SOME POSETS OF UNICYCLIC GRAPHS BASED ON
SIGNLESS LAPLACIAN COEFFICIENTS
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ABSTRACT. Let G be a graph of order n and let Q(G, z) = det(z] —
Q(B)) = 7 o(—1)i¢:z™~¢ be the characteristic polynomial of the
signless Laplacian matrix of G. We show that the Lollipop graph,
Ln 3, has the maximal Q-coefficients, among all unicyclic graphs of
order n except Cn. Moreover, we determine graphs with minimal
Q-coefficients, among all unicyclic graphs of order n.

1. INTRODUCTION

Throughout this paper we consider simple undirected graphs with n
vertices and m edges. Let G be a graph. The vertex set and the edge
set of G are denoted by V(G) and E(G), respectively. Let A(G) be the
(0, 1)-adjacency matrix of G. Since A(G) is a symmetric matrix with real
entries, its eigenvalues are real. With no loss of generality, we can write
them in non-increasing order as M\ (G) > A(G) 2 ... 2 A(G). The
adjacency characteristic polynomial of the graph G is denoted by Ag(x) =
det(z] — A(G)) = Y1y ai(G)z™ .

A subgraph H of G is called an elementary subgraph if each component
of H is either an edge or a cycle. Denote by ¢(H) and e(H) the number of
components in a subgraph H which are cycles and edges, respectively.

Theorem 1.1. [1] Let G be a graph of order n. Then we have

ak(G) = Z(_l)k—c(H)—e(H)zc(H),
where the summation is over all the elementary subgraphs H of G with k
vertices, k =1,2,...,n.

Note that for the empty graph, i.e. G = Ko, we have Ag(z) = 1. An
r-matching in a graph G is a set of r edges, such that none of them have a
vertex in common, where 7 > 1. The number of r-matchings in G is denoted
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by M(G,r). If G is a tree, then Ag(z) = Y1"/2 (—1)'M (G, i)z™~2. The
following theorem specifies a recurrence relation for M(G, ).

Theorem 1.2. [4] The number of r-matchings satisfies the following iden-
tities:

(}) M(GUH,r)=Y_o M(G,i)M(H,r —1),

(i1) M(G,r) = M(G - e,r) + M(G —u—v,r — 1), if e = uv is an edge
of G,

(#5i) M(G,r) = M(G—v,7)+ ¥ yenpy) M(G—v—u,7-1), ifv € V(G).

Suppose that D(G) = diag(dg(v1),...,dg(vn)) is a diagonal matrix and
and dg(v) denotes the degree of the vertex v in G. Let L(G) = D(G)—-A(G)
be the Laplacian matrix of G. Related to the Laplacian matrix is the so-
called signless Laplacian matrix of G, Q(G) = D(G) + A(G), which has
recently been studied (see e.g. [2]). As it is well-known, L(G) and Q(G)
are positive semi-definite, and they have the same characteristic polynomial
if and only if G is a bipartite graph. The eigenvalues of the matrices
L(G) and Q(G) are denoted by u1(G) > p2(G) > ... 2 ua(G) = 0 and
Vi(G) 2 12(G) = ... 2 vp(G) > 0, respectively. The second smallest
eigenvalue of L(G), pin-1(G), is called the algebraic connectivity of G, and
is positive if and only if the graph is connected.

Furthermore, the Laplacian characteristic polynomial of G is denoted
by Lg(z) = det(z] — L(G)) = Y o(—1)*:z"~*. One may see that the
Laplacian coefficient, £, _k, can be expressed in terms of subtree structures
of G, for k=0,1,...,n (seee.g. [1]). Suppose that F is a spanning forest of
G with components T}, i = 1,2,..., k; having n; vertices each. Let y(F) =

f=1 n;. Then we have the following result of Kelmans and Chelnokov.

Theorem 1.3. (1] The Laplacian coefficient &, of a graph G is given by
En—k = Z 'Y(F),

Feg
where §. is the set of all spanning forests of G with exactly k components.

In particular, we have & = 1, & = 2m, &, = 0, and &, = n7(G), in
which 7(G) denotes the number of spanning trees of G (see, e.g. [13]).

