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Abstract

In the paper we show that the orientable genus of the generalized
Petersen graph P(km,m) is at least &2 — 2t — 2= +1ifm >4 and
k > 3. We determine the orientable genera of P(3m,m), P(4k,4),
P(dm,m) if m > 4, P(6m,m) f m =0 (mod 2) and m > 6, and
SO Oon.
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1 Introduction

The generalized Petersen graph P(n,m) is a cubic graph
with the vertex set {v;,u:i = 0,1,...,n — 1} and the edge set
{vivis1, Uitligm, viwsli = 0,1,...,n—1}, where m < %, and the

index is read modulo n.
' Generalized Petersen graphs are an important class of cubic
graphs. Many properties of the generalized Petersen graph have
been investigated, such as Hamiltonian problem( see [1],{2]),
edge-coloring (see [5]),crossing number( see [6],[8],[10]), etc. But
the orientable genus of the generalized Petersen graph has little
been explored. In general, it is hard to determine the orientable
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genus of a graph, even if it is a cubic graph. Thomassen[11]
showed that the orientable genus problem for cubic graphs is
NP-complete.

In the paper we will study the orientable genus of P(km,m).
By the definition of the generalized Petersen graph, k is at least
3 if n = km. Since P(km,m) is a planar graph if m = 1 or 2,
we suppose that m > 3 in the paper.

The paper is arranged as follows. In Section 2, we will give
an upper bound of the orientable genus of P(km,m). In Sec-
tion 3, we will give a lower bound of the orientable genus of
P(km,m) if m > 4, and we will determine orientable genera of
some graphs such as P(4k,4), P(4m,m) if m > 4, P(6m,m)
ifm=0 (mod2)and m > 6, and so on. In Section 4, we
will determine the genus of P(3m,m). The rest of the section
is contributed for other terminologies. The undefined terms can
be found in [4] or [9].

A surface is a connected compact 2-dimensional manifold
without boundary. Surfaces contain two classes: The orientable
surfaces and nonorientable surfaces. In the paper a surface is
always an orientable surface. The orientable surface Sy(g > 0)
can be obtained from the sphere with g handles attached, where
g is called the genus of S,.

A graph G is able to embed in a surface S if it can be
drawn in the surface such that any edge does not pass through
any vertex and any two edges do not cross each other. An
embedding II of a connected graph in a surface S is called 2-cell
embedding, if any connected component of S-II, called a face,
is homeomorphic to an open disc. In a 2-cell embedding of a
connected graph G, the boundary of a face is a closed walk of
G, which is called the facial walk. If a facial walk is a cycle,
then it is called a facial cycle. The length of a facial walk is the
number of its edges ( if an edge appears twice then it is counted
twice).

The orientable genus of a connected graph G, denoted by
v(G), is the smallest nonnegative integer g such that G can be
embedded in the surface S;. Any embedding of a connected
graph in the surface S,(g) is a 2-cell embedding (see [12]).
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By contracting a subgraph G’ of a graph G to a vertex w,
we mean that all edges in G’ are deleted and all vertices in G’
are identified with w and any edge incident with any vertex of
G’ whose two ends are not in G’ is incident with w. A graph H'
is a minor of a graph H if H' can be obtained from a subgraph
of H by contracting edges.

2 An upper bound of the orientable genus of
P(km,m)

In the section we will give an upper bound of y(P(km,m)).
We observe that the induced subgraph of P(km,m) by the ver-
tices vo, v1,...,Ukm-1 iS a cycle, which is called the principal
cycle. For i =0,1,...,k — 1, we observe that the induced sub-
graph of P(km,m) by the vertices ;, Uitm, - - - Ui+ (k—1)m iS also
a cycle, which is denoted by C;. Also, we call v;u; a spoke of
P(km,m).

We now give a drawing of P(km,m) in the plane (or the
sphere). For i = 0,1,...,k — 1, let P; = VimVim41-°* * Vimtm—1-
Now, Py, Py, ..., P._; are represented by k disjoint segments in
the plane from left to right, respectively. Next, Cp, C1,...,Cmn_1
are respectively represented by m pairwise disjoint circles which
satisfy the following conditions:

(1) Each of Cy,C4,...,Cn-1 is drawn between Pr%]_l and
Prey,

(2) The orientation of each of Cy,Cy, ..., Cj, and Cp,—; is de-
fined clockwise by indices of vertices from small to large, where
[; is the largest even number which is less than m — 1,

(3) The orientation of each of C,Cs, - -+, Cy, and Gy is de-

fined anticlockwise by indices of vertices from small to large,
where I, is the largest odd number which is less than m — 1.

