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Abstract

Assume that pg, p2, - - ., in are the eigenvalues of the
Laplacian matrix of a graph G. The Laplacian Estrada
index of G, is defined as LEE(G) = >, ¢* . In this
note, we give an upper bound on LEE(G) in terms of
chromatic number and characterize the corresponding
extremal graph.
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1 Introduction

Throughout this paper all graphs are finite and simple.
Let G = (V(G), E(G)) be a graph with n vertices. The join,
G1V G, of the graphs G, and G is the graph obtained from
disjoint union G;|J G2 by adding new edges from each vertex
in G; to every vertex in Go. By G — U we mean the induced
subgraph G[V — U], if U C V(G). The adjacency matriz of G is
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A(G) = (aij)nxn, Where a;; = 1 if two vertices u; and u; are adja-
cent in G and a;; = 0 otherwise. Let D(G) = diag(dy, ds, . .., dn)
be the the diagonal matrix of vertex degrees of G. We call the
matrix L(G) = D(G) — A(G) Laplacian matriz of G. Clearly,
L(G) is a real symmetric matrix. From this fact and Gersgorin’s
theorem, it follows that its eigenvalues are nonnegative real
numbers. Moreover, since its rows sum to 0, 0 is the small-
est eigenvalue of L(G). Thus, all eigenvalues of L(G) can be
arranged in order as p(G) > pa(G) 2 -+ 2 ua(G) = 0. De-
note the spectrum of L(G) by S(G) = (u1,p2,.-.,a). It is
well known that u;(G) = n — p,_i(G) for 1 < i < n — 1, since
L(G)+L(G) = nI—J, where I and J denote the identity matrix
and the matrix all of whose entries being equal to 1, respectively.
In particular, for any graph G of order n, we have ;)(G) < n
with the equality if and only if G is disconnected. We refer
reader to [12, 16] for further information on the Laplacian ma-
trix. Recall that the Estrada index of a simple connected graph
G, put forward by Estrada [5], is defined by

EE(G) = 2": e

The Estrada index has already found extensive applications, e.
g., in chemistry [5, 6], in complex networks [7], in statistical
thermodynamics [8, 9]. Quite recently, in full analogy with the
Estrada index, the Laplacian Estrada index of the graph G,
LEE for short, was introduced in [10] as

LEE(G) = ie“‘ . (1.1)

i=1
Given a graph G of order n with m edges, independently, in [15]
the Laplacian Estrada index was defined as

n

LEE1s¢(G) = Ze#i—2m/n .

i=1
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It is easy to see that two “Laplacian Estrada indices” are es-
sentially equivalent in view of LEE(G) = LEEpsc(G) x e2™/™.
In the following we use the definition (1.1). Some properties of
LEE have been reported in {1, 3, 4, 10, 15, 18, 13, 19, 20].

A coloring of a graph is an assignment of colors to its vertices
such that any two adjacent vertices have different colors. The
chromatic number x(G) of the graph G is the minimum number
of colors in any coloring of G. The set of vertices with any one
color in a coloring of G is said to be a color class. Evidently, any
color class is independent. Let Kp, ny na,....n, denote the complete
k-partite graph. For the other graph theoretical terms used but
not defined, we follow [2]. In this note, we characterize the
extremal graphs with given chromatic number x(G) maximizing
the Laplacian Estrada index. The main result of this note is as
follows.

Theorem 1. Let G be a connected graph with n vertices and
chromatic number x.

(i) Ifx > |n/2], then LEE(G) < 1+ (x—1)e*+(n—x)e*?
with equality if and only f G= Ky 192.....2-
) ? 1649 )
2x—-n n—yx
(ii) If1 < x < |n/2], then LEE(G) <14 (x —1)e™ + (x -
1)e™ 2 + (n — 2x + 1) e~ 2 with equality if and only if
G=Ky . .. 2n-2x-1)-
N e’

x—-1

2 The proof of Theorem 1

In to show Theorem 1, we need the following two lemmas.