The characteristic polynomial of the signless Laplacian matrix of G is
denoted by Q¢ (z) = det(z] — Q(G)) = Y (~1)*¢;z™*. Using the termi-
nology and notation from [2], a spanning subgraph of G whose connected
components are trees or odd unicyclic graphs is called a TU-subgraph of
G. Suppose that a TU-subgraph H of G contains ¢ odd unicyclic graphs
and s trees such as T4,...,T. Then the weight of H, W(H), is defined by
W(H) = 4°T];_, ni, in which n; is the number of the vertices of T;. Note
that if H contains no tree, then W(H) = 4°. According to the following
theorem, ¢; can be expressed in terms of the weight of TU-subgraphs of G.
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Theorem 1.4. {2, Theorem 4.4] Let G be a connected graph. For (; as
above, we have (o = 1 and

G=Y WH), i=1...,n
Hi

where the summation is over all TU -subgraphs H; of G with i edges.

In particular, we have (see, e.g. [2]) ¢o =1, {1 = 2m, and
1 n
—9m2 _m— = 2
(1) (2=2m"—m 2 ,-§=1 d;.

Also, it is easy to check that for trees we have (see e.g. [19])
G(T) = &(T) = M(S(T),1), for i=0,1,...,n.
The following relations are well-known (see e.g. [2])
() I(G)I(G) =Q(G), I(G)'I(G)= AL(G)) + 2Im,
where £(G) is the line graph of G. Since non-zero eigenvalues of I(G)I(G)*
and I(G)tI(G) are identical, Equation (2) implies that
(3) Ag)(z) =(z+2)""Qc(z +2).

The subdivision graph of G, S(G), is the graph obtained by inserting an
additional vertex in each edge of G (see, e.g. [1]). So that, its adjacency
matrix is of the form

[ 0 IG) ]

Gt o
Hence, by (12, Theorem 1], the adjacency eigenvalues of S(G) are +1/v;(G),

and so we have
(4) AS(G)(:L‘) = x’”‘"QG (xz).

The path, the cycle, and the star on n vertices are denoted by Py, Ch,
and S,, respectively. If e € E(G), then G — e denotes the subgraph of G
with vertex set V(G) and edge set E(G) \ {e}. Also if v € V(G), then the
graph G — v is an induced subgraph of G, obtained from G by deleting the
vertex v and all edges incident with it. In addition, a vertex of degree one
is called a pendent vertex and a vertex is said to be quasipendent if it is
incident to a pendent vertex. For any v € V(G), let Ng(v) denote the set
of all vertices adjacent to v.

In analogy to the following result (Theorem 1.5), in the article {7}, Gut-
man et al. gave a conjecture for Laplacian coefficients, &;, of trees. More
precisely, they conjectured that &;(Sn) < &(T) < &(P,) where T is a tree
on n vertices, for each i (1 <i < n).

Theorem 1.5. [5, Proposition 3.2] Among trees with n vertices, Pn has
mazimal adjacency coefficients.
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Using connection between &; and the number of i-matchings of the sub-
division graph of trees, Zhou et al. proved this conjecture [19]. After that,
in [18)], it was shown that all Laplacian coefficients of trees are monotone
under two transformations called 7 and 0. As a result, a different proof for
the above conjecture was presented. Stevanovié et al. in the article [17],
generalizing the approach of Mohar on graph transformations [15], showed
that the extreme values of the Laplacian coefficients &; (1 < ¢ < n), among
all connected unicyclic graphs of order n, are attained on one side by C,
and on the other side by S;f, where S; denotes the graph consisting of a
star and an additional edge.

In the present paper, using graph transformations, we state some re-
sults about coefficients of the signless Laplacian characteristic polynomial
of graphs, focusing our attention on the unicyclic graphs. As a main result,
the above problem is studied for coefficients of the signless Laplacian char-
acteristic polynomial. More precisely, let G be a unicyclic graph of order
n and G & Cy, it is shown that, for 0 < i < n, ;(G) < {i(Ln,3), in which
Ly,p is the lollipop graph, obtained by attaching a cycle Cp to a pendent
vertex of the path P,_,. However, one may check that the Q-coefficients
of the graphs C,, and L, 3 are not comparable. Moreover, it is shown that
Gi(G) 2 ¢:(S}F), if n is odd, otherwise ¢;(G) > (i(Rn), where R,, is Cy with
n — 4 pendent vertices attached to one of whose vertices and 0 < i < n.
Finally, we order unicyclic graphs based on their incidence energy.

2. MAIN RESULTS

Connected graphs in which the number of edges equals the number of
vertices are called unicyclic graphs. Therefore, a unicyclic graph is either
a cycle or a cycle with trees attached. A unicyclic graph containing an
odd cycle (even cycle) is called odd unicyclic (even unicyclic). Let HUng
be the set of all unicyclic graphs on n vertices with girth g. If U € Un g,
then U consists of the cycle C of length g and a certain number of trees
attached to the vertices of C' having in total n — g edges. Suppose that the
vertices of the cycle C are labeled by vy,...,v, such that v; comes after
v;—1. Furthermore, assume that T is a rooted tree of order n; > 1 attached
to v;. Then we denote U by C(Ty,...,T,) (see Fig. 1). Now, we have the
following corollaries.