Fori=1,2,...,k — 1, Vim—1Vim is drawn between FP;_; and
P, For j =0,1,...,km — 1, v; joins to u; such that any two
of v1uy,VoUs, - - + , Ukm—1Vkm—1 4O NOt cross each other. At last,

UoUkm—1 is drawn such that it does not intersect any other edge.
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Thus a drawing of P(km,m) in the plane is completed, which is
denoted by Dr(P(km,m)). For example, Dr(P(25,5)) is shown
in Figure 1.

Figure 1 A drawing of P(25,5) in the plane

We will construct an embedding of P(km,m) in a surface
from Dr(P(km, m)) by adding tubes to the sphere. By adding
a tube to a surface S, we mean that we cut two holes D; and D,
in S, respectively, and orient the boundary of each hole, then
we attach a tube T to S in such a way that the rim of one of
the ends of T coincides with the boundary of D; and the rim
the other end of T coincides with the boundary of D,.

Lemma 2.1  4(P(3m,m)) < |21

Proof We now construct an embedding of P(3m,m) in
the surface of genus | %5 | from Dr(P(3m, m)) by adding tubes
to the sphere. If m =0 (mod 2), then the tube T is added to
the sphere such that it strides over the edge v;n41Vm 2 satisfying
the condition that its one end nears v,4+; and another nears
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Um+42- NeXt, VUm+1Vm+2 is drawn in Tl' For J = 2,,, "mT—Q’

we add the tube T; to the present surface such that its two
ends are situated between P and P, satisfying the condition
that its one end nears vm42;—1 and another nears vpm42;. Then
Um+2j—1Um+2; 1S drawn in T;. At last, both edges vpm_1vm and
Ugm—1U2m are drawn through 73,75, ... ,TmT—2. Thus we get an
embedding of P(3m,m) in the surface of genus Z52( which is
equal to | ™1 |). For example, an embedding of P(12,4) in the
torus is constructed as in Figure 2.

We observe that if all vertices in the cycle C,,_ are deleted
from P(3(m+1), m+1) and VUm—1Vm—2, Vam—1V2m—2 and V35—1V3m-2
are contracted into a vertex, respectively, then the obtained
graph is isomorphic to P(3m, m). Soy(P(3m, m)) < v(P(3(m+
),m+1)) <2l =|2=d]ifm=1 (mod2). Thus we com-
plete the proof. O

Vo ¢

Vg ¢

Figure 2 A construction of an embedding of P(12,4)
in the torus
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Lemma 2.2 Ifk >4 and m > k, then

-2 k- k=2 k=
y(P(km,m)) < fT~2—21 f_2—2]+{ "—232 z’tllz.——_(l) gzgg gg’

Proof We now construct an embedding of P(km,m) in
the desired surface from Dr(P(km,m)). If k > 5, for i =
L,2,...,[22] —1and j = 1,2,...,[52] — 1, we add the tube
T;,; to the sphere such that its two ends are situated between
Pp;_1 and P; satisfying the condition that its one end nears
V(2j—1)m+(2i—1) and another nears v(g;j_1)m+2i- Next, both edges
V(2j—1)m+(2i-1)V(2j—1)m+2i 30d Vojm4(2i—1)V2jm+2:i are drawn in T ;.
If k = 4, there is nothing to do. We now consider two cases.

