Every Tree is a subtree of Graceful
Tree, Graceful Graph and
Alpha-labeled Graph

G. Sethuraman* and P. Ragukumar
Department of Mathematics
Anna University
Chennai 600 025, India
sethu@annauniv.edu

Abstract

A function f is a called graceful labeling of a graph G with m
edges, if f is an injective function from V(G) to {0,1,2,:--,m} such
that when every edge uv is assigned the edge label | f(u)— f(v)|, then
the resulting edge labels are distinct. A graph which admits graceful
labeling is called a graceful graph. A graceful labeling of a graph
G with m edges is called an a-labeling if there exists a number A
such that for any edge uv, min[f(u), f(v)] < A < maz[f(u), f(v)].
The Characterization of graceful graphs appears to be a very difficult
problem in Graph Theory. In this paper, we prove a basic structural
property of graceful graphs, that every tree is a subtree of a grace-
ful graph, an a-labeled graph and a graceful tree, and we discuss
a related open problem towards settling the popular Graceful Tree
Conjecture.

Mathematics Subject Classification: 05C78;05C05
Keywords: Graceful Tree;Graceful Tree Conjecture;Graceful Tree
Embedding;Graceful Labeling;Graph Labeling

1 Introduction

All the graphs considered in this paper are finite and simple. The terms
which are not defined here can be referred from [21]. In 1963, Ringel
posed his celebrated conjecture, popularly called the Ringel Conjecture [14],

*Corresponding Author

ARS COMBINATORIA 132(2017), pp. 27-47

which states that, K7,41, the complete graph on 2n + 1 vertices can be
decomposed into 2n + 1 isomorphic copies of a given tree with n edges. In
(10], Kotzig independently conjectured the specialized version of the Ringel
Conjecture, that the complete graph K5,,.; can be cyclically decomposed
into 2n+1 copies of a given tree with n edges. In an attempt to solve both
the Ringel and Kotzig Conjectures, in 1967, Rosa, in his classical paper [15]
introduced a hierarchical series of labelings called o, p, 8 and o labelings
as a tool to attack both the Ringel and Kotzig Conjectures. Later, the -
labeling was called graceful labeling by Golomb, and now this term is being
widely used. A function f is called a graceful labeling of a graph G with
m edges, if f is an injective function from V(G) to {0,1,2,---,m} such
that, when every edge uv is assigned the edge label |f(u) — f(v)|, then the
resulting edge labels are distinct. A graph which admits graceful labeling
is called graceful graph. A graceful labeling of a graph G with m edges
is called o-labeling if there exists a number A such that for any edge uv,
min[f(u), f(v)] < A < maz(f(u), f(v)]- The structural characterization of
graceful graphs is one of the most difficult problems in graph theory. In fact,
very few results [1-5,8] deal with necesary conditions of graceful graphs, and
numerous classes of graceful graphs [6,9,11-13,16,17,19, 20] with various
special structural properties were identified. However, these results have
provided only very little insight about the structural characterization of
the graceful graphs. The popular graceful tree conjecture: All trees are
graceful, remains open over four decades. In this paper, we provide a basic
structural understanding of graceful graphs that every tree is a subtree of
a graceful graph, an a-labeled graph and a graceful tree.

2 Main Result

In this section, first we present the Labeling Algorithm, which generates
distinct labels on the vertices and edges of a given arbitrary input tree T
with m edges. Using the Labeling Algorithm, we present a Graceful Tree
Embedding Algorithm, that will generate a graceful tree T* containing the
given input arbitrary tree T as its subtree.

Labeling Algorithm
Input: Arbitrary tree T with m edges

Step 1: Initialization

Identify a longest path P of T. Let d be the length of the
longest path P. Let ug be the origin of P. Consider the tree

28

T as a rooted tree having ug as its root. Then, T has d + 1
levels. Arrange the vertices in every level of the rooted tree T
in such a way that each vertex of the longest path P always
appears as the left most vertex of the respective level of the
vertex. Further, arrange the remaining vertices of each level in
such a way that the edges of T do not cross each other.
Foreachr, 1 <7 < |£], describe the vertices of the (2r)th-even
level as uar,1,u2r,2, " * *, U2r,y,, from left to right such that uar
is the vertex of the longest path P in the (2r)th level, where
~2r denotes the number of vertices of the (2r)th level.

For each 7, 1 < r < [4], describe the vertices of the (2r — 1)th-
odd level as vor_1,1,V2r—1,2)"* s V2r—1,72._, from left to right
such that vg._),; is the vertex of the longest path P in the
(2r — 1)th level, where «2,—1 denotes the number of vertices of
the (27 — 1)th level.