Corollary 2.1. [14, Corollary 2.9] Let H = G(T1,...,T,). Then for each
1<k <n we have

Ci(G(Tl) ety Smk) s aTn)) S C%(H) S Ci(G(Th e aTk—la Pmk,Tk-i-lr R 1Tn))1

where 0 < ¢ < n; Moreover, both extremal graphs are unique.

Corollary 2.2. {14, Corollary 3.1} Let U € i, 4. Then we have
CH(C(Snyr--+5n,)) S GU) < G(C(Pay.., Pay)),
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fori=0,1,...,n. Moreover, both extremal graphs are unigue.

Fig. 1. The graph C(S3, Sl, Sl)

Definition 2.3. Let G be a connected graph and let e = uv be a non-
pendent edge of G not contained in cycles of length 3. Let G' = 7(G,u,v)
denote the graph obtained from G in the following way:

(1) Delete the edge e;

(2) Identify u and v, and denote the new vertez by w;

(3) Add a pendent edge ww' to w;
We say G’ is a 7-Transformation of G at uv.

Theorem 2.4. [17, Theorem 3.2] Let G = C(Sy,, Sn,, T3,...,Ty) and let
G’ = 7(G,v1,v2) be a T—transformation of a unicyclic graph G. For every
0 < i < n holds £(G") < &(G), with equality if and only if i € {0,1,n}.
Theorem 2.5. [18, Theorem 2.2] Let G be a connected graph and e = uv
be a non-pendent edge of G not contained in cycles of length 3. Then
£:(G) > &(T(G,u,v)), fori =0,1,...,n; with equality if and only if i €
{0,1,n — 1,n} when e is a cut edge or i € {0,1,n} otherwise.

It is worth mentioning that the previous theorem does not hold for co-
efficients of the signless Laplacian characteristic polynomial (see Fig. 2).
It is easy to check that Qg(x) = z° — 10z* + 3423 — 4622 + 20z, and
Qo (x) = x5 — 10z* + 3223 — 4222 + 23z — 4, where G and G’ are shown
in Fig. 2.

T L <Z

Fig. 2. T-transformation
We want to generalize the above theorem to the case of Q-coefficient of
unicyclic graphs as you see in the following.

Theorem 2.6. [14] Let G be o graph of order n and size m, then the first
derivative of the signless Laplacian characteristic polynomial of G is equal

to
2Q5() = (n~m)Qa(@) + D Qo-e(®).

e€cE(G)
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Consequently, for each 1 < ¢ < n one may obtain

(5) (m-i¢(G) = Y G(G-e)
e€E(G)

Remark 2.7. Let G be a graph of order n. It is easy to check that if n
is an even (resp. odd) number, then all non-zero coefficients of the poly-
nomial Qg(—z) are positive (resp. negative). Hence, if we want to show
that a transformation does not decrease the amount of all coefficients, it is
enough to prove that for even (resp. odd) n, all non-zero coefficients of the
polynomial Q¢/(—x) — Qe(—=z) are greater (resp. less) than zero.

Example 2.8. Let G = C,, and G’ be the graph shown in the below figure,
where n > 5. We want to show that (;(G) > (i(G'), for 1 < i< n.

GI

Cn-2

Fig. 3. The graph G’

Obviously, we have (1(G) = ¢1(G’) = 2n and (.(G) = (u(G') =4, ifn
is odd, otherwise (,(G) = (x(G’) = 0. Also, by Theorem 1.4, (,_1(G) =
n? > (n—1(G’) = 84-n(n—2), whenn > 5. So that it is enough to show that
for 2 <i < n—2 the claim holds. Using Equation 4, we equivalently show
that for 2 < i < n-2, a2i(S(G)) = a2:(S(G")). Lete =uv € E(S(G)), and
let ¢’ = u'v’ be an edge on the cycle in the graph S(G') which is incident
with a vertex of degree 4. Applying Theorem 1.2, one may see that

(—1)'a2:(S(G)) M(S(G) —e,i) + M(S(G) —u—v,i - 1)
M(P2n,i) + M(P2n-217: - 1),

(-D'oa(S(G)) = M(S(G') - €i) + M(S(C') —' — i~ 1).