Case 1 k=0 (mod2). Fori=12,...,[%2%] -1, we
add the tube T k=2 to the present surface such that its two ends
are situated between P,._3 and P, satisfying the condition that
one end nears v(x_3)m+(2i—1) and another nears v(x—_ajm42i. Then
both edges vk—3ym+(2i—1)V(k—-3)ym+2 8N V(k—2)m+(2i—1)V(k—2)m+2i
are drawn in it. Next, for j = 1,2,..., %2, we add the tube
Trm_z-g1 ; to the present surface such that it strides over the edge
Vgjm—1V2jm—2 if m = 1 (mod 2) or the edge vojm—2Vojm—3 if
m = 0 (mod 2). Then vyjm—1Vsjm—2 is drawn in Trm_z-g]’j if
m=1 (mod 2), or vgjm—2Uzjm-3 is drawn in T[gz—_z]’j ifm=0

(mod 2). For j = 1,2,---,!‘;—2, both edges v(2;j_1ym-1V(2j-1)m
and vgjm—1V2jm are drawn through Ty ;, T3 ;,. .. ,T[ﬂz—_z],j.
We now add the tube Tf, me1) k=2 1O the present surface such
2 ?

that it strides over the edge v(k—1)m-1V(k-1ym-2if m =1 (mod 2),
or the edge v(k—1ym—2V(k-1)m-3 f m =0 (mod 2). Then
V(k-1)ym~1V(k—1)m—2 1S drawn in Tfm_-2 k=2 f m =1 (mod 2),

7 5
OF U(k—1)m—2V(k—1)m—3 drawn in Tfmnz] k=2 if m =0 (mod 2).
2 v 2
Next, V(k—1)ym-1V(k-1)m iS newly drawn such that it parallels
Pr_1, then it travels under TI{m_g] x=2. If kK = 4, then we com-
2 ' 2

plete the desired embedding. Otherwise, for j = 1,2,..., &4,
we add the tube Tfﬂ__g] ; to the present surface, such that it
2 I,

strides over the edge v(2j+1ym-1V(2j+1)m—2 if m =1 (mod 2), or
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V(2j+1)ym-2V(2j+1)m-3 fm =0  (mod 2). Then v(z;11ym—1V(2j+1)m-2
is drawn in Tr’,,._g] ; ifm=1 (mod 2), or v(gj41)m—2V(2j+1)m—3
2 1,

is drawn in T[’ m=2); ifm=0 (mod 2). Thus we obtain an em-
2 2

bedding of P(km,m) in the surface of genus ([ Z52] —1)([%523] -
1)+ (2521 - 1) + [552] + 52(=7221[55%] + 552).

Case 2 k=1 (mod2). Fori=12,...,[22] -1, we
add the tube T} -1 to the present surface such that its two ends
are situated between P._, and Pi_; satisfying the condition that
one end nears V(k—gym+(2i—1) and another nears v(x—zm+2i- Then
the edge V(k—2)m+(2i-1)V(k—2)m+2i iS drawn in it. Next, the tube
Trazﬁ]'% is added to the present surface such that it strides
over the edge V(k—1ym—-3V(k-1)m—2 f m =0 (mod 2), or the edge
V(k—1)m—2V(k-1)m—-1 f M =1 (mod 2). Then vV(k—1)ym—3V(k-1)m—2
is drawn in Tym-2) k=1 if m =0 (mod 2), or Y(k—1)ym—2V(k-1)m—1
drawn in Tjm_z) se1 if m = 1 (mod 2). For j =1,2,...,58,
we add the tube Tr m=21 to the present surface such that its two
ends are situated between P,;_; and P»; satisfying the condition
that one end nears vyjm—3 and another nears vpjm_o if m =
0 (mod 2), or one end nears vajm—2 and another nears vjm-1
if m =1 (mod?2). Forj=1,2,...,53, vn_svsm2 and
V(2j+1)m-3V(2j+1)m—2 are drawn in TI'mT—Z‘I’j ifm=0 (mod2),
Or V2jm-2V2jm—1 and V(2j+1)m—-2V(2j+1)m—-1 aI€ drawn in Trﬂﬁ—_2‘l g
ifm=1 (mod 2).

Next, for j = 1,2,...,[%52] — 1, the edge vyjm-1V2jm is
drawn through Ti,;, Ta,5, - . ., Tyms2q ;. Both edges vgx—2)m—1V(k—2)m
and Y(k—1)m-1V(k-1ym are drawn through Tl’_k_;_l, - ,T[m_;g],k_-z;_l_.
At last, for t = 1,2,..., %53, we add the tube T to the present
surface such that its two ends situate between Py;_; and Py
such that one end nears v(s:—1)m—-1 and another nears v(st—1)m.
Then the edge v(t-1)m-1V(2t—1)m i drawn in T;. Thus we get
an embedding of P(km,m) in the surface of genus ([Z;2] —
(M52 - 1)+ (252 - D)+ 5+ 522 = 1221150 + ) a

Lemma 2.3  If5 <m <k, then y(P(km,m)) <
(2221154 + 5520,
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Proof We will also construct an embedding of P(km,m)
in the desired surface from Dr(P(km,m)). We consider two
cases.

