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Abstract

Let G be a graph with n vertices, ${G) the subdivision graph of
G. V(G) denotes the set of original vertices of G. The generalized
subdivision corona vertex graph of G and Hy, Ha, ..., Hn is the graph
obtained from &(G) and Hi, Ha,. .., Hs by joining the ith vertex of
V(G) to every vertex of H;. In this paper, we determine the Lapla-
cian (respectively, the signless Laplacian) characteristic polynomial
of the generalized subdivision corona vertex graph. As an applica-
tion, we construct infinitely many pairs of cospectral graphs.
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1 Introduction

All graphs considered in this paper are simple. Let G = (V(G), E(G))
be a graph with vertex set V(G) = {v1,...,vn} and edge set E(G) =
{e1,...,em}. The adjacent matriz of G is denoted by A(G). The incident
matriz of G, denoted by R(G), is the n X m matrix, whose (3, j)—entry is
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1 if v; and e; are adjacent in G and O otherwise. The degree matriz of G
is a diagonal matrix with diagonal entries d, .. .,d,, where d; = dg(v;) is
the degree of v; in G.

The Laplacien matriz and signless Laplacian matriz are defined as
L(G) = D(G) — A(G) and Q(G) = D(G) + A(G), respectively. It's easy to
know that R(G)R(G)T = A(G) + D(G) = Q(G). The characteristic poly-
nomial of an n X n matrix M is defined as far(z) = det(zI, — M), where I,
is the identity matrix of size n. In particular, for a graph G, we call f1(g)(u)
(respectively fg(e)(v))) the Laplacian (respectively, signless Laplacian)
characteristic polynomial of G, and its roots the Laplacian (respectively,
signless Laplacian) eigenvalues of G. The Laplacian and signless Laplacian
eigenvalues of G are denoted as 0 = 4;(G) < u2(G) € -+ € pn(G) and
1 (G) € 12(G) £ -+ - € vn(G) respectively. The Laplacian eigenvalues with
their multiplicities are called the L—spectrum of G. Graphs with the same
L—spectrum are called L—cospectral graphs. Similar terminology will be
used for Q(G). It is well known [4] that the subdivision graph &(G) of G
is the graph obtained by inserting a new vertex into every edge of G. We
denote the set of such new vertices by I(G), and the original ones by V(G).
For more review, readers may refer to [1,3,4].

The corona of two graphs G and H (5], is the graph obtained by one
copy of G and |V(G)| copies of H, all vertices disjoint, and joining the ith
vertex of G to every vertex in the ith copy of H. The (usual) corona G o H
of graphs G and H may be regarded as a specific case of the rooted product
of graphs G and H*, where H* has the root » which is a dominating vertex
(a cone point) adjacent to all other points of H*, and H* —r = H. In other
terms, H* := {r} o H = K, o H, wherein the root vertex r is associated
graph K. After that many new graph operations based on corona and
subdivision graph such as the edge corona, the neighborhood corona, and
the subdivision-vertez and subdivision-edge neighborhood corona have been
introduced and their spectra are computed in [6-9], but none of them has
been expended their |V(G)| or [I(G)| copies of H to arbitrary graphs. In
this paper we defined a new graph operation. The so-called subdivision-
vertez corona of G and H is the graph obtained from &(G) and |V(G)|
copies of H, all vertices disjoint, and joinging the ith vertex of V(G) to
every vertex in the ith copy of H. We defined the generalized subdivision
corona vertex graph by extending the |V (G)| copies of H to arbitrary graphs
H;, for i = 1,...,|V(G)|, so as to spread research to broader areas on
chemistry, physics and computer science.
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Fig. 1: An example of generalized subdivision corona vertex graph.

The rest of our paper is organized as follows. In Section 2, we give the
definition of our new graph operation and several useful tools to obtain our
results. The adjacent and degree matrix of generalized subdivision corona
vertex graph are showed in Section 3 calculation. Section 4 determines the
Laplacian characteristic polynomial of the generalized subdivision corona
vertex graph. This result enables us to construct infinitely many pairs
of L—cospectral graphs. In Section 5 we compute the signless Laplacian
characteristic polynomial of the generalized subdivision corona vertex graph
and also construct infinitely many pairs of Q—cospectral graphs.

