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Abstract

The adjacent vertex distinguishing total chromatic number x,(G)
of a graph G is the smallest integer k for which G admits a proper k-
total coloring such that no pair of adjacent vertices are incident to the
same set of colors. Snarks are connected bridgeless cubic graphs with
chromatic index 4. In this paper, we show that x.:(G) = 5 for two
infinite subfamilies of snarks, i.e., the Loupekhine snark and Blanusa
snark of first and second kind. In addition, we give an adjacent ver-
tex distinguishing total coloring using 5 colors for Watkins snark and
Szekeres snark, respectively.

Keywords: Adjacent vertex distinguishing total coloring, Loupekhine
snark, Blanusa snark

1 Introduction

Let G = (V, E) be a simple graph. The maximum degree of G is denoted
by A. A proper k-total coloring of G is a mapping f from V' U E to the set
of colors {1,2,...,k} such that f(x) # f(y) for every pair of adjacent or
incident elements z,y € V U E. The total chromatic number of G, x:(G),
is the least k for which G has a k-total coloring. For each vertex v € V', we
set Cp(v) = {f(v)}U{f(uv)luv € E(G)} and C¢(v) = {1,2,...,k}\Cs(v).
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If it is clear from the context, we simply use C(v) and C(v) instead of
Cy(v) and 5;(1}), respectively. The coloring f is called an adjacent vertex
distinguishing total coloring (avd-total coloring) if C(u) # C(v) for any
pair of adjacent vertices © and v. The adjacent vertex distinguishing total
chromatic number xq:(G) of G is the least k such that G admits a k-avd-
total coloring.

Zhang et al. [10] introduced the concept of avd-total coloring. Base on
the argument for some special classes of graphs, they proposed the following
conjecture.

Conjecture 1.1 [10] Let G be a connected graph with at least two vertices.
Then xq:(G) < A+ 3.

Chen [2] and Wang [9], independently, confirmed this conjecture for
case A < 3. Later, Hulgan [5] presented a concise proof for this result. For
the lower bound of x,:(G), it is evident that x.:(G) > A + 1. Moreover,
Zhang et al. gave the following result.

Lemma 1.1 [10] If G is a graph with two adjacent vertices of mazimum
degree, then x.:(G) > A + 2.

Thus, the adjacent vertex distinguishing total chromatic number of a
cubic ( 3-regular ) graph is either 5 or 6. A snark is a bridgeless non-3-
edge colorable cubic graph. The Petersen graph is the smallest and earliest
known snark, which has 10 vertices. There is no snark of order 12, 14 or
16 (see for example (3, 4 |). Preissmann [7] shown that there are just two
nontrivial snarks of order 18, the Blanusa snarks.

Two infinite families of snarks, Flower and Goldberg snarks have had
their adjacent vertex distinguishing total chromatic number been deter-
mined in [1]. In this paper, we give the adjacent vertex distinguishing total
chromatic number for the Loupekhine snark and Blanusa snark of first and
second kind. Graphs in these families share a common property that they
can be built from a suitable glueing of some subgraphs of the Petersen
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(a) Petersen graph P (b) Block graph B, (c) Link graph L

Fig. 1: Construction of a block and a link graph.

graph. In addition, we give a 5-avd-total coloring for Watkins snark and
Szekeres snark, respectively.

2 The Loupekhine Snarks

F. Loupekhine created a method for constructing new snarks from already
known ones. Loupekhine’s construction presented here was introduced by
Issacs [6]. Sasaki et al. [8] proved that the total chromatic number of
Loupekhine family is 4 . Let P be the Petersen graph. We define the block
graph B; as the subgraph of P by removing a path of three vertices. Due
to the high symmetry of P, B; is unique (see Fig.1(b)). A link graph L
is defined as the junction of two block graphs, where the eight degree two
vertices are called border vertices (see Fig.1(c)).