Step 2: Labeling Vertices
Step 2.1: Labeling vertices in each even level

Wuo,1) = Uuo,) = l(uo) =0
Foreachr,1<r < |_-g_|, define the labels of the vertices of the

2rth level,
l(u2r71) = l(uz(r—l)”n(r—l)) + 1
Uugri) = Uuzri—1)) + 1,2 <0 < 7or
Step 2.2: Assigning weights to the vertices of each odd level

For each r, 1 < r < [4], define the weights of vertices of
(2r — 1)th level, for 1 < i £ yar—_1,

wt(ver_1:) =
{ w > 0, if deg(’Uz,-._l'i) =1
w 2> [l(RMC('UQr_l_,')) - l(PR(‘Uzr_l,i))], if deg(vgr_l,i) >1

where RM C (v, ;) denotes the right most child of va,_,,; and
PR(vg,—1,;) denotes the parent of var_1 ;.

If d is even, then define the labels of the vertices of the last odd
level, (d — 1)th level,

WVd-1,7a-1) = udrg + wt(Va-1,94_,) + 1,

WVdm19g_1-1) = WVd1,70m1=Gi+1) + W(Vd-1,99_,-i) + 1, for
1<i<ya-1-1

If d is odd, then define the labels of the vertices of the last odd
level, dth level,

UVayyg) = Ud—1,94-1) + wE(vd,) + 1,

L(vdyg—i) = l(Vayy—(i-1)) + Wt(Va,qy—i) + 1, for 1 <i<ya -1

29

Step 2.3: Labeling of vertices in each odd level

Foreachr, 0 <r < [%] — 2, define the labels of the vertices of
the (2r + 1)th odd level,

l(v2r+lv.'21'+l) = l(vzr_ly'y2r—l) + wt(vzr"'ly'fzr-’-l) +1,
Hv2r+1,92041-1) = WV2r 4195041 —(i=1)) + WEV2r 41,954, -i) + 1,
for 1 <i<yer41—1

Step 3: Edge labels of the edges of T

For every edge uv of T, define the edge label
U(uv) = |l(u) — L(v)].

Observation 1: Vertex labels defined in Labeling Algorithm are
distinct.

When d is odd, observe from Step 2 of the Labeling Algorithm, that if the
labels of the vertices in all the even levels of T and the labels of the vertices
in all the odd levels of T are arranged in a sequence as,

l(uO, 1)’

l(u2.1)’ l(u2,2)’ B l('“'?,‘rz)v

l(u4,l)5 l(u4,2): MY l(u‘l,’h))

Uua-1,1), l(ua—-1,2), -, H{Ud—1,7g -1)
l(vd"m)’ ('Ud,’m-—l)’ Tt ('Ud,l):
Wva—2,74)s (Va=2,74-2-1)s "+ *5 (Va—2,1),

1(03.’73)’ (v3,‘va—1)’) (v3.1)’

v), (V1,m-1)y -+, (v12)-
Then this sequence forms a monotonically increasing sequence.

When d is even, observe from Step 2 of the Labeling Algorithm, that if the
labels of the vertices in all the even levels of T and the labels of the vertices
in all the odd levels of T' are arranged in a sequence as

l(‘u,o' 1) ’

l(uZ,l)v l(u2,2)r Tty l(u'-’:"lz)v

l(u4,l)v l(u4,2)1 T l(u4,‘74)s

Wua,), Uud,2), - Hud,v)s
l(vd—l,‘yd_1)$ (vd—l,'yd_l—l)y Tty (vd—l,l)a
l(vd—3.‘m-3): (vd-3,‘m—3—1)’ Tty (vd—3.1)’

l(v3»‘73)1 (v3,73—l)a B ('Us,l),
vim)y (V1m=1)s -+ (v1,1)-

30

Then this sequence forms a monotonically increasing sequence.
Thus, the vertex labels of all the vertices of T are distinct.

Theorem 1. The edge labels of all the edges of T that defined in the La-
beling Algorithm are distinct.

Proof. By Observation 1, the vertex labels of vertices of T are distinct.
Thus, the edge labels of the edges incident at each vertex va,_j;: for 4,
1<i< vgr-1,0f (2r —1)th odd level, 1 <r < [%], are distinct.

Claim: The edge labels of all the edges incident at all the vertices in every
(2r — 1)th odd level of T are distinct, for 1 <r < [%] .

Consider two (consecutive) vertices vg,_y,(i—1) and vgr—1,; in the (2r —1)th
odd level of T. Let yi_y = PR(var—1,i-1) and y; = PR(var_1,:). Let
z;_y = RMC(vgr—y,i~1) and z; = RMC(vz,_1 ;). By the vertex labeling,
for any vertex vgr—1; in the (2r — 1)th odd level, {(y;) < l(w), for any
child w of ver—1,; and l(w) < I(z;), for any child other than z;. That is,
if deg(vzr—1,)) > 1, min{l(N(var-1,i))} = Uy:) and maz{l(N (v2r-1,))} =
Uz:). I deg(var-1,) = 1, min{l(N(ver-1,i))} = U(y:) = maz{l(N (var-1,4))}-
Here, N(v2r—1,;) denotes the set of adjacent vertices of vz,_1,; and