2 Preliminaries

Definition 2.1. Let G be a graph with n vertices and Hy,...,H, n ar-
bitrary graphs which are not necessarily nonisomorphic with one another.
The generalized subdivision corona vertex graph of G and Hy, ..., Hy, de-

n
noted by 6(G) ® A\ Hi, is the graph obtained from &(G) and Hy,..., Hy,
i

all vertices disjoint, and joining the ith vertez of V(G) to every vertez in
H;.

Remark 1. All the graphs Hy,...,H, can be disconnected. The results
in this paper is adapted to disconnected graphs, which may be useful for
applications.

Example 2.2. Let P, denote a path of order n. Figure 1 depicts the
generalized subdivision corona vertex graph of Py and {H;|H; = P;,i =
1,...,4}.
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With the help of Schur complement and coronal of a matrix in the
lemmas below we obtained our results.

Lemma 2.3. [10] Let A be an n X n matriz partitioned as ( j; ﬁ;: )

where A11 and Ago are square matrices. If Ay and Az are invertible, then
det(A) = det (A2z) det (Au - A12A2_21A21) = det (A11) det (Azz - A21A1_11A12) .

Lemma 2.4. [2, 9] The U-coronal T'y(z) of an n x n square matriz U
is the sum of the entries of the matriz (xI, — U)~!, that is, Ty(z) =
1Z(zI, — U)~'1,, where 1, is the column vector of size n with all the
entries equal one.

In particular, if U is an n x n matrix with each row sum equals to a
constant ¢, then I'y(z) = ;5. For any graph G thh n vertices, the sum
of each row of L(G) is equal to 0, then I'y(g)(u) = 3. For any r-regular
graph with n vertices, the sum of each row of Q(G) is equal to 2r. Thus,
we have Lgq)(v) = 755

The following lemma is a way to build cospectral families. In Section 4
and Section 5 we give Example 4.6 and Example 5.7 for L—cospectral and
Q—cospectal family by using this lemma to make some corollaries clear.

Lemma 2.5. [4] Let H, and Hy be two A-cospectral (respectively, L-
cospectral and Q-cospectral) graphs, and let L be any graph. Define Gy =
LUkHy U (n—k)H. Then the family of graphs {Gilk = 1,2,...,n} is an
A-cospectral (respectively, L-cospectral and Q-cospectral) family.

3 Adjacent and degree matrix of §(G)® A\ H;

Let G be a graph with n vertices and m edges and H; an arbitrary
graph with ¢; vertices, for i = 1,...,n. Let N = m+4+n and M =
t; + .-+ t,. Label the vertices of G by 1,2,...,n, and the vertices new-
ly inserted in G(G) by n+ 1,...,n + m. Label the vertices of H, by
n+m+1 n+m+2 ..,n+m+t1, and the vertlcesofH for ¢ 2 2 by
n+m+Ztk+ln+m+Ztk+2 n+m+Ztk. Let 0,,x» be

k=1
an m X n zero matrix with all the entries equal to zero. Usually, we briefly
use 0 to denote a zero matrix when its size can be read from the context.
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n
The adjacent matrix of G(G) ® A Hi is given by

4 (S(G)o /\Hi) = (M 2. (3.)

R(G
where A (G(G)) = (R(g.)r (o )),
17, o o o

o 17, o o A(H)) o© 0
C= : ,.andB=( o . )

0 o ‘. 0 1)
0 0 1;1:‘ 0 0 A(H,)

0
0 o o

n
The degree matrix of &(G) ® A H; under this labeling is given by

. W o
D (G(G)o/\m) - (D(G(G))+ (o O)an 0 ) (3.2)
i 0

D(H) + Im

4 0 o
where D(6(G)) = (DS,G) 2?,"), W= ( o)' and

0
o 0 tn
D(H,) © 0
- ("2 )

] 0 D(H.)

