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Abstract

In this note, we provide a combinatorial proof of a
recent formula for the total number of peaks and valleys
(either strict or weak) within the set of all compositions
of a positive integer into a fixed number of parts.

1 Introduction

A composition of a positive integer n is an ordered collection
of one or more positive integers, called parts, whose sum is n.
If n 2 m > 1, let C(n,m) denote the set of compositions of n
having exactly m parts. Recall that |C(n,m)| = (27}) (L, p.
54].

If n > 1, then let [n] = {1,2,...,n}, with [0)] = @. Let
[n]™ denote the set of words of length m in the alphabet [n].
If o € [n]™, let red(o) denote the member of [n]™ obtained
by replacing all occurrences of the smallest letter of o by 1,
replacing all occurrences of the second smallest letter of o by
2, and so on. For example, if o = 46323 € [6]°, then red(c) =
34212. A member 7 € [a]® for some positive integers a and b that
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contains each element of [a] at least once is called a subword or
subword pattern.

We will say that a word ¢ = o105 -0, contains an oc-
currence of the subword 7 if red(0;0i41 - -  Oiyb—1) = T for some
index 7, where i < m — b+ 1. The number of occurrences of 7 in
o is the number of indices i such that red(o;0i41 - - - Oigp-1) = 7.
In what follows, we will regard compositions as words and con-
sider the occurrences of various subword patterns within these
words, as has been done, for example, in [4] (see also [5] and the
references contained therein).

For example, within the composition A =3+2+3+4+1+
4+ 2+ 2 € C(21,8), there are two occurrences of the pattern
7 = 212 (corresponding to 323 and 414) and one occurrence of
the pattern 7 = 211 (corresponding to 422).

We now recall some terminology used in [3]. A strict peak
within a composition is an ascent followed directly by a descent
(i.e., an occurrence of any one of the subword patterns 121, 231,
or 132). By a strict valley, we mean a descent followed directly
by an ascent (i.e., an occurrence of either 212, 213, or 312). A
weak peak is an occurrence of 221, whereas a weak valley is an
occurrence of 211. For example, the composition A above has
two strict peaks, two strict valleys, no weak peaks, and one weak
valley.

As part of an attempt to find connections between composi-
tions and integer partitions (see 2, 3]), an explicit formula was
determined for the generating function F(z,y,q) which counts
the compositions of n having m parts according to the com-
bined number of occurrences of peaks and valleys (either strict
or weak). The following formula for the total number of peaks
and valleys within all of the members of C(n, m) was found in (3]
by differentiating the aforementioned generating function with
respect to g, and setting ¢ = 1.

Theorem 1.1. If n > m > 2, then the total number of peaks
and valleys (either strict or weak) within all of the members of
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C(n,m) is given by

2(m —2) :2;: (’;‘_3;“).

Here, we provide a direct combinatorial proof of this result
by defining a suitable bijection between a set of ordered triples
whose cardinality is given by the above formula and the set of
all peaks and valleys within the members of C(n, m). Modifying
our proof yields comparable formulas for various subclasses of
compositions.

2 Proof of Theorem 1.1

We start with the following definition.

Definition 1. By a k-occurrence of a strict or weak peak (or
valley) at indez i within a composition A = (A1, Ag, .. .), we mean
an occurrence of one of these patterns in which the first 1 in the
pattern corresponds to the part A; of A with A\; = k.

The same terminology will be applied to particular subword
patterns. For example, within A=5+6+4+3+ 3 € C(21,5),
there is a 4-occurrence of the pattern 231 at index 3 and a 3-
occurrence of the pattern 211 at index 4.

We now proceed with the proof of Theorem 1.1.

Proof. Let n > m > 2. Given 1 < k < |}], let S; denote the set
of ordered triples p = (\,4,J), where A € C(n+1 — 3k,m — 1),
i€ [m—2),and j € [2]. Note that |S¢| = 2(m — 2)(*7%).
For each k =1,2,...,| %], we will define a bijection between S
and the set T} consisting of all k-occurrences of peaks or valleys
(either strict or weak) within the members of C(n, m). Putting
together these bijections then shows that S = U, Sy has the same
cardinality as the set of all peaks and valleys (strict or weak)

within the members of C(n,m), as desired.
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To define our bijection between Sy and T, let p = (A, 4,7) €
Sk, where 4 is given and A = (Ay, Ag, ..., Am-1). First suppose
Ai 2 Aip1- If 7 =1, then insert the part k between the parts A;
and \;y; of A\, add k to the part A;, and add k£ — 1 to the part
Ai+1 to obtain the composition

a= (AI) oo 7Ai—17Ai + k, kv )‘i+l + k- 11Ai+27 .. 'yAm—1)1

which belongs to C(n, m). Note that X\; > A4, implies that o
has a k-occurrence at index ¢ + 1 of either 312 or 211. This
correspondence is then seen to define a bijection between the
members of Sy with ¢ given, j = 1, and A\; > Ay and the set of
k-occurrences of 312 or 211 at index ¢+ 1 within all the members
of C(n,m). Considering all possible i, we see that the number
of members p of Sy for which A; > A;;1 in A and 7 = 1 equals
the number of k-occurrences of 312 or 211 within all members
of C(n, m).