(N (var—1,;)) denotes the set labels of the adjacent vertices of vor—1,;. Thus,
min{l'(ver—1,;w) : w € N(vgr-1,:)} = I'(ver—1,:z:) and

maz{l'(var—1,;w) : w € N(vor—1,4)} = I'(Vor—1,i%:)-

Case 1: deg(vz,—1,i-1) =1

Then, wt(vor—1,i-1) = w > 0, we have l(ver_1 i-1) = l(vop—y,i) +w+ 1.
Claim 1: I'(var_1,i—1%i-1) > U'(ver—1,i¥:)-

Subcase 1.1: yi—) = PR(v2r-1,i-1) # PR(var-1,) = ¥

Let k; denote the number of vertices between the vertices y;—; and y;.
Then, I(y;) = l(yi=1) + k1 +1, k1 = 0. We have, l'(vg,._l'i_ly,-_l) -
V(var—1,i9:) = Uvzr=1,i-1) = Wyi-1) — Wvar—14) + 1) = Wvar-14) +w +
1- l(yi—l) - l(vgr_l,i) + l(y,'_l) + kl +1=w+ kl +2 > 0. ThUS,
U(var—1,6-1%i-1) > U(var—1,%:).

Subcase 1.2: y,_; = PR(var—1,i-1) = PR(v2r—1:) = w:

Then, l'(vzr-l,i—lyi-l) - l'(vzr-l.iyi) = l(v2r—l,i—l) - l(yi-l) - l(v2r—l,i) +
Wyiz1) = l(var—1,)) +w+ 1 — l(vgr—1:) = w+ 1> 0. Hence Claim 1.
Case 2: deg(var—1,i-1) > 1

Claim 2: I'(var—1,i—17i—1) > U'(vor—1,i%i)-

Subcase 2.1: y;—) = PR(var-1,i-1) # PR(vor-1,)) = ui

Since deg(var—1,i—1) > 1, then by the Labeling Algorithm, we have,
wt(vgr—,i—1) =w > [RMC(’Uzr_1,,'_1)—PR('02,-_1'5_.1)] and l('vz,-_l‘i_l) =
l(var—1,:)+w+1. Let k; denote the number of vertices between the vertices
yi—1 and y;. Let ko denote the number of vertices to the right side of the
vertex y; in the preceeding level, the (2r — 2)th even level. Let k3 denote
the number of vertices to the left side of the vertex z;_; in the succeeding
level, the (2r)th even level. Note that ky > 0, k2 > 0 and k3 > 0. Then,

31

l{zi—1) = l(y;) + ko + k3 + 1. Therefore,

l(vg,-_l,i) +w+1 —l(y,») —ky—kz—1-— l(vzr_l,i) +l(yi) =w—(ko+k3)>0.
Note that w = ky + ko + k3 + 2.

Subcase 2.2: Yi—1 = PR(U2r—l,i—l) = PR(’Uz.,-_l,i) =Y

We have l(’vgr_l,i) +w+1-— l(yi) —kg —kz3—-1-— l(vgr_l,,-) +(y:) =
w — (kg + k3) > 0. Note that w = ko + k3 + 1.

Hence Claim 2.

Thus, the edge labels of the edges incident at any two consecutive vertices
in every odd level (2r — 1)th level are distinct, 1 <r < |£].

Let I,,;.(h) denote the minimum of all the edge labels of the edges incident
at the vertices in the level k. Let I/, (h) denote the maximum of all the
edge labels of the edges incident at the vertices in the level h.

Claim 3: I, (2r —1) > Il (2r +1),1<r < |§]

Observe that I,,.(2r + 1), the maximum of all the edge labels of the
edges incident at the vertices in the level 2r + 1 is obtained from the edge
V2r+1,1U2r,1-

Case a: deg(Var—1,y,,.,) =1

Let the parent of the vertex vg._j ., _, be ¥y, _,. Since the degree of
the vertex var_1,4,,_, is 1, observe that !/ ;. (h), the minimum of all the
edge labels of the edges incident at the vertices in the level (2r — 1)
is obtained from the edge label I'(var—1,4,,_,Yy;._,)- Also, observe that
laz(2r + 1) = U(varg1,1u2r1). Let k; denote the number of vertices
to the right of the vertex y,, _, in the even level (2r — 2). Note that
k1 > 0. Then, by Labeling Algorithm, we have {(ug,1) = {(yy2r—1) + k1 +1.
Since deg(v2r—1,7,,_,) = 1, we have wt(ver—1,,,._,) = w > 0. Therefore,
l(v2r—1,'72r—1) = l(‘vg,-.;.l,l) + w + 1. Thus,

l(v2,+1,1) +w+1 —l(yq.‘,,_,)—l(vgr.;.l,l) +l(y'72r_1)+kl +1l=w+k1+2>0.
Case b: deg(var—1,y,._,) > 1

