by

applying Theorem 2.2, we have
a(Teihs) > (B —v)a1(P-2)}.
From (3.2),(3.3) and (3.4), we have
(TN, 7) < B(T5 %),
for x > QI(ijl),i)- So using Theorem 2.2, we have that

6(2
Q1 (T:J(rll).i) > 41(Td4(-1),i):
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for3<i<d.

(#2) Denote n—d—3 pendent vertices in T:f’l),i (or Tﬁ?’i) by Vg4 ...y Un.
Let H be the induced subgraph with vertex set {v;,v444,...,vn} and edge
set {UiVd+4,ViVd45,...,ViVn} in T:ﬁ),r Let D = T:ii),i\{vd+4, ceeyUnky
and let u be the vertex of degree 4 of D, and choose one vertex of degree
3in D, we have

3),z 6(4
7:ﬁ-l),i = H,, - Dy, Td-s-l),i = Hvi—: - Dy.

By using Theorem 2.1, it is easy to see that
B(T3SY2) = B(TELY 1, 2) = (B(Du, 7) — B(Dy, 2))(B(H, 7) — 2"~42)(3.5)
From Theorem 2.2, for = > ¢,(D — v), then

®(Dy,z) — ®(Dy,z) >0 (3.6)
We have from the Theorem 2.2 that for z > ¢,(D — v)

®(H,z)-z"%?2<0 (3.7

Since D — v is a proper subgraph of Tﬁ‘?’i, by using Theorem 2.2, we have

(T > au(Dy) > 0.
Combining (3.5), (3.6) and (3.7), we have
BT 7)< (TEY,2),

for z > QI(T:.E.?,,')-
By applying Theorem 2.2 once more, it is easy to see that

6(3
Q1(Td-$-l),i) > ql(Iffl),i)a

for 2 < i < d. The proof is completed.0]

7(1) n-d-3 7(2)
Tll +1,i 4!!0. Td+l,i
G—y & ® Qe——y e o0 V‘_l LE o

. v _
i1 oy, 5 Van

) n-d-3
. 7H (
Fig.6 T, Ty.r,
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Using similar arguments to the proof of Theorem 2.3, we can prove the
following Theorem 2.4 and Theorem 2.5.
Theorem 2.4. If d > 3, let T, (7 ,, Ty ; € T%7, we have

7(1 7(2
a(TiN) 2 a3,

where 2 < i < d, and the equality holds if and only if i = 2.

Theorem 2.5. If n > d + 3, we have q (T:_f_ll)’,-) > ql(T:fl),,-), where
4<i<d-1.

Theorem 2.6. If n >d+ 4, d> 4 and d is even, we have

a1(Tony age) <(T50) aga)-

Proof. Let vy = d;22. Then T:_f_ll) aga 2 G(v+1,7), T:j.ll)qi £ G(vy,7+1).

Using Lemma 1.10, we have

HTYLY age) =~ BT5) apo)

=®(G(v+1,7) - 2(G(v,7+1))
= (z—d(w))@(G(7,7))-(G(v-1,7))—(z—d(u))B(G(7, ) +B(G(7,7-1))
®(G(v,7—-1))—2(G(v—1,7))
= ®(G(1,0))-¥(G(0,1))
= (z — d(u))®(G(0,0)) — ®(Ki1,n—d-1) — (z — d(u))®(G(0,0))
+(z — d(u))"" 4B (K, 3) > 0

forvVz > q1 (T:_f_ll) %_4_). According to Theorem 2.2, we have that

a1(Topy age) < ar(T5) asa)-

The proof is completed.[d
Using similar arguments to the proof of Theorem 2.6, we can prove the

following Theorem 2.7.
Theorem 2.7. If n > d+4,d > 4 and d is even, we have

a1 (Tye) age) < (T aga).