4 L—characteristic polynomial of 6(G) © /\ H;

Theorem 4.1. Let G be a graph with n vertices and m edges, and H; an

arbitrary graph with t; vertices for i = 1,...,n. The Laplacian character-
n
istic polynomial of S(G) © \ H; is
i
fsron o™
p—ti =Trmp(e-1) O 0 0
= det o 0 o |-L(S(G))
0 0 p—ta=Tr,ymu-1) 0
0 0 0 ﬂ,Ifn

. HfL(Hi)(I‘L -1.

i=1
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Proof. By (3.1), (3.2) and the definition of Laplacian matrix, we have
L (G(G) o) /"\ H‘v)

i=1

=D (G(G) o} /"\ H.-) -A (G(G) 0] /..\ H.-)

i=1

i=1
_ (D<s<c)>+(‘3’ g)m 0 )_( Agon <)
0 D(H) + Im
_ (L(@(G)H(Vg g)N N -c )
-cT N LHY +In
LH) 0 o0
where L(H) = ( o o ) Then, we have
0 0 L(Hn)
f L(S(G)OA e
W o
il e o)
C (u— 1)y — L(H)

= det ((H-I"‘o_ w p,.([)m) -LBG)-C((u-1)Im - L(H))‘l C'T)
-det ((x — 1)Im — L(H)).

Note that
(p=1Iy —L(H) © 0
det ((u — 1)Ip — L(H)) = det 0 o )
0 1] (p—l)!gn "L(Hn)

= [T ema(e-1),

i=1

and
Cllu— 1)y - L(H) ' CT

(p—-1DlIy —L(H) O 0 -t
=C o o cT
0 0  (u—1), — L(Hy)

17, (0 = DIy = L(H)) "1, © 0 0
- o . 0 0
0 0 1 (=Dl — L(Ha))"'1,, 0
0 0 0 0/ nun
Triapp—1) 0 0 Y
= () 0 0
0 0 rL(H")(#— 1) (1]
0 0 o (1]
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Thus,

fL(S(G)o}_'\ H‘,,(f‘ )
p—ti—=Trap(e—-1) 0 0 Y
= det 0 o o | - L(B(®))
0 0 p—ta—Tram,)(p-1) 0
] 0 0 wlm
1 fecsa e = 1) o

i=1

Corollary 4.2. Let G be a graph with n vertices and m edges and H; an
arbitrary graph with t vertices fori =1,...,n, then

f )

L(S(G)OA Hi)

= (ﬂ - 1)-" . (p, - 2)m—n . (f_[ fL(Hi)(# - l))

i=1
-det (13 Tn — p? (B3 + )In + D(G)) + p (2(t + 1)1 + D(G) + L(G)) = L(G)) -
In particular, if H; ~ H fori=1,...,n, then
f ()

L(s(c)o/'“_\ H)
=@-)" (p=-2"" (frane-1)"
- det (4°Tn — p2 (3 + )] + D(G)) + p(2(t + 1) + D(G) + L(G)) ~ L(G)) .

Proof. For i = 1,...,n, H; has t vertices, then I'y(g,)(p —1) = -+ =
Tra,)(w—-1)= ﬁ By Theorem 4.1 we have

-t—=-)I. © n
fL(G(G)@/:\H,«)(”) = det (((p o ) ) - L(G(G))) 'il;Il frdy

wlm

(u — 1), where L(S(G)) = D(6(G)) — A(6(Q)) = ( D(G) —R(G)).

-R(G)T 2.
Note that
det (((“ -t ‘Op—ix) I N;’m) - L(s(c)))
s (i@ RO )
R(G)T (= 2)Im

= (u—2)"""(u— 1) det (p*In — p* (3 + t)]n + D(G))

+ u(2(t + 1)In + D(G) + L(G)) — L(G)).
Thus,
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f

L(S(G)OA H:)
1

(#)

=p-)""-(p-2)""". <H fro(p - 1))

i=1
-det (4°In — p® (3 + t)In + D(G)) + 1 (2(t + 1)In + D(G) + L(G)) — L(G)) .
In particular, if H; >~ H fori =1,...,n, then

f L(s(c>o}",\ H‘,)(l‘ )
=@E-1)""(p-2"" (frane-1)"
- det (431 — 12 (3 + ) + D(C)) + £ (2(t + 1) + D(G) + L(G)) — L(G)) .
a

Corollary 4.3. Let G be an r—regular graph with n vertices and m edges,
and H an arbitrary graph with t vertices. Let p;(G) denote the ith Laplacian
eigenvalue of G. Then we have

fucom®) = (k=2 T - 1 — (&))"

i=2

JT (6 - 2@+t +7) + p(2t + 2+ 7+ 1(G)) — 1i(B)) -
i=1
Corollary 4.4. Let G, and G2 be two L-cospectral r-regular graphs with
n vertices and m edges. Let Hy,...,H, be a sequence of graphs such that

n n
FL(HI)(I"') == FL(H,,,)(“)- Then G(Gl) @/\H1 and G(GQ) ® /\H, are

i i
L-cospectral.