Let the right most child of the vertex vo,_1,,._, be z.,._,. Since the de-
gree of the vertex va,_j.,._, > 1, observe that I/ ;. (h), the minimum
of all the edge labels of the edges incident to the vertices in the level
(2r — 1) is obtained from the edge label I'(var_1,4,,_,Z,._,). Also, ob-
serve that I}, (2r + 1) = U'(var41,1u2r1). Let ky denote the number
of vertices between the vertices uy,; and ., _, in the even level (27).
Note that k3 > 0. Then, by Labeling Algorithm, we have l(Z2,—1) =
l(uor,1) + k2 + 1. Since deg(var—1,4,._,) > 1, we have wt(var_14,._,) =
w 2> [RMC(v2r—1,45,_,) — PR(V2r-1,4,,_,)]- Observe that w > kp. There-
fore, l(v2r—1,v5,_,) = {(v2r41,1 +w + 1. Thus,

l(vzr.i.l,l) +w+1-— l(ugr,l) —ky—1- l(U2r+1,1) + l(UQr'l) =w—ky > 0.
Hence Claim 3.

Foreachr,1<r < [-‘.";’], the edge labels of the edges incident with vertices
v;, 1 £ 4 < o1 at the (2r — 1)th odd level are strictly increasing as the
index 7 decreases from v2,_; to 1. Consequently, the edge labels of the

32

edges incident at the vertices of any odd level (2 — 1) strictly increases
as 7 decreases from [$] to 1. Thus, the edge labels of all the edges inci-
dent at all the vertlces in every (27 — 1)th odd level of T are distinct, for
1 <r < [4]. Hence edge labels of all the edges of T are distinct. O

Note 1: For a given arbitrary input tree T with m edges, we run the La-
beling Algorithm and obtain the labeled output tree T'. For convenience,
hereafter the vertices of the output tree T” are referred to by their vertex
labels, and the edges are referred to by their edge labels. Thus, for the out-
put tree T/ we consider V(T") = {0,1,2,---,p— 1,p,a1,02,-++, M} and
E(T") = {I(ex), U(e2), -+, (e)

Graceful Tree Embedding Algorithm
Input: Any arbitrary tree T

Step 1:
Step 1.1:

Run Labeling Algorithm on input tree T and get the output
tree T7.

Step 1.2:

For the tree T, define

Vertex Label Set

V= V(T,) = {0s1)2:" WP 1»P,a1,0‘2,' Qg1 = M}:
where the elements of V' are the vertex labels of the
vertices of the input tree T that defined in the Label-
ing Algorithm,

Edge Label Set E = E(T') = {l/(e1),!(e2),---,V(em)},

where ’(e;), is the edge label of the edge e;, for
1 <i < m of T defined in the Labeling Algorithm,

All label set X = {0,1,2,---, M},
Common label set I =V NE,
Exclusive vertex label set V = (V — {0}) —
Exclusive edge label set E E—1and
Missing vertex label set X = X — V.
Initiate T* « T,

V(T*) « V(T),

E(T*) «+ E(T).

33

Step 2:
While X # ¢, find minX = a.
Step 3:

If a ¢ E, then consider a new vertex with label @ and add a
new edge between the vertex with label 0 and the new vertex
with label a to T*.
Update T* « T* + (0, a),

V(T*) « V(T*) U {a},

E(T*) «- E(T*) U {(0,0)}.
Delete a from X and go to Step 2.

Step 4:

If a € E, then find minV = b and find 8 = a — b. Consider a
new vertex with label a and add a new edge hetween the vertex
labeled 8 and the new vertex with label a to T™.
Update T « T* + (B, a),

V(T*) « V(T*)U {a},

E(T*) « B(T*) U{(8,a)}.
Delete a from X and delete b from V and go to Step 2.

Observation 2: If X # ¢, the Graceful Tree Embedding Algorithm exe-
cutes Step 2 and minX = a is found. This means that there always exist

o number of vertices in the current tree T* with labels 0,1,2,---,a — 1.
Thus, after the execution of Step 3 or Step 4, the latest updated tree T*
will have a + 1 vertices with vertex labels 0,1,2,---,a — 1, a.

Lemma 1. The label 8 defined in Step 4 of Graceful Tree Embedding Al-
gorithm is always a positive integer and it exists as vertex label of a vertex
of the current tree T* that being used in that execution of Step 4.

Proof. For the convenience, we consider the input tree T as a bipartite
graph with bipartition (V;,V,), where V] consists of all the even level ver-
tices and V; consists of all the odd level vertices. We arrange the vertices of
V1 in the increasing order of the label of the vertices positioned in the top
to bottom and also we arrange the vertices of V3 in the decreasing order of
the labels of the vertices positioned in the top to bottom and to the right
side of the vertices of V). V) is refered as left side partition and V; is refered
as right side partition.

Observe that Step 4 of Graceful Tree Embedding Algorithm is executed
when X # ¢. Further a = minX, b = minV and 8 = a — b are found in
the Step 4 We claim that § is a positive integer. For that we prove a > b.
Suppose not. Then a < b. Sincea € X beVand XNV =¢,a # b. Thus,

34

a < b. Since minX > p, where p = [V}, and (W4, V%) is the bipartition
of the vertex set of the input tree T. Therefore, a > p. This implies that
b > p. Then the labels 1,2,3,---,p — 1 do not exist as exclusive vertex
labels in T since & is the minimum over V*. This implies that either the
labels 1,2,3,---,p — 1 do not exist as vertex labels or else, if the labels
1,2,3,--+,p—1 exist as vertex labels then the labels 1,2,3,---,p— 1 must
all exist as edge labels also.