Case 1 k=1 (mod2). There are two cases to be con-
sidered.

Subcase 1.1 m =0 (mod 2). Fori=1,2,...,252 and
i =12,...,252 we add the tube T;; to the sphere by the
following rules.

(i) Ifi+j < %, then two ends of T;; are situated be-
tween Pp;_; and P; such that one end nears v(;_1ym+(2i—1) and
another nears v(oj_1ym42i. Next, v(2j_1ym+(2i-1)V(2j—1)m+2i and
Vojm+(2i-1)V2jm+2: are drawn in T; ;.

(ii) Ifi+j = Z, then T; ; strides over v(gj—1ym+(2i—1)V(2j—1)m+2
such that one end nea.rs V(2j—1)m+(2i—1) and another nears v(g;_1)m42i-
Next, v(g;— Dm+(2i=1)V(25-1)m-+2i is drawn in it.

(iii) Ifi+4j > %, then two ends of T;; are situated be-
tween Py;_9 and P 1 such that one end nears v(2;_2)m+(2i-1)
and another nears v(g;—gym+2i. Next, V(2j-2)m+(2i~1)U(2j~2)m-+2i
and V(g 1)m+(2i-1 V(2j-1ymd2: Bre drawn in T, ;.

For j = 1,2,...,%5=, both edges v(2j—1ym-1Y(2j-1)m and
V2jm—1V2jm are drawn through tubes 71 ;,T2,..., Im m=2 ;.
Fori=12..,2%2andj=22+1,.. %5 weadd

the tube T;; to the present surface such that its ends are sit-
uated between P,;_, and Pp;_; satisfying the condition that
its one end nears v(s;j_2)m+(2i—1) and another nears v(z;_oym+2:-
Next, v(2;-2)m+(2i-1)V(2j-2)m+2i @Nd V(2j-1)m+(2i~1)V(2j—1)m+2i &T€
drawn on T; ;. Fori=1,2,..., 252, v9;_1ym-1V2j—1)m is drawn
through tubes 77 ;,...,Tm-2

v

For j = =42, "‘+2 +1,..., '”2'1, we add the tube T; between
Py;_3 and Pg,_g such that its one end nears v(2;_2)m and another
nears v(2;—2ym-1. Next, ¥(2j—2)m¥(2j—2)m—1 is drawn on T7.

Thus we eventually obtain an embedding of P(km,m) in the
surface of genus (7=24m=2) 4 (n=A(k-mtl) | k-m+l (_[m=2] k1)
+[552]).

Subcase 1.2 m=1 (mod?2). fm<k, thenm+1<k
and m+1 =0 (mod?2). Since P(km,m) is isomorphic to
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a minor of P(k(m + 1),m + 1), y(P(km,m)) < vy(P(k(m +
1)ym+1)) < (m'l‘)‘(k"l) + k;m. If m = k, we can construct
an embedding of P(km,m) in the surface of genus gm—_l%k—_ﬁ
using the similar method to that in the former four paragraphs
in subcase 1.1. The differences are that m is replaced by m + 1
and that if s = =1 then there is only one edge which is drawn
on the tube. For example, the way of adding tubes to construct
an embedding of P(25,5) in the surface S, is shown in Figure
3.

Therefore, v(P(km,m)) < [Z2][52] + [5&2] if k = 1
(mod 2).

Figure 3 The way of adding tubes to form
an embedding of P(25,5)

Case 2 k=0 (mod 2). We consider two cases.

Subcase 2.1 m =0 (mod 2).
Fori=1,2,...,%2 and j = 1,2,...,%, we add the tube

T;; to the sphere by the following rules.
(i) Ifi+j < =2, then two ends of T;; are situated be-
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tween Pp;_o and Pp;_; such that one end nears v(2j—2)ym+(2i-1)
and another nears V(25 -2)m+2i- Next 'U(2J_2)m+(2{_1)1}(2]'_2)"1_'_2{
and U(2j—1)me+(2i-1 )U(g,_l)m.,.z, are drawn in T; ;.