On the other hand, by Theorem 1.5, we have M (S(G')—¢€,1) < M(S(G) —
e,i). Also, one may check that the graph S(G') —u’' —v' = 2P,UPsy_¢ and
S(G)—~u—v = Pon_3. So, the graph S(G') —u’' —v' is a spanning subgraph
of $(G)-u—v, and hence M(S(G')—u'—v',i—1) < M(S(G)—u—v,i—1).
Therefore the claim is proved.

Theorem 2.9. Let G = C(Sn,,Sn;,Sn:,T4y...,T,) be a unicyclic graph
on n vertices with girth g, and G’ = 7(7(G, v1,v2), v2, v3) be a T—transform-
ation of the unicyclic graph 7(G,v1,v2), and g > 5. Then (:i(G) 2 (:(G'),
for each0 <i<n.
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GI

Y4 Y

Vg-1 n3

Fig. 4. The graphs G and G’

Proof. Let G be an even unicyclic graph. Since, in this case, two matrices
L(G) and Q(G) are similar, the result follows from Theorem 2.4. So, sup-
pose that G is an odd unicyclic graph. Because the graph G’ is also an odd
unicyclic graph, the signless Laplacian coefficients {o(G’) = 1, (1(G’) = 2n,
and {,(G’) = 4 remain the same.

Let A(z) = 2Qf(x) — Qg (). According to Equation (5), we obtain

A(z) = zQp(z) —2Q% (2)
n-1
- Z(—l)i(n —i)(&G(G) = ¢G(G" )z

i=0
= Y Qo-el®)- ) Qo-e()
e€E(G) e'eE(G)

We must show that all non-zero coefficients of the polynomial A(-z),
for even (resp. odd) n are positive (resp. negative). Equivalently, we prove
that all non-zero coefficients of the polynomial Qg-e(—z) — Q¢r—e'(—Z)
for even (resp. odd) n are positive (resp. negative), where e € E(G) and
€’ is the corresponding edge in G, i.e.

e=vwy «— € =uvvs,
e=vv, «— € =uv3v,,
e=vw +— € =vw, Ywe N(v1)\ {ve,vg};
e=vw +— € =uvw, Ywe N(v)\ {v,vs};

and e = ¢’ for the other edges. Furthermore, this correspondence is an
injection.

By induction on n, we prove this claim. By Example 2.8, one may see
that for n = g the assertion holds. So, suppose that n > g + 1. Thus, the
following cases occur:

Case i: If e ¢ {v1v2, v2us}, then let € is whose corresponding edge in
G'. If e is contained in the cycle, then G—e is a tree, so that by Theorem 2.5
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we are done. Otherwise, the unicyclic connected component of the graph
G — e is of order less than n. Then, by induction hypothesis, all non-zero
coefficients of the polynomial Qg—_e(—z)— Qg —e(—z), for even (resp. odd)
n are positive (resp. negative).

Case ii: If e = v,v2, then whose corresponding edge is ' = viv3 €
E(G’). In this case, in a straightforward manner, we show that (;(G —e) >
Gi(G' —¢), for 2 < i <n—1. Let w(G,e) be the set of all TU-subgraphs
of G — e with i edges and let w(G',e’) be the set of all TU-subgraphs of
G’ — ¢’ with i edges. Consider H' € w(G',¢'). If € = vavy, ¢ E(H'), then
the following hold:

o If vouz € E(H'). Suppose that H' has the tree component T, such that
T contains the vertices vo, v3, and a > 0 pendent vertices in Ng(v;). Let
¢ = |V(T)| — e, where ¢ > 2. Moreover, H’ contains an isolated vertex v;.
Therefore, W(H') = (a+c)N, for some constant value N. Let H € w(G, e)
obtained from H’ by removing a edges incident with pendent vertices in

(V(T)ONG (v )) \{v2} and joining them to the vertex v, and also removing

the edges incident with pendent vertices in (V(T) n NG(‘Uz)) \ {vs}, and

joining them to v;. One may check that W(H) = (a + 1)eN > W(H').
Moreover, this correspondence is obviously an injection.

o If vous ¢ E(H'). Suppose that H' has tree component T, such that T
contains the vertex vs, a > 0 pendent vertices in Ng(v,), and b > 0 pendent
vertices in Ng(v2). Let ¢ = |V(T)| — a — b, where ¢ > 1. Moreover, H’
contains two isolated vertices vy and va. Therefore, W(H’) = (a+b+c)N,
for some constant value N. Let H € w(G, e) obtained from H’ by removing
a edges incident with pendent vertices in V(T') N Ng(v;) and joining them
to the vertex vy, and also removing b edges incident with pendent vertices
in V(T) N Ng(v2), and joining them to vy. One may check that W(H) =
(e +1)(b+1)eN > W(H'). Moreover, this correspondence is obviously an
injection.