Theorem 2.8. Let G €'y 4, for n > d+4 and d > 3. Then
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B(d,d,d,d+1)
Fig.7 B(d,d,d,d+1)yand H

(i) If d > 4, we have
01(G) < {a(T5l) asa ) (T50) aaa D)

and the equality holds if and only if G = T:ill),[%—“ | (or G = T;-(l-ll),[ 4 )-

(i) If d = 3, then ¢1(G) < q1(T; "), and the equality holds if and only if
G=T1IY.
Proof. Choose G € I'¢ such that the Q@-index of G is as large as possible.
Suppose G has vertices vy, vz, ...,v, and z = (21,22, ...,Zs) is the Perron
vector of G, where z; corresponds to the vertex v; (1 < ¢ < n). There are
five cases.
Case 1. There does not exist the internal path with length greater than 1
unless this internal path is in a cycle with length 3.

Assume to the contrary, we consider two possible cases.
Case 1.1. G = B(d,d,d,d+1). Let B(d,d,d,d + 1) be the graph as shown
in Fig. 7.

It is easy to see that B(d,d,d,d+1) € I'¢. By Lemma 1.11 and Theorem
2.2, we get that q1(G) < q1(H), where H is shown in Fig. 7. Moreover, us-

ing Lemma 1.11 and Theorem 2.2 several times we have q; (H) < ¢ (Tﬁll)’i),

which implies that q1(G) < q1(Tgyy;), a contradiction.
Case 1.2. G % B(d,d,d,d + 1).

Suppose Pt = v1Vz ... Vg4 i an internal path of G with length k > 2
such that Pry; does not exist on a cycle of length 3 in G. Let G' =
G - {v1vq, vouz} +{v1v3}. If the diameter of G’ — v, is d, it is easy to see that
Jup € {G’ — vy} such that G* = G’ + {vova} € T'd. If the diameter of G’ — v,
isd-1. Let G* = G’ +{vv;} or G* = G’ +{vv;1,}, then G* € I's. According
to Lemma 1.11 and Theorem 2.2, we have ¢;(G*) > ¢1(G), a contradiction.
From the proof as above, we know that G € ['43 | JI'44 | JTdeJra?.
Case 2. G ¢ I'd3,

Assume to the contrary, G € I“,’;3. The base of three cycles, say
Cp,Cy,Ci, in G has seven possible cases [see Fig. 1]. We first prove that
IV (Pas) NV(Cy)] 2 1 ot [V(Pas1) NV(Col 2 1 or [V(Par)) NV(C)] 2
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1. Otherwise, |V (Psy1) NV(Cp)| = 0, [V(Par1) NV(Cy)| = 0, [V(Pus1)
NV (Ci)| = 0. Suppose P = ui,uz,...,ux is a shortest path such that
u; € V(Py1) and u, € V(Cp)UV(Co)UV(Cr). Then k > 2. Using
Lemma 1.11, we have a graph G* € I'4® with ¢;(G*) > q:1(G), a con-
tradiction. Hence, |V(Pit1)NV(Cp)| = 1 or [V(Pas1) NV(Cy)| = 1 or
IV(Pae1) NV(CY)| 2 1.

Let V! = V(Pi+1) NV (Co UCq UCt) and G' = G(V') be the induced
subgraph of G. Then G’ is obtained from G by attaching some trees. It is
easy to see that all these attached trees are stars. Furthermore, applying
Lemma. 1.12, we get that all these pendent edges are attached at the same
vertex of G'.

From Case 1, we know that p = ¢ = { = 3. Without loss of generality,
we choose v; and v; in V(Cp) and V(Cy) respectively, such that v; and v;
are not adjacent and v;v; ¢ Pyy1. If 2 > x5, let G* = G — ww; + vy,
where v, € N(v;)\N(v;) and if z; < zj, let G* = G — vkv; + vkv;, where
v € N(v;)\N(v;). Obviously, G* = G* € T'44. By Lemma 1.1, we have
¢1(G*) > q1(G) a contradiction. So G ¢ I'd3.

Case 3. G ¢ I'd4,

Assume to the contrary, G € T'%4. Let Poy1, Pps1, Py+1 be three vertex-
disjoint paths, where !, p, ¢ > 1 and at most one of them is 1. Identifying the
three initial vertices and terminal vertices of P41, Pp+1,Py+1, respectively,
the resulting graph [see Fig. 2], denoted by P(l,p,q), is called a §-graph.
Suppose Cy, be a cycle. Connect C, and P(l,p,q) by a path and denote
the resulting graph by G’. Then G’ has four types [see Fig. 2].