Observe that Step 4 of Graceful Tree Embedding Algorithm is executed
when X # ¢. Further a = minX, b= minV and B = a — b are found in
the Step 4 We claim that f is a positive integer. For that we prove a > b.
Suppose not. Then a < b. Sincea € X,beVand XNV = ¢,a #b. Thus,
a < b. Since minX > p, where p = [V;], and (V4,V5) is the bipartition
of the vertex set of the input tree 7. Therefore, a > p. This implies that
b > p. Then the labels 1,2,3,---,p — 1 do not exist as exclusive vertex
labels in T since b is the minimum over V*. This implies that either the
labels 1,2,3,---,p — 1 do not exist as vertex labels or else, if the labels
1,2,3,---,p—1 exist as vertex labels then the labels 1,2,3,---,p — 1 must
all exist as edge labels also.

Suppose the labels 1,2,3,.--,p — 1 do not exist as vertex labels then T
must have only one even level having one vertex labeled '0’. (Since by Step
2.1 of Labeling Algorithm, the consecutive labeling are given in the even
level vertices.) This implies that there is only one odd level and all the
vertices in this odd level must be adjacent to vertex labeled '0’. But the
degree of the vertex labeled '0’ is one, therefore there is only one vertex
in the unique odd level. Thus, the tree must be K. Then by Step 2.3
of Labeling Algorithm, the label of the unique vertex, say ¢, adjacent to
the vertex labeled '0’ must have the label w + 1 > p, where w = wt(c).
Then we have, V = {0,w + 1}, E = {w + 1} and I = {w + 1}. Therefore
E=E—1T=¢. A contradiction to the fact that £ # ¢ (since a € E).
Suppose the labels 1,2,3,-.-,p — 1 exist as vertex labels then the labels
1,2,3,---,p—1 must all exist as edge labels also. As 1,2,3,---,p—1 also
must appear as edge labels, then structure of the input tree T must be
either a labeled double star or a labeled star as given in Figure 1 or
Figure 2.

35

.w o
2p-2 p+1 P

Figure 1: Forcible structure of T as a labeled double star

Figure 2: Forcible structure of T' as a labeled star

When T is a double star, then by Labeling Algorithm, T shoud have
been labeled as shown in Figure 3.

.e.
p+ deg(1) - 2 p+1 P

Figure 3: Vertex Labeling for Double Star by Labeling Algorithm

Therefore, T can not be a double star. When T is a star, then T
must have the labeling by Labeling Algorithm as given in Figure 2. Then

36

= {0,1,2,---,p}, E = {1,2,---,p} and I = {1,2,---,p}. Therefore,
E E—I=¢. But £ # ¢, sincea € E. Hence b < a. Therefore a—- b>0.
Hence f3 is a positive integer. Since a = minX, the current tree T* should
contain all the vertex labels 0,1,2,---,a — 1. As 8 = (a — b) < a, 8 must
be a label of a vertex in that current tree 7. a

Theorem 2. The output tree T* generated by Graceful Tree Embedding
Algorithm for an input arbitrary tree T is graceful and contains the input
arbitrary tree T as its subtree.

Proof. For an input arbitrary tree T, obtain the output tree T* generated
by the Graceful Tree Embedding Algorithm. Consider the sets
V,E,I,X,V,E, X that are defined in Step 1.2 of Embedding _Algorithm.
By Step 1.2 of Graceful Tree Embedding Algorithm, we have X =X - V.
Then, we have X = X UV. Since E C X, we can write
X= XUV =((X- E)UE)UV Observe that by definition ofE EﬂV o,
En(X -E)=¢and VN (X — E) = ¢. That is, the sets (X — E),E and
V are mutually disjoint. Note that V' consists of all the vertex labels of T
E consists of the edge labels of T' that are not vertex labels of T. X-E
consists of the members of X which are neither the vertex labels of T nor
the edge labels of T. Consider a = minX obtained by an execution of
Step 2 of Graceful Tree Embedding Algorithm. If a ¢ E, then by Step 3
of Graceful Tree Embedding Algorithm, the vertex label a is obtained in
the updated tree T* by adding the new edge (0,a) to the current tree T*.
Also a is removed from X. Since a was removed from X, the vertex label
a will never be obtained again.
If a € E, then by Step 4 of Graceful Tree Embedding Algorithm, the vertex
label a is obtained in the updated tree T* by adding the new edge (8,)
in the current tree T*, where 8 =a —b and b = minV. Since a is removed
from X, the vertex label a will never be obtained again.
Thus, after executing Step 3 of Graceful Tree Embedding Algorithm |X-E|
times and Step 4 of Graceful Tree Embeddmg Algorithm |E| times, T™
contains all the vertex labels 0,1,2,---,M. Observe that all the vertex
labels obtained from Embedding Algorithm are distinct and belong to
X — V. By Theorem 1, all the vertex labels of T are also distinct. Thus,
vertex labels of all the vertices of T* are distinct and the final updated tree
T* has M + 1 vertices with vertex set V(T*) = {0,1,2,---, M} (where a
vertex of T* is refered by its corresponding label). X