Corollary 4.5. Let G be a graph with n vertices and m edges. Let {H;|i =
1,...} be a L-cospectral family. Then for any n-subset of sequence

H;,,...,H;,, the resultant graph G(G) ® A\ H;, is L-cospectral to one an-
k=1
other.

Example 4.6. Let H; and H; be L-cospectral graphs as shown in Fig-
ure 2. By a simple computation, we know that I'(s) := Tp(s,y(n) =
Try(p) = g. Let L = K4 be a complete graph with 4 vertices and
n = 4. By Lemma 2.5, {G1,G2,G3,G4} is a L-cospectral family. Note
that the L-coronal of disjoint union of some graphs equals the sum of the
L-coronals of all such graphs. Thus, I'y(¢,)(1) = Trk,) (k) + 4T(p), for
k=1,2,3,4. Now, let G = Cj be a circle graph with 5 vertices. By Corol-
lary 4.5, we can choose any five graphs, denoted by G;,, G;,,Gj,, Gj,, Gjs,s
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(a) Hi (b) Hz

Fig. 2: Two L-cospectral graphs

from {G;,G1,G2,G3,G3,G3,G4, G4} to obtain a generalized subdivision
5
corona vertex graph &6(K4) ® A Gj,. Clearly, all resultant graphs are L-
k=1

cospectral, whose Laplacian characteristic polynomial can be computed by
Corollary 4.2.

5 (@Q—characteristic polynomial of 6(G) © A\ H;
i

Theorem 5.1. Let G be a graph with n vertices and m edges, and H; an

arbitrary graph with t; vertices for i = 1,...,n. The signless Laplacian
n
characteristic polynomial of G(G) ® A H; is
i
f AS(G)0A o)
U—tl—rq(yl)(ll—l) (4] o 0
= det 0 0 o | -Q(68(6)
0 (] v—ta —Tow.,v-1) 0
0 0 0 vim

11 fowa v - 1).

i=1

Proof. By (3.1), (3.2) and the definition of signless Laplacian matrix, we
have

Q (G(G)o/_\m)

=D (G(G) O;\Hg) + A (G(G)G/"\Hs)

_ (Q(G(G)) +(% g)N . c ) ,
cr QH) + In
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Q(H) © o
where Q(H) = ( 0 o ) Then we have
0] o Q(H,)
f Q(G(G)GZ\ Hi)(y)
w o
fre (1), )
-cT (v — 1)Im — Q(H)

vi,-W 0
= det (( 0 vin

~det ({(v — 1) — Q(H)) .
Note that

det (v — 1) — Q(H)) = det(

) - Q(8(G)) - C (v~ V)Im — QUH))™! CT)

=[] fowm(v - 1),

=1

and

Cllv-VIn-QH)'CT =

Thus,
n v
fQ(G(G)OA o)
v—_t; — FQ(HI)(V -1)
= det 0
0
0

T faws v - 1).

i=1

(v - DI, —Q(H) © 0
0 0
0 0 (v—1DI, - Q(Hn)
rQ(Hl)(V - 1) 0 (4] 0
] r 1] 0
0 0 FQ(H,;)(V" 1) 0
o 0 o 0/ NxN
0 0 0
0 o | -Qs(6)
0 v-t,-Tomu,k¥-1) 0
0 0 vig
O

Corollary 5.2. Let G be a graph with n vertices and m edges, and H; an
arbitrary graph with t vertices and gy, (v) = Lqun(v), fori=1,...,n.

Then we have

f ®)

QS(CIGA Hy)

= (V —_ 2)’"—" . (Iﬂ—l fQ(H.’)(V - 1)) - det(uzl,, - ll((t + 2 + PQ(H)(U - l))In
i=1

+D(G)) + 2((c +Taun(v = ) + D(G)) - Q(G)).
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In particular, if H; ~ H fori=1,...,n, then
f v)

Q(s<c)o}5m)
= (V - 2)m—n (fQ(H)(V -_— 1))n . det (Uz.[n - U((t + 2 + FQ(H)(U - 1))],;
+D(G)) +2((t + Taun(v = ) + D(@)) - Q(G)).