Lemma 1. [11, p. 291] Let G be a simple non-complete graph
with n vertices. If G+ e is obtained from G by adding an edge e
to G: then 0 = /J'n(G) < /-l'n(G+e) S e < /-1'2(G) < /-‘2(G+e) <
1(G) £ m(G +e).
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Since Y7, wi(G +e) — >, pi(G) = 2, the next result fol-
lows immediately from Lemma 1.

Lemma 2. Let G be a simple non-complete graph with n ver-
tices. Then LEE(G) < LEE(G +¢).

In what follows, we prove the main theorem.

Proof. Let G be a graph with the maximum LEFE of all con-
nected graphs with vertices and chromatic number x. Thus,
we can divide V(G) into x color classes, say V4,V3,...,V, . By
virtue of Lemma 2, we know that each vertex in V; is adjacent to
all vertices in V; for any 1 <7 < j < x. Consequently, G can be
written as Kp, n,,..n, , Where n; = |V;| for 1 <4 < x. Without
loss of generality, we can assume that 1 <n; <ny <... < n,.
It is obvious that

S@) = S(KnlUKmU---UKnx)

('n [ (VIS 15 T n10...0).
X ) y oy ) ’ y 101, Y, )
~ >4 A ‘W—/

Ve v

ny—1 ny—1 X
So we have
S(G) = (n,...,n,p—-nl,...,n—nl,...,&—nx,...,n—n,S,O).
N ™
x—1 n1—1 ny~1

As a result, we obtain that
LEE(G) = 1+(x—1)e"+> (m—1)e"™

with 3% | n; = n. Assume that
f(.'L‘) = (.’E —_ 1) e % + (m —r— 1) en—m-i-:c.

It is easy to show that
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flz) = -z)e"*+(m—z—-2)e" ™

e" 2 [(m—z—2)e ™D — (z—2)e 2]
— (m-2m)(1- )&t

< 0

for3<z<m/2and -2 < € <m—z— 2, where equality
holds if and only if z = m/2. This implies that

n; — 1 en—ng +(n; — 1 en—nj >n; en-—ni+l + (n,; — 2 en—nj—l
J 2

for 4 < n; < n;. Thus, by replacing any pair (n;,n;) with
4 < n; < nj by (n; — 1,n; + 1) in the sum > X, (n; — 1) ™™™,
we increase the sum. By repeating this process, we attain the
maximum of 1+ (x—1) e®+) X ,(n;—1) e® ™ only whenn,_; <
3. In what follows, we divide the proof into two cases.

Case 1. If n,, > 3, then it is not hard to obtain

en—2 + ny e"_"x_l > 2en—3 + (nx _ 1) e

Consequently, by replacing any pair (3, n,) by (2,1, + 1) in the
sum 32X (n; — 1)e™™ + (ny — 1)e"™ for 1 < my < ... <
ny—1 < 3, we increase the sum. By a repeated using, we attain
the maximum of 1+(x—1) e+ X' (ni—1) e" ™ +(ny—1) e ™
only when n,_; <2 and n, > 3. Note that

e" 2 4 (n, —1)e" ™ > n, e
for n, > 3 implies ny > 2. We have G = K2’ e 2m=2(x=1) and
N’

x—1

LEE(G) = 1+(x—-1)e"+ Zx:(ni —1)er ™

i=]

= 1+ (x—-1)e"+(x—1)e" 2+ (n—2x+1)eX?

for x < |n/2) — 1. Case 2. If n, <3, thene"2+¢e" 2> 2¢"3
implies that at most one of n; = 1 and n, = 3 holds. Thus,
we can suppose that ny =ng =+ =ng=1land ngyy =+ =
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Ny=20rn; =Ny =-="nNg=2and Mgy =+ =Ny = 3.
Consequently, we have G = K1 19 . 9o for x 2n/2 with
) ) ’

2x—n n—x

X
LEE(G) = 1+(x-1e"+)> (n—1)e"™
i=1
= 1+(x-1e*+(n—x)e*>

or G2 Ky 93 . gforn/3 <x<n/2with
) Y =H )

3x—-n n—2x

LEE(G) = 1+(x—-1)e"+ i(n; —1)er ™

i=1

= 1+(x—1)e*"+(8x—n)e" %+ 2(n —2x) e 3.

Comparing the results in above two cases, we complete the proof.
O
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