(ii) Ifi+j = =2 then the tube T;; strides over the edge
YV(2j—-2)m+(2i—1) V(25— 2)m+2, such that its one end nears U(2j—2)m+(2i—1)
and another nears v(g;j_g)m+2i- Next, V(2j—2)m+(2i—1)VU(2j-2)m-2i 1S
drawn in it.

(iii) If i+ j > ™2, then two ends of T}, are situated
between P;_3 and P,;_» such that one end nears v(2;-3)m+(2i-1)
and another nears V(25 -3)m+2i- Next, U(25 -3)m+(2i—1)V(2j—3)m+2i
and v(2;-2)m+(2i-1)V(2j—2)m+2i are drawn in T; ;.

Forj=2,3,..., %, v2j—2)m-1Y(2j-2)m 80d V(2j_1)m—1V(2j—1)m
are drawn through tubes T3 ;,T5,,... ,T%-_z’j. Also, the edge
Upmn—1Um 1S drawn through tubes 773,75, . . Tm-z 1

Fori=1,2,...,%2 and j = 22 m+2+1 %, we add
the tube T; ; to the present surface such that its ends are situated
between P,;_3 and P,;_; satisfying the condition that one end
nears v(2j—3ym+(2i-1) and another nears v(;_3)m+2i. Next, both
edges v(2j—3)m+(2i—1)'u(2g i and v(z;j—2)m+(2i-1)V(2j-2)m-+2i aIe

drawn through tubes TL,-, . Tm2-2'
For j = mi2 mi2 | 1,...,%, we add the tube T between

Py;_2 and P;_; such that its one end nears v(2j_1)m and another
nears v(2;-1)m-1- Next, V(25-1)mY(2j-1)m—1 is drawn in T7.

Thus we eventually obtain an embedding of P(km,m) in
the surface of genus m(m Dy (m"z)(k”m) + 50 (=22 5517 4
[%521)-

Subcase 22 m=1 (mod2). fm<k,thenm+1<k
and m+1 =0 (mod 2). Since P(km,m) is isomorphic to a
minor of P(k(m+1),m+1), v(P(km,m)) <~y(P(k(m+1),m+
D) < ) bepeb (o151 o o)),

Therefore, v(P(km,m)) < [222][52] + [552] if k = 0
(mod 2). O
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Lemma 2.4  Ifk >4, then

%3 ifk=0 (mod 3),
v(P(4k,4)) < 22, ifk=1 (mod 3),

%ol fk=2 (mod 3).

Proof We will also construct an embedding of P(4k, 4) in
the desired surface from Dr(P(4k,k)) by adding tubes to the
sphere. Suppose that k = 3t+s, wheret > 1 and s =0,1, or 2.

Fori=1,2,...,t, we add the tube T; to the sphere such that
it strides over the edge v4(3i—2)+1v4(3i-2)+2- Next, v4(3i—2)-1V4(3i~2)»
V4(3i-2)+1Va(3i—2)+2 8Nd Vy(3i_2)+3V4(3i-2)+4 are drawn in it.

For j = 1,2,...,t — 1, we add the tube T to the present
surface such that its one end nears vy(si-1)+1 and another nears
Va(ai—1)+2- Next, Va(zi-1)4+104(3i-1)4+2> V4(3i—1)+3V4(3i—1)+4 and
V4(3i—1)+5V4(3i—1)+6 are drawn in it.

If s = 0, then we have obtained an embedding of P(4k, 4)
in the surface of genus 2t — 1 (i.e., 272).

If s =1, then we add a tube 7 to the present surface such
that its one end nears vjo—3 and another nears vjo;—2. Next,
Vi9t—3V19t—o and vjg_1v19¢ are drawn in it. Then we obtain an
embedding of P(4k,4) in the surface of genus 2¢ (i.e., 2—"3‘—2)

If s = 2, then we add two tubes T”; and 7", to the present
surface such that one end of 7" nears v;9;—3 and another nears
Vi2:—2 and one end of T” 5 nears v12;+1 and another nears vjg¢40.
Next, v10t—3V12t—2 and vig:—1v12; are drawn in Ty, and v1at4+1V12e+2
and vy9:43V12t44 are drawn in T”5. Then we obtain an embed-
ding of P(4k,4) in the surface of genus 2t + 1 (i.e., Z&5L). 4

Since P(3k,3) is a minor of P(4k,4), we have the following
result.