The first Loupekhine snark FLg3 of first kind is formed by B;, B, B
and edges {v;iTi41, wiyit1]l < i < 2}U{ww;|1 < i < 3}U{vazy, usy:}, where
w is a new vertex (see Fig.2(a)). For each odd r > 5, F L, is recursively con-
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Fig. 2: FLj3 and a 5-avd-total coloring for Ls.

structed by adding the link graph to the snark F'L,_a. More precisely, if we
define EZ¥ = {v1Z2, u1y2, Vr—2%1, ur—o91 } and Ei* = {u,_oyh, vr_2xh, uhy1,
vhT1; V1T, 1Y),V T2, ¥y Y2}, then V(FL,) = V(FL,_2)UV(L) and E(FL,) =
(E(FL,—3) \ E®*,) U E(L)U Ei™. So each FL,, r odd, is formed by appro-
priate connecting r block graphs By, Bs,..., B, along a cycle. Finally, we
rename the index of the r blocks of F L, in anticlockwise direction.

The Loupekhine family of second kind SL,, r odd, is obtained from
FL,, by replacing the edges TraVest and Yrgaurss with edges Tryatr
and YrgaUrst, respectively.

Theorem 2.1 Let L, (r > 3,7 is odd ) be a Loupekhine snark of first or
second kind. Then xq(Ly) = 5.

Proof. By Lemma 1.1, it suffices to show that each L, admits a 5-avd-total
coloring such that all edges of E2" receive the same color 1. We proceed by
induction based on the recursive procedure described above. A 5-avd-total
coloring of L, FL3 and SL3 have been depicted as in Figs. 2(b) and 3.
Note that the edges of E®* in FL3 and SL3 have the same color 1.
Assume that r is odd and » > 5. By induction hypothesis, L,_o has
a 5-avd-total coloring such that edges of E%, have the same color 1. We
obtain a coloring f of L, as follows. Assign color 1 to the edges of EX". Each
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Fig. 3: 5-avd-total colorings for graphs FL3 and SL3.

element of (V(L,)UE(L,))\ E:* has the same color as their corresponding
part in L,_s and L.

We complete the proof by showing that f is a proper 5-avd-total coloring
for L,. First, note that the ends of edges in E* get different colors, and
no edge incident with border vertices in L has color 1. So f is a 5-total
coloring. In what follows, we show that the ends of edges in Ei" have
distinct color sets. Since both kinds of Loupekhine snark share the same
coloring of the link graph, we have:

C(zy) = {4}, C(y1) = {4}, C(v1) = {3}, C(w1) = {2},

C(zh) = {4}, C(w3) = {3}, C(v3) = {2}, C(up) = {5}.

Next, we distinguish between two cases.

Case 1 L, = FL,. Observe that, in By, we have: C(x;) = {5}, C(y1) =
{3}, C(n1) = {3} and C(u1) = {5}.

When r = 5, we can check that in FL,_5, C(z2) = {2}, C(v2) = {3},
C(vr—2) = {3} and C(u,—2) = {5}; when r > 7, then in FL,_5, C(z2) =
{4}, C(wn) = {4}, C(vr_3) = {2} and Clur_2) = {5}.

Case 2 L, = SL,. Now in By, we have: C(z;) = {4}, C(x1) = {4},
C(v1) = {2} and C(uy) = {5}.

When r = 5, we can check that in SL,_g, C(z2) = {4}, C(v2) = {3},

C(vr—3) = {2} and C(u,—2) = {2}; when r > 7, then in SL,_», C(z2) =
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{4}, C(y2) = {4}, C(vr—2) = {2} and C(u,—) = {5}.
By the above analysis, it is easy to see that f is adjacent vertex distin-
guishing.