Proof. By Theorem 5.1 we have

_ v—t-T v-1D))I, O
fq(s(c)o;:\ gy () = det ((( aun(v ) uIm) - Q(G(G)))
'HfQ(H,-)(V" 1),

where Q(6(G)) = D(6(G)) + A(6(G)) = ( ek ’;‘,‘j’).
Note that

det (((” ~t=Tau(v =) In V‘,’m) - Q(e(c)))

_ v—t-Tou(¥—1)I.—DG) —R(G)

= det (( Q(Ii)RIEG) D) o 2)Im)

=w-2""". det(.ﬁz,. —v((t+2+ Toun(v - 1)) I + D(G))

+2((t+Toun(v - 1)) In + D(G)) = Q).
Thus,
@)

J QS(GIONA Hi)

= (l/ - 2)m—n . (ln—[ fQ(H‘.)(V - l)) . det(uzf., — l/((t + 2+ FQ(H)(V - 1))In

i=1
+D(G)) +2((¢ + Toun(v = )n + D(G)) - Q(G)).

In particular, if H; ~ H fori =1,...,n, then

fQ(s(c)O/"i H.-)(")
= (V - 2)m_" (fQ(H)(U - 1))" - det (Vzln - U((t + 24 FQ(H)(U )M
+ D(G)) + 2((t + oy (v — D))a + D(G)) - Q(G)) . a

Corollary 5.3. Let G be a graph with n vertices and m edges, and H; an
r—regular graph with t vertices, fori=1,...,n. We have
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S

s@0e A H)

=(@-2"". (Efo(m)('/— 1)) 'det(”21" - V( (“*’2’*' v— :)tr - 1) L

+ D(G)) +2 ((t + r;r_—l) In+ D(G)) - Q(G)).

Corollary 5.4. Let G be an r—regular graph with n vertices and m edges,
and H an arbitrary graph with t vertices. Let v;(G) denote the ith signless
Laplacian eigenvalue of G. We have

f ()

()0 A Hy)

¥)

=w-2" " [t =1 - w(E)"

i=1

ﬁ (V2 —U(t+2+1‘+FQ(H)(V— 1)) +2(t+'l‘+PQ(H)(V— 1)) - V;(G)) .

i=1

Corollary 5.5. Let G; and G2 be two Q-cospectral r-regular graphs with
n vertices and m edges. Let Hy,...,H, be a sequence of graphs such that

Touity(¥) = - = Do) (v). Then &(G1) © A Hi and 6(G5) © A H; are
Q-cospectral. ' '
Corollary 5.6. Let G be a graph with n vertices and m edges. Let {H;|i =
1,...} be a Q-cospectral family and Tq(p,y(v) = Tomy(v). Then for any
n-subset of sequence H; ..., H;, , the resultant graph &(G) ® /n\ H;, is
Q-cospectral to one another. =

Example 5.7. Let H3; and H; be Q-cospectral graphs as shown in Fig-
ure 3. By a simple computation, we know that I'(v) := Fouy(v) =
T (v) = FRETSe H148° 1022432 Tt [ = Ky and n = 4. By Lemma
2.5, {G1,G2,G3,G,4} is a Q-cospectral family. Note that the Q-coronal of
disjoint union of some graphs equals the sum of the Q-coronals of all such
graphs. Thus, PQ(Gk)(V) = FQ(}Q)(V) + 4I'(v), for k = 1,2,3,4. Now,
let G = Cs. By Corollary 5.6, we can choose any five graphs, denoted
by Gj, f sz, st, do, st, from {Gl, Gl, Gg, Gg, G3,G3, G4, G4} to obtain

5
a generalized subdivision corona vertex graph &(Cs) © A Gj,. Clearly, all
k=1
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(a) Hs (b) Ha

Fig. 3: Two Q-cospectral graphs

resultant graphs are Q-cospectral, whose signless Laplacian characteristic
polynomial can be computed by Corollary 5.2.
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