Lemma 2.5 Ifk >4, then

%=3  4fk=0 (mod 3),
v(P(3k,3)) < { %2, ifk=1 (mod3),
Zol 4fk=2 (mod 3).
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3 A lower bound of the orientable genus of
P(km,m)

Let H(km, m) be the graph obtained from P(km,m) by the
cycle C; being contracted into a vertex z; fori = 0,1,---,k — 1.
We call 2; a singular vertez. Any edge incident with a singular
vertex is called a spoke. It is obvious that the principal cy-
cle of P(km,m) is reserved in H(km,m), which is still called
the principal cycle. Since H(km,m) is a minor of P(km,m),
v(P(km, m)) > v(H(km, m)). We now consider a lower bound
of the orientable genus of H(km,m).

Lemma 3.1  Suppose Il is a 2-cell embedding of H(km, m)
in some surface. If a facial walk in II contains a spoke, then it
contains even spokes. Moreover, if a facial walk in I contains
2t spokes, then it contains at least t edges in the principal cycle
of H(km,m).

Proof Suppose that W is a facial walk which contains a
spoke. We observe that any two singular vertices in W are
not adjacent to each other, and that each appearance of any
singular vertex in W must correspond to two spokes. So W has
even spokes, say 2t spokes. Since any edge in the principal cycle
is incident with at most two spokes, W has at least ¢ edges in
the principal cycle. O

Lemma 3.2  Suppose Il is a 2-cell embedding of H(km,m)
in some surface. Letay be the number of all facial walks in which
each has ezactly two spokes. Then ag < ;n’?'_"—l

Proof Suppose W is a facial walk containing exactly two
spokes. Then the two spokes must be incident with each other.
So the induced subgraph by all edges in W which are in the
principal cycle is a path. Let P be the path. Obviously, the
length of P is less than km. Since two ends of P are adjacent
the same singular vertex, the number of all edges in P is a
multiple of m, say jm by the definition of H(km,m). Clearly,
1< j< k-1 Hence, W has jm + 2 edges.

We claim that there are at least jm — 2 edges of W such
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that each can not appear in any other facial walk which has
exactly two spokes. In fact, suppose that P = v;v;, ... %i;,,-
Then each edge in v;, - - - v;;,, can not be in any other facial walk
which contains exactly two spokes. Otherwise, there is a spoke
which is incident with one of v;,,v;;,, such that it crosses some
edge in II, a contradiction.

Forj =1,2,...,k—1, let each facial walk with length jm+2
that contains exactly two spokes correspond to jm + (jm — 2)
edges in the principal cycle. For j = 1,2,...,k — 1, let b; be
the number of facial walks of II in which each has exactly two
spokes and has length jm + 2. Since any edge of the principal
cycle may be in two facial walks or appears twice in the same
famal walk, we have that Y521 [jm + (jm — 2)]b < 2km, i.e.,

J= (Jm— 1)b; < km. Since Z’;l(]m 1)b; > (m )zk lb
and Zf__fllbj = ay, we have that (m — 1)ag < km ie.ap < 7ni%nT

a

Lemma 3.3  Suppose that m > 4. Suppose II is a 2-cell
embedding of H(km,m) in some surface. Let r; be the number
of facial walks with length i in II. Let

® = [(km — 6)rs + (km — T)r7 + ... + (km —m — 1)Tm41]

+(km —m — 2)Tmea + ... + (M = 2)T(k—1)m+2

+[(m — 3)T(k—l)m+3 +...+ rkm—l],

Then

® < 1(km)? — 3km + 525 (km — 2m + 2).

Proof Since m > 4, we observe that the length of any
facial walk in IT is at least six. Also, we observe that if a facial
walk in II does not contain any spoke, then it must be the
principal cycle. So a facial walk with length at most km — 1
must contains even spokes by Lemma 3.1. Moreover, a facial
walk containing 2t spokes has length at least 3¢ by Lemma 3.1.
Suppose km — 1 = 3q + s, where s = 0,1 or 2. So r; can be
written the sum of 74,,..., 7}, Where 7}, is the number of
facial walks in which each has length i and contains exactly 2k
spokes. By the proof of Lemma 3.2, we have known that a facial
walk containing exactly two spokes has length m+2. So we have
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that
® < (km—m — 2)(rpppop + ) + (km —6)(rg + )+

(km —9)(rg6 + )+ -+ + (km — 3q)r5, 9, (1)

Fori=1,2,...,k — 1, let ay; be the number of facial walks
in which each contains exactly 2 spokes. We have that

® < (km—m—2)as+(km—6)as+(km—9)as+: - -+(km—3g)az,.