Similar to the proof of Case 2, we can verify that |V (Py;1) N V(G')| > 1.
Let V" = V(Pa41) UV (G), and G” = G[V"] be the induced subgraph of
G. Furthermore, similar to the proof of Case 2, we can show that G” is
obtained from G by attaching some pendent edges to one vertex.

It is easy to see that | = 1,p = ¢ = 2. By Case 1, we have m = 3.
Choose v, and v, in V(P(1,1,2)) and Cjs, respectively, such that vx and
v, are not adjacent. By using Lemma 1.1, we have that G* € T'#6. Then
71(G*) > q1(G), a contradiction. So, G ¢ I'%4.

Case 4. If G € T8, then G ijl{l sy

Denote the subgraph, say G’, induced by the six cycles contained in G.
Similar to the proof of Case 2, we can verify that |V (Ps1) V(G| 2 1.
Let V" = V(Py41) UV(G’), and G” = G[V”] be the induced subgraph of
G. Furthermore, similar to the proof of Case 2, we can show that G” is
obtained from G by attaching some pendent edges to one vertex.

Now we show that the three cases (1), (2) and (3) ( Fig. 3) of G’
are Hy, H,, Hy (shown in Fig.8), respectively. That is, (1) = H1,(2) =
H,,(3) = H3. We first show that (1) = Hy. Denote (1) by P(,p,q,m).
We have that {,p,q,m > 1 and at most one of them is 1. Without loss
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of generality, we may assume that | < p < ¢ < m. We claim that l = 1
and p =g =m = 2. Indeed, by case 1, = 1,p < g £ m < 3 and if
m = 3, then p =g = 2. If m =3, denote Pp4+) = yjuvus. By Case 1, we
have d(u) > 2 and d(v) > 2. In the case, when neither uju nor vus lies on
Pi.1, applying Lemma 1.11 to vuy, we obtain a graph G* € T'%6 such that
01(G*) > q1(G), a contradiction. So we assume that uju lies on Pyyy. If
neither ujug nor uv lies on Py, applying Lemma 1.11 to vuy, we obtain
a graph G* € T'%® such that q;(G*) > ¢1(G), a contradiction. Then we
assume that v ug lies on Pyyq, and then d(v) > 2. By Lemma 1.1 to u and
v, we obtain a graph G* € T'%® such that ¢;(G*) > q1(G), a contradiction.
Therefore, Il = 1,p = ¢ = m = 2. That is (1) = H;. Similar the proof as
above, we can prove that (2) = Hj,(3) = Hs.

Next, we prove that the G’ is neither Hs nor Hz. Assume that G' = H,.
If vjus € Payq or vavg € Pyyq, then by symmetry we only consider v vs €
Pyy. If 2y > 9, let G* = G — vauy + v1v4, then G* € I“,’;s. Ifz) < x4, let
G1 = G — v1v3 + vav3, then applying Lemma 1.11 to v1v;, (Vivm € Payy
and v,, ¢ G'), we obtain a graph G* € I'%® such that ¢;(G*) > q:1(G?).
By Lemma 1.1, there is a graph G* € I'46 such that ¢;(G*) > q1(G), a
contradiction.

If vavyvz € Pgyy or v1vouy € Pyyg, similar to the proof as above, there
is a graph G* € T'%® such that g;(G*) > q1(G), a contradiction.

If neither vyv3 nor vouy exists on Pyyi, then applying Lemma 1.1 to
vy and vy, we obtain a graph G* € T'd6 such that q,(G*) > q1(G), a
contradiction. Therefore, we obtained G’ # H,.

Now, we show that G’ # H3. If G’ = Hj, then applying Lemma 1.11 to
nvy (if vyve € Pyy1, otherwise, applying Lemma 1.11 to v3v,), we obtain
a graph G* € T'%8 such that ¢;(G*) > ¢1(G), a contradiction.

Thus, H, in Fig.8 is just the graph induced by the six cycles contained
in G.