For example, suppose n = 21, m = 6 and k = 2. Then
p=(\2,1), where A\=5+6+3 + 1+ 1, corresponds to the 2-
occurrence of 312 at index 3 in o = 5+8+42+4+1+1 € C(21,6),
while p = (), 4,1) would correspond to the 2-occurrence of 211
atindex5ina=5+6+3+3+2+2¢€ C(21,6).

If = 2, then we insert the part k directly before the part \;
of A, add k to A, and add k—1 to A\;;; to obtain the composition

ﬁ = (/\la < ':/\i—laka )‘i + ka Ai+1 +k- la)‘i+2?-‘ -))\m—l)

belonging to C(n,m). Note that A; > )\, implies 8 has a
k-occurrence at index ¢ of either 132 or 121. Considering all
possible ¢, we see that the number of members of S;. for which
Ai 2 Aip1 and j = 2 equals the number of k-occurrences of 132
or 121 within the members of C(n,m).

Now suppose A; < Aj4p in A. If j = 1, then proceeding as
before in this case shows that members of Sy, for which A; < A4y
and j = 1 equals the number of k-occurrences of 213 or 212
within all members of C(n, m). If 7 = 2, then insert the part k
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directly to the right of A\;11, add k to A;, and add & — 1 to A1
to obtain the composition

Y= ()‘l)° . -a)\i-ly)‘i +k, /\i+1 +k— 17k1 /\i+27' . -a)\m-—l)

in C(n,m). Considering all possible ¢, we see that the number
of members of Sy for which A; < A\;y; and j = 2 equals the
number of k-occurrences of 231 or 221 within all of the members
of C(n,m).

Putting together the mappings in each of the four cases above
yields the desired bijection between Sy and T} for all k, which
completes the proof. a

3 Further remarks

It is possible to extend the proof in the prior section and find
comparable formulas for certain classes of compositions. For
example, modifying the proof above yields the following result
concerning the subclass of C(n, m) whose members contain only
parts greater than or equal a fixed positive integer r, which we’ll
denote by C,(n,m).

Proposition 3.1. Ifn > m > 2 and r > 1, then the total num-
ber of peaks and valleys within all of the members of Cr(n,m) is
given by

2= n—(r—-1)(m-3)—3k
2(m-2) > ( o )

Summing the formula in Theorem 1.1 above over m, and
interchanging summation, yields a simple closed formula for the
total number of peaks and valleys within all of the compositions
of n, though it depends on the value of n mod 3. A comparable
formula may be obtained for compositions of n whose parts are
at least 7, using Proposition 3.1.
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We also have the following result concerning the subclass
of C(n,m) whose members contain only odd parts, which we’ll
denote by C,(n, m).

Proposition 3.2. If n > m > 2, then the total number of peaks
and valleys within all of the members of C,(n,m) is given by

12¥)

2m=2) 3 (%255,

where n and m have the same parity.

Proof. First recall that the number of compositions of a positive
integer a into b odd parts is

ath -1
YA X
(b—l)’ 1<b<a

where a and b are of the same parity. Thus, there are ( 2 ”23"

members of C,(n + 3 — 6k, m — 1), where 1 < k < |22]. Now
proceed as in the proof of Theorem 1.1 above. Given A€ Co(n+
3—6k,m—1),i€[m—2], and j € [2], we insert the part 2k — 1
at some place within A and then add 2k to one of the parts of A
and add 2k — 2 to another part. For example, if \; > A4 in A
and j = 1, then we insert the part 2k — 1 between \; and )4,

add 2k to A;, and add 2k — 2 to \;4; to obtain
= (/\1, /\2, .- ,_1,)\ +2k 2k— 1 )\1+1+2]€ 2 /\1+2, ey Am_l),

which is seen to belong to C,(n, m). This shows that the ordered
triples (A, ¢, 7) for which A; > A4 and j = 1 are equinumerous
with the (2k — 1)-occurrences of 312 or 211 within members of
Co(n,m). The bijection in the remaining three cases is defined
in a comparable manner, which completes the proof. O

One can also give an analogous formula for the total number
of peaks and valleys in palindromic compositions of n having m
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parts, though it is more complicated. Finally, we remark that
it is possible to give formulas for other finite discrete structures,
such as k-ary words or set partitions (represented canonically as
restricted growth functions). We leave the proof of the following
result as an exercise for the interested reader.

Proposition 3.3. If n > 2 and k > 1, then the total number
of peaks and valleys within all of the words of length n in the
alphabet (k] is given by

2(n — 2)(k* — 1)k"~2
3 .
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