We can write the set X —{0} = XU(V —{0}) = (X—E)UEUV. Observe
that the sets (X — E),E,V and I are mutually disjoint. The elements in
E and I are already existing as edge labels in T. Consider, minX = e,
obtained at an (any) execution of Step 2 of the Embedding Algorithm. If
a¢ E, then by Step 3 of Graceful Tree Embedding Algorithm, the edge
label a is obtained in the updated tree T* by adding the new edge (0, a) to

37

the current tree T* and a is removed from X. Since a was removed from
X, the edge label a will never be obtained again. If a € E, then a unique
b€ V, where b = minV is found in an execution of Step 4 of Graceful Tree
Embeddmg Algorithm, and the edge label b is obtained in the updated tree
T* from the new edge (5, a) which was added to the current tree T, where
B=a-bandbi is removed from V. Also a s removed from X. Since a
is removed from X and b i is removed from V the edge label b will never
be obtained again. Since |V| = |E|, whenever a€ E, corresponing unique
b e V is found. We see that every element of V is obtained as edge label
in the final updated tree T*.

Thus, after executing Step 3 of Graceful Tree Embedding Algorithm |X-E|
times and Step 4 of Graceful Tree Embedding Algorithm {V|(= | E|) times
in the final updated tree T*, the edge labels belong to (X — {0}) — E are all
obtained as distinct edge labels. As T was initiated with m edges having
distinct edge labels belong to the set F, the final updated tree T* has
distinct edge labels 1,2,---, M for its M edges. Thus, the final updated
tree T* is graceful.]

Modified Labeling Algorithm

Consider the Labeling Algorithm.

Retain Steps 1 and 2.1.

Modify Step 2.2 by defining the weight as given helow.

For each r, 1 < r < |£], define the weights of vertices of

(2r+1)th level, for 1 < i < yar41,

Wt (vart1,:)
0, if deg(var4+1,i) =1
l(RMC(‘Uz,-+1,,‘)) - l(PR(‘Ug,-.H,i)), if deg(vzr,,.l‘i) >1

Apply the new definition of weight in Step 2.3.
Retain Step 3 as in the Labeling Algorithm.

Labeling Algorithm with these modifications is called Modified Labeling
Algorithm. The output tree thus obtained from the Modified Labeling Al-
gorithm is also denoted by T".

Note 2: For a given arbitrary input tree T with m edges, we run the
Modified Labeling Algorithm and obtain the labeled output tree 7”. For
convenience, hereafter the vertices of output tree T are referred to by their
vertex labels, and the edges are referred to by their edge labels. Thus, for
the output tree T’ we consider V(T") = {0,1,2,---,p—1,p,01, 02, - -, M}
and E(T') = {U'(e1), ' (e2),---,U'(em)}

Observation 3 From Observation 1, it follows that the vertex labels de-
fined by the Modified Labeling Algorithm are distinct, and from

38

Theorem 1, it also follows that the edge labels defined by the Modified
Labeling Algorithm are also distinct.

Observation 4 In the Modified Labeling Algorithm, it is obvious that the
weight of a vertex in the odd level is less than the number of vertices in all
the even levels. Thus, the difference between the labels of two consecutive
vertices in any odd level is strictly less than the number of vertices in all
the even levels of T

a-labeled Graph Embedding Algorithm
Input: Arbitrary tree T

Step 1:

Run the Modified Labeling Algorithm on input tree T and get
the output tree T”.
Step 2:

Define VI(TI) = {0» 1,27 cte ap_l} and ‘/Z(T,) = {paalva% B M}:
where M is the maximum of the vertex labels of the vertices of
T', the elements in V;(T") are the vertex labels of the vertices
that are in the even levels, and the elements in V,(T") are the
vertex labels of the vertices that are in the odd levels. Define
E(T') = {l'(e1),V(e2)," -,V (em)}, the set of edge labels of the
edges of 77 as defined in the Modified Labeling Algorithm.
Define E' = {1,2,3,---,M} and E* = E' — E.
Initiate G* < T7,

V(G*) « V(T),

E(G*) « E(T).

Step 3:

While E* # ¢, find minE* = z.
Step 4:

Define S = {y € V2(T")|y > z}. Find minS = 4.
Step 5:

Find z = 4 — z. Then add a new edge between the vertex
labeled z in Vi (T”) and vertex labeled § in V2(T"”) so that the
edge label z is induced.
Update G* « G* + (3, 2),

E(G*) « E(G*)U{(3, 2)}-
Delete = from E* and go to Step 3.