(2)
Since each spoke may appears at most two times in a facial
walk in II, we have the following formula. For i =1,2,...,q,
a9; S %[2]{2771. - 2&2 - 40,4 — e = (21 - 2)(12,'_2]
1 .
= ;[km — Qg — 2@4 i (2 - 1)(12,'_2]. (3)

Now ay, is substituted by formula (3). Then we obtain that
1
® < Ekm(km—Bq)+(km—-kq2—m+1)a2+(km—g%nz)a‘l-l-- -

_(g—1Dkm

+ [km ]agq_g

_ k*m? qg—2

1
p kmag+- - -+—kmag,_s.

(4)
Next, ag,—2 is substituted by formula (3). Then we obtain
that

—3km—(q%1km—m+1)a2+

1 g—1 1
d <[+ k*m2—3km— — km—m+1]ax+
[q -1 = Jas
q—2 2 2 q-
— kmags+---+ |- — ————]kmag,—
S e 2~ qlg=1) Fmasa-s
1 1 1
=[=+ E*m? — 3km — [(1 - ——)km — m + 1|ay+
2t @1 == Jas
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2 -2
(1- —l)kma4 +-4+(1- -;"Tl-)kmazq—zx- (5)

q —
Next, agy_4 is substituted by formula (3), then ag,—s, ..., a4
one by one. By similar argument to the above, we obtain that
1 1 1
< [F4————+ -+ —]k2m? = 3km+[(1-2)km—m+1]a
1 1 1 1 1 1
= (e m e == VKM - —(=km —
(q+q—1 q+ +3 3) m?* — 3km (2km m+1)a,
= %kzm2 — 3km + (%km —m + 1)a;. (6)
By Lemma 3.2, a; £ 2. We have that
1 km
< Zk*m? — -2 i 7
@_2km 3km+2m_2(km m + 2) (7)

O

Theorem 3.4  Suppose thatm > 4. Then~y(P(km,m)) >
y(H(km,m)) > km 2 _ km 4,

Proof It is obvious that y(P(km,m)) > ~(H(km,m)).
Suppose that y(H(km,m)) = g. Let II be an embedding of
H(km,m) in the surface S;. Then it is a 2-cell embedding. Let
7; be the number of facial walks with length ¢ in I[I. Since m > 4,
we observe that the length of any facial walk is at leat six. Let
T be the number of faces of II. Let |V(H(km,m))| = |V| and
|E(H(km,m))| = |E|. Thenr = r¢ + 77+ ..., and 2|E| =
6re +Trs+....

Since kmr = km(rg+77+...) = [(km —6)rg + (km —T)r7 +
oo H Thmet] + [Bre+Tre+.. ], 7 < E[(km —6)rs + (km—T)rs +
oot Them—1] + zk%l By Lemma 3.3 and the fact that |E| = 2km,
we have that
km —2m + 2

2m — 2 +

By Euler’s formula, |[V| — |E| +r = 2 — 2g. We have that
g =1+3(|E|—|V|-r). By formula (8), we obtain the following
formula,

r < —;—km+ 1. (8)
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|E| V] km km—-2m+2 1
>14 0 It 2B T emTe
g2l+5" -5 - im— 2 2 (9)

Considering that |V| = km + m and |E| = 2km, we have
that

km m km km-2m+2 1

>y _Mm_Fm_Emzemys
gzl+—5 -3 dm — 4 2

+1. (10)

Theorem 3.5 Ifm > 4, then y(P(4m,m)) = [F].

Proof ByLemma2.2,v(P(4m,m)) < Zifm=0 (mod 2)
and m > 6, and y(P(4m,m)) < 2 if m =1 (mod 2). By
Lemma 2.4, v(P(16,4)) < 2.