If |V(Pas1) YV (H1)| = 1, then without loss of generality we assume
that v; € V(Pyy) or v3 € V(Pyyy). If v3 € V(Pyyy), using Lemma 1.1
to vz and vz, we can obtain a graph G* € I'%6 such that ¢,(G*) > ¢:(G),
a contradiction. Hence, v € V(P44,) applying Lemma 1.12, we have
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G= T:fl),i, which is a contradiction by Theorem 2.3.

If |V(Pag1) NV (H1)] = 2, then without loss of generality we assume
that vyve € V(Py41) or vovs € V(Pys1). let vovg € V(Pyy1), using Lemma
1.1 to v; and v3, we can obtain a graph G* € I'®6 such that ¢1(G*) > q1(G),
a contradiction. Let vovz € V(Py41), then by Case 1, Lemmas 1.1 and
1.12, we can prove that all the pendent edges, not lying on Psy;, of G

must be attached to just one of v; and v,. That is to say that G = Tif_ll),i.

Furthermore, by Lemma 1.5 and Theorem 2.6, we obtain G = T:ill)‘l ey

If [V(Pay1) NV (Hy)| = 3, then without loss of generality we assume
that vouzvy € V(Pa41). Applying to Case 1 and Lemmas 1.1 and 1.12,

we can similarly prove that all the pendant edges, not lying on Pyy1, of G
must be attached to just one of v, and va. That is to say that G = T:fl),i

s T6(4)
or G Td+l,i‘

If d > 3, by Lemma 1.5, we have 2 < i < d — 1. By Theorem 2.5,
ql(Tjﬁ)ﬂ-) < ql(Tﬁ_al),,.). When d > 5, by Lemma 1.5, we have 4 < i < d—1.
By Theorem 2.3, ¢; (Tg_ﬁ)’i) <q (T:_(;)‘,-). If d = 4, by Lemmas 1.5 and 1.10,
we have ¢ (Tﬁ ‘33)) >q (Tf, (32)) >q (Tf, ‘3"). That is to say that for d > 3,
a (T:j-al),.') < (T ). Furthermore, we have that for G € I'%6,

+1,7
~ 78(1)
GET b (3.8)

d,7 ~ 7(1)
Case 5. GeI'y', G = Td+1,|_i;-‘1j‘
The base of seven cycles contained in G has only one case [see Fig. 4].
By Case 1, Lemmas 1.1 and 1.12, the graph induced by the seven cycles

contained in G is K. Similar to the proof of Case 4, we get that G = Td-’ill),..
orG = T;ﬁ)’i. Furthermore, by Theorems 2.4 and 2.7, we have
G=T'™ (3.9)

d+1, 22
From Cases 2-5, and by (3.8) and (3.9), Theorem 2.8 (z) follows.
For d = 3, applying to Lemmas 1.5 and 1.10, we have
a(T18)) > a(Tis)). (3.10)

From Cases 2-5, and by (3.8), (3.9) and (3.10), Theorem 2.8 (i) follows.
The proof is completed.Od

From Theorem 2.8, it is easy to get the following two corollaries.
Corollary 2.9. For d > 3 and n < d + 3, let G be a tricyclic graph with
n vertices and diameter d. Then

a(G) STy aga))
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and the equality holds if and only if G = T:_E_ll) 1442

Proof. It is easy to check that there does not exist G € I'y 4 such that
n < d+2. Hence, we only need to consider the case G € I'y, 4,7 = d+3 with
d > 3. We know that the largest signless Laplacian spectral radius must be

. 6(3
in {Tﬁ?i,Tg_(ﬁ)’i,T;ill),i}. By Theorem 2.3, qI(Tdil),i) > ql(T:_(ﬁ)'i). Now

we are to show that q1(T\y;) > q1(Tgey). Similarly to the proof of
Theorem 2.3, we can prove that

a(G) S a(Tyy) aga))-

The proof is completed.[]
Corollary 2.10. Among all the tricyclic graphs with n vertices, the largest
and the second largest signless Laplacian spectral radius are, respectively,
of the form T35 and Teg).
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