39

Graceful Graph Embedding Algorithm
Input: Arbitrary tree T

Step 1:

Run the Modified Labeling Algorithm on input arbitrary tree
T and get the output tree 7",

Step 2:

Define Vi(T') = {0,1,2,---,p—1} and Vo(T") = {p, a1, a2, - -, M},
where M is the maximum of the vertex labels of the vertices
of T", the elements in V}(T") are the vertex labels of the ver-
tices that are in the even levels, and the elements in V5(T”) are
the vertex labels of the vertices that are in the odd levels. Define
V(T') = Vi(T")UVo(T"). Define E(T) = {I'(e1),!'(e2), -+, '(em)}
the set of edge labels of the edges of 77 as defined in the Mod-
ified Labeling Algorithm. Define E' = {1,2,3,---, M} and
E*=F -E.
Initiate G « T",

V(G) « V(T),

E(G) « E(T).

Step 3:
While E* # ¢, find minE* = z.
Step 4:

If x € V(I"), then introduce a new edge between the vertex
labeled 0 and z so that the edge label induced in the new edge
is z.
Update G « G + (0, z),

E(G) + E(G)U {(0,z)}.
Delete z from E* and go to Step 3.

Step 5:

If z ¢ V(T'), then Define S = {y € Vo(T')|ly > z}. Find
minS = §. Find z = § —z. Then add a new edge between
the vertex labeled z in V;(T”) and vertex labeled § in Vo(T") so
that the edge label z is induced.
Update G «+ G + (%, z),

E(G) « E(G) U {(4,)}.
Delete = from E* and go to Step 3.

Lemma 2. The z defined in Step 5 of the a-labeled Graph Embedding
Algorithm as well as in Step 5 of Graceful Graph Embedding Algorithm
always ezists as a vertex label in Vi(T) and also z is strictly less than p,
the number of vertices in all the even levels of the input tree T.

Proof. From Step 5 of the a-labeled Graph Embedding Algorithm, z is
defined by y — z. We prove that y — x < p. Suppose not. Then, y —z > p.
Then, identify the largest vertex label from V(T’) (say 1) such that y; < x.
By the definition of vertex labeling in the Modified Labeling Algorithm,
y—1y <p. That is, y < p + y;. From the assumption, we have z +p < .
Therefore, p+z < p+ y; or 2 < ¥, a contradiction to our choice of y;
such that y; < . Hence z < p. a

Theorem 3. The output graph G* generated by a-labeled Graph Embedding
Algorithm is an a-labeled graph containing the given input arbitrary tree as
its spanning tree.

Proof. For an input arbitrary tree T', obtain the output tree T' generated
by the Modified Embedding Algorithm. Then note that the vertex labels of
the vertices of 7" are distinct and the edge labels of the edges of T” are also
distinct by Observation 3. By Step 2 of the a-labeled Graph Embedding
Algorithm, the vertex set of the output graph V(G*) = V(T"). Thus
vertex labels of the vertices of V(G*) are distinct and the vertex labels are
assigned from the set {0,1,2,---, M}. Observe that from Steps 3 to 5, the
edge labels belong to E* are all obtained as distinct edge values of the new
edges which are added to the current graph G* and G* is updated. Thus
the edge labels 1,2,3,---, M are all obtained in the final updated graph
G*, since E' = E(T')U E* and E(T') N E* = ¢. Hence G* is graceful.
Further observe that G* is bipartite and every edge is having one vertex
label in V1 (T”) and other vertex label in V2(T”). Thus for every edge e = zy
in G*,eitherz <p—1landp—1<yory<p-—1land p—1 <z Hence
the labeling thus obtained in a-labeled Graph Embedding Algorithm is an
a-labeling. Hence G* is an a-labeled graph. a

Theorem 4. The output graph G generated by Graceful Graph Embedding
Algorithm is graceful and containing the given input arbitrary tree as its
spanning tree.

Proof. For an input arbitrary tree T, obtain the output tree 7" generated
by the Modified Embedding Algorithm. Then note that the vertex labels of
the vertices of T” are distinct and the edge labels of the edges of T” are also
distinct by Observation 3. By Step 2 of the Graceful Graph Embedding
Algorithm, the vertex set of the output graph V(G) = V(T”). Thus vertex
labels of the vertices of V(G) are distinct and the vertex labels are assigned
from the set {0,1,2,---,M}. Observe that from Steps 3 to 5, the edge

41

labels belong to E* are all obtained as distinct edge values of the new
edges which are added to the current graph G and G is updated. Thus
the edge labels 1,2,3, .-, M are all obtained in the final updated graph G
since E' = E(T") U E* and E(T') N E* = ¢. Hence G is graceful. O

3 Discussion

Theorems 2, 3 and 4 respectively imply the basic structural property of
graceful graphs that every tree is a subtree of a graceful graph, an o-
labeled graph and a graceful tree. In particular, Graceful Tree Embedding
Algorithm generates a graceful tree from the given arbitrary tree. This
is a new approach in constructing graceful trees from an arbitrary tree.
One can observe that the Graceful Tree Embedding Algorithm generates
a graceful tree from a given arbitrary tree by adding a sequence of new
pendant edges to the given arbitrary tree. Thus, it is tempting to ask the
question,

If G is a graceful tree and v is any one degree vertez of G, is it
true that G — v is graceful?