By Theorem 3.4, y(P(4m,m)) > [ +1 - ;] = [2 —
1. Ifm =0 (mod 2), then y(P(4m,m)) > Z. Ifm =1
(mod 2), let m = 2¢ + 1. Since m > 5, y(P(dm,m)) >t + 1,
i.e., y(P(4m,m)) > =£!. Thus we complete the proof. O

Theorem 3.6 Ifm =0 (mod 2) andm > 6, then
v(P(6m, m)) = m.

Proof By Lemma 2.2 and 2.3, y(P(6m,m)) < m. By
Theorem 3.4, y(P(6m,m)) > [m + 1 — 3221 = m + [— 227,
Since m > 6, m+2 < 2m — 2. Then y(P(6m, m)) > m. Hence,

v(P(6m,m)) = m. O
Theorem 3.7 Ifk >4, then
%3 fk=0 (mod 3),
Y(P(4k,4)) = 22 ifk=1 (mod 3),
%=l ifk=2 (mod 3).

Proof By Lemma 3.4, v(P(4k,4)) > [£ — 1]. Let k =
3t+s, where s = 0,1, or 2. If s = 0, then v(P(4k,4)) > 2t—1=
=3 If s = 1, then y(P(4k,4)) > 2t = %52 If s = 2, then
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v(P(4k,4)) > 2t + 1 = Z%71 By lemma 2.4, we obtain the
desired result.

In the end of the section, we now determine orientable gen-
era of several other graphs. By Lemma 2.1 and Lemma 3.4, we
can show that y(P(9,3)) = 1. Since P(12,4) has a minor iso-
morphic to P(9,3), we have that 7(P(12,3)) > 1. By Lemma
2.1, v(P(12,3)) = 1. By Lemma 2.2 and Lemma 3.4, we can
show that v(P(25,5)) = 4.

4 The orientable genus of P(3m,m)

In Section 2 we have given an upper bound of v(P(3m, m)).
We need a proper lower bound of y(P(3m,m)). Let us begin
with a lemma.

Lemma 4.1 [3] Ifthe blocks of the graph G are G1,Ga, -« -,
G, then v(G) = ¥(G1) +v(G2) + -+ + ¥(Gr).

Suppose that ¢t > 2, and suppose that Q1,Q2, -, Q: is a
sequence of graphs such that @; is isomorphic to K33 with vertex
partition {z;1,Zi3,Tis} U{Zig, Tig, Tig} for i = 1,2,...,t. For
i=1,2,...,t — 1, z;¢ is identified with z;y1;. Then the above
obtained graph is called a t-chain of (K33)'s.

Considering the orientable genus of K33 is one, the below
result follows from Lemma 4.1.

Theorem 4.2 The orientable genus of ann-chain of (K3 3)’s
s n.

We now consider the relation of P(3m,m) and t-chain of
(K3,3)l3.

Lemmad4.3 Ifm>5andm=1 (mod 2), then P(3m,m)
has a minor isomorphic to m—z‘l--chaz'n of (K33)’s.

Proof Let D; be the induced subgraph of P(3m, m) by the
vertex set {v;, Umti, Vomi JU{Uis Umais Usmai } fOrd = 2,4,...,m—
3. Then D; is contracted into a vertex. Next, three edges

VoU3m—1,Um—1Um and Vom_1vem are deleted. Thus, there are six
vertices each has degree two. For each vertex of degree two, an
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edge incident with it is contracted. Then we obtain a graph
isomorphic to ™-chain of (K33)’s. O

Theorem 4.4 ~(P(3m,m)) = |=1].

Proof Recall that we have shown y(P(9, 3)) = v(P(12,4)
= 1 in Section 3. Now we consider the case that m > 5. Since
Y(P(3m,m)) < |=!] by Lemma 2.1, it is sufficient to show
7(P(3m,m)) > |21,

If m=1 (mod2), P(3m,m) has a minor isomorphic to

-cha,m of (K33)’s by Lemma 4.3. So y(P(3m,m)) > 21 >
["‘"lj by Theorem 4.2.

If m=0 (mod2),then |22] = |Z52]|. Since P(3m,m)
has a minor 1somorph1c to P(3(m —1),m — 1), v(P(3m,m)) >

Y(P(3(m —1),m — 1)) > | =52 by the above paragraph. Thus,
we complete the proof. O
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