3 The Blanusa Snarks

Besides the Petersen graph, two Blanusa snarks of order 18 are the two
smallest known snarks, which yields the two families of Blanusa snarks [7].
The subsequent members of these two families are formed by all possible
applications of “dot product” to the previous snark and the Petersen graph.
In this section, we only consider two subfamilies of Blanusa snarks. To ex-
plore the structure of these graphs, it is helpful to display the Petersen
graph as in Figs. 4 (a) and (b). Define the block graph B; as the subgraph
of P, by cutting edges au, du, bv and cv (see Fig.4(c)). The first members
of both Blanusa subfamilies are shown in Fig.5. The subfamilies are de-
fined recursively as follows: the k-th member of Blanusa snark subfamilies,
denoted by B;(k), (k > 2, i € {1,2}), is obtained by inserting the block
graph By into B;j(k — 1), where by and dj. are the two vertices adjacent to
¢1 and a; in the bottom copy of the block graph in B;(k — 1). So in each
B;(k), there is a vertical chain of k copies of the block graph. Fig.6 shows
the first two members of B (k).

Theorem 3.1 Let B;(k), (k > 2,1 € {1,2}) be a member of the subfamilies
of Blanusa snark. Then xq:(B;i(k)) = 5.

Proof. The proof is similar to the previous one. We also present an
approprise 5-avd-total colorings for each B;(k) in the two subfamilies of
Blanusa snark. Unlike the case of Loupekhine family and its link graph,
here, we use two 5-avd-total colorings for the block graph, as depicted
in Fig.7. First, we construct a 5-avd-total coloring for B;y(1) and B(1),
respectively (see Fig.5). For each k > 2, a 5-avd-total coloring f for B;(k)
is obtained in the following way: the subgraph induced by the top ten and
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(a) Petersen graph P, (b) Petersen graph P,

Fig. 4: Drawings of the Petersen graph and block graph.
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Fig. 5: 5-avd-total colorings for graphs B;(1) and Ba(1).
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Fig. 6: The first two Blanusa snarks of the first kind.

the bottom eight vertices is colored as in B;(1), the £ — 1 copies of B;
between them are colored using ¢ and ¢’ alternately, beginning by ¢ for
the copy on the top of the chain.

To conclude the proof, we show that the coloring f is 5-avd-total col-
orings for B;(k). For each k > 2, we define Eg*}, = {ajdk_1, c1bg-1} and
E};" = {apdk—1, ckbr—1, c1bk,a1dx}. It is easy to check that the ends of E};"
have different colors. Considering the color sets of the ends of Ei".

If £ > 3 is odd, then in both subfamilies of Blanusa snark, we have:
Clax) = {2}, Clex) = {3}, C(be) = {8}, C(de) = {1}, and C(d-1) = {4},
C(bk-1) = {4}, C(c1) = {3}, C(a1) = {5}.

If k > 2 is even, then C(ax) = {4}, C(ck) = {3}, C(bx) = {4}, C(dk) =
{4}, C(a1) = {8}, C(a)) = {5}; when k = 2, then in By(1), C(dk-1) = {2},
C(bk-1) = {4}, and in By(1), C(dk-1) = {1}, C(bk-1) = {2}; when k > 4,
then C(di_1) = {1}, C(bk-1) = {5}

By the above analysis, it is easy to see that f is adjacent vertex distin-
guishing. This ends the proof.
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Fig. 7: Two 5-avd-total colorings ¢ and ¢’ of block graph.

4 Watkins Snark and Szekeres Snark

In this section, we give a 5-avd-total coloring for Watkins and Szekeres
snark, respectively, as shown in Fig.8. The underlined labels denote the col-
ors on edges. So the adjacent vertex distinguishing total chromatic number
of these two snarks are both 5. In order to check that the total color-
ing is adjacent vertex distinguishing, we define a function g : v = C(v),
v € V(G), as shown in Fig.9. Then it is routine to check that g(u) # g(v)
for uv € E(G) in both graphs.

5 Conclusion

In this work, we present a 5-avd-total coloring for the infinite subfamilies of
Loupekhine and Blanusa family. Moreover, we show a 5-avd-total coloring
for Watkins snark and Szekeres snark, respectively. Our results contribute
as one more evidence that all snarks are 5-avd-total colorable. Therefore,
we propose the following problem.

Problem 5.1 Is there any snark G with x.:(G) = 6.
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Fig. 9: The function g for Watkins Snark and Szekeres snark.
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