If this question is answered affirmatively, then those additional edges of the
input arbitrary tree T introduced for constructing the graceful tree T* by
the Graceful Tree Embedding Algorithm could be deleted in some order so
that the given arbitrary tree T becomes graceful. This would imply that
the Graceful Tree Conjecture is true.

Illustration

Figure 4: Input Tree T

42

Figure 5: Vertex Labeled Tree T” for the Input Tree T

53 43 455162

28 30 M 32 33 §f 35 Jf 30 40 41

2 46
2 47
n 8
0 ” 2
: 16
19
2 15 o
%,
! 2 3
2
5 “
)
5) 7 8
36
20 2 "
» 10 n 12 13

Figure 6: Graceful Tree T* obtained from the input tree T by Graceful
Tree Embedding Algorithm

43

55

50

44

37

29

22

13 @- —= 14

Figure 7: Alpha-Labeled Graph G* obtained from the input tree 7" by
a-labeled Graph Embedding Algorithm

Figure 8: Graceful Graph G obtained from the input tree T by
Graceful Graph Embedding Algorithm

Acknowledgments

The Authors would like to thank the referee for the valuable comments.
The second author thankfully acknowledges Centre for Research, Anna
University, Chennai, for the Anna Centenary Research Fellowship under
the grant Ref:CR/ACRF/Jan.2011/31.

45

References

(1) B.D. Acharya, S.B. Rao, S. Arumugam, Embedding and NP-Complete
problems for Graceful Graphs, Labelings of Discrete Structures and Ap-
plications, B.D. Acharya, S. Arumugam, Alexander Rosa, eds., (2008),
57-62, Narosa Publishing House, New Delhi.

[2] Bermond J.C, Graceful graphs, radio antennae and French windmills,
Graph Theory and Combinatorics, Pitman, London, (1979), 18-37.

[3] Bloom G.S, A chronology of the Ringel-Kotzig conjecture and the con-
tinuing quest to call all trees graceful, Ann. N.Y. Acad. Sci., 326,
(1979), 35-51.

{4) Burzio M. and Ferrarese G, The subdivision graph of a graceful tree is
a graceful tree, Disc. Math, 181, (1998), 275-281.

(5] Cahit. I, Graceful labelings of rooted complete trees, 2002, preprint.

(6] Douglas S. Jungreis and Michael Reid, Labeling Grids, Ars Combina-
toria, 34, (1992), 167-182.

[7] J.A.Gallian, A Dynamic Survey of Graph Labeling, The Electronic
Journal of Combinatorics, 18, (2011), #DS6.

(8] Golomb S.W, How to number a graph, Graph Theory and Computing
R.C. Read, ed., Academic Press, New York, 1972, 23-37.

(9] Jeba Jesintha.J and Sethuraman G, All arbitrary fired generalized ba-
nana trees are graceful, Math. Comput. Sci, 5, (2011),1,51-62.

[10] Kotzig A, Decompositions of a complete graph into {k-gons (in Rus-
sian), Matematicky Casopis, 15, (1965), 229-233.

[11] Koh K.H., Rogers D.G. and Tan T, Two theorems on graceful trees,
Discrete Mathematics, 25, (1979), 141-148.

(12] Ng H.K, Gracefulness of a class of lobsters, Notices AMS, 7, (1986),
825-05-294.

(13] Pavel Havier and Alfonz Havier, All trees of diameter five are graceful,
Discrete Mathematics, 233, (2001), 133-150.

[14] Ringel G, Problem 25, in Theory of Graphs and its Applications, Proc.
Symposium Smolenice, Prague, (1963) page-162.

[15] Rosa A,On certain valuations of the vertices of a graph, Theory of
graphs, (International Symposium, Rome, July 1966), Gordon and
Breach, N.Y. and Dunod Paris, (1967),349-355.

(16] Sethuraman G. and Venkatesh S, Decomposition of complete graphs
and complete bipartite graphs into a-labeled trees, Ars Combinatoria,

93, (2009), 371-385.

[17) Sethuraman G. and J. Jeba Jesintha, All banana trees are graceful,
Advanced Applied Discrete Mathematics, 4, (2009), 1, 53-64.

[18] Van Bussel F.,Relazed graceful labelings of trees, The Electronic Jour-
nal of Combinatorics, 9, (2002), #R4.

[19] W. Fang, A Computational Approach to the Graceful Tree Conjecture,
arXiv:1003.3045v1[cs.DM]

[20) Wang J.G., Jin D.J., Lu X.G. and Zhang D., The gracefulness of a
class of lobster trees, Math. Comput. Modelling, 20, (1994), 105-110.

[21] West D.B., Introduction to Graph Theory, Prentice Hall of India, 2nd
Edition, 2001.

47