So, assume that € = v3v, € E(H'), then the following occur:

(1) Let U be the an odd unicyclic component of H’ which contains
the edges € and vovs. Moreover, H' contains an isolated vertex v;. So,
W(H') = 4N, for some constant value N. Suppose that H € w(G,e) ob-
tained from H' by removing the edges of pendent vertices u and w adjacent
to vs where u € Ng(v1) and w € Ng(v2), and joining them to v; and vs,
respectively, and also removing the edge vav, and adding the edge vyvy. It
is easy to check that, W(H) = (|[V(U)|+1)N > 4N = W(H’), because the
girth of U is greater than or equal to 3, so that {V(U)| +1 > 4. Moreover,
this correspondence is obviously an injection.
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(2) Let U be the an odd unicyclic component of H' which contains the
edge € and a > 0 pendent vertices adjacent to vy in the graph G. Also,
suppose that vovs ¢ E(H'). Therefore, H' contains two isolated vertices
vy and vo. So, W(H') = 4N, for some constant value N. Suppose that
H € w(G, e) obtained from H’ by removing the edges of pendent vertices u
and w adjacent to vz where u € Ng(v1) and w € Ng(v2), and joining them
to v; and vy, respectively, and also removing the edge v3v, and adding the
edge v1v,. It is easy to check that, W(H) = ([V(U)| —ae+1)(a+1)N >
4N = W(H'), because the girth of U is greater than or equal to 3, thus
[V(U)|—a+1 > 4. Moreover, this correspondence is obviously an injection.

(8) Let T be the tree component of H’ which contains the edges € and
vovs. Suppose that T contains a > 0 pendent vertices in Ng(v1). Also, H ’
contains an isolated vertex v;. Obviously, by removing the edge € from T,
two subtrees of order ¢ and d + a are obtained, where ¢ > 1 and d > 2.
So, W(H') = (a + ¢ + d)N, for some constant value N. Suppose that
H € w(G, e) obtained from H’ by removing the edges of pendent vertices u
and w adjacent to v3 where u € Ng(v1) and w € Ng(vz), and joining them
to v; and vy, respectively, and also removing the edge v3vy and adding the
edge v1v,. It is easy to check that, W(H) = (a+c+1)dN > W(H’), where
¢>1 and d > 2. Moreover, this correspondence is obviously an injection.

(4) Let T be the tree component of H' which contains the edges € and
vgvs ¢ E(T). Suppose that T contains ¢ > 0 and b > 0 pendent vertices,
which are adjacent to v; and v, in the graph G, respectively. Moreover,
H’ contains two isolated vertices v; and vo. Obviously, by removing the
edge € from T, two subtrees of order ¢ and d + a + b are obtained, where
c,d > 1. So, W(H') = (a+b+c+d)N, for some constant value N. Suppose
that H € w(G, e) obtained from H' by removing pendent vertices u and w
adjacent to vz where u € Ng(v1) and w € Ng(v2), and joining them to v;
and vs, respectively, and also removing the edge v3v, and adding the edge
v1vg. It is easy to check that, W(H) = (a +c+1)(b+ 1)dN > W(H'),
where ¢,d > 1. Moreover, this correspondence is obviously an injection.

Case iii: If e = vpv3 = €'. In this case, in a straightforward manner, we
show that (;(G—e) > ¢:(G'—¢'), for 2 < i < n—1. Consider H' € w(G,e).

If € = v3ugy ¢ E(H'), then the following hold:

o If vju3 € E(H'). Suppose that H' has tree component T, such that
T contains the vertices vy, v3, and a > 0 pendent vertices in Ng(v) and
b > 0 pendent vertices in Ng(vz). Let ¢ = |V(T)| —a — b — 1, where
¢ > 1 because of vz € V(T'). Moreover, H’' contains an isolated vertex vz.
Therefore, W(H') = (a + b+ 1 + ¢)N, for some constant value N. Let
H € w(G,e) obtained from H' by removing a edges incident with pendent
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vertices in V(T')NNg(v;) and joining them to the vertex vy, and removing b
edges incident with pendent vertices in (V(T)ﬂNG(vg)) \{»1}, and joining
them to vz, and also removing the edge v1v3 and adding the edge vyv2. One

may check that W(H) = (a+b+2)cN > (a+b+1+c)N = W(H’), because
of ¢ > 1. Moreover, this correspondence is obviously an injection.

o If vyus ¢ E(H'). Suppose that H' has tree component T, such that T
contains the vertex v3, and a > 0 pendent vertices in Ng(v1), and b > 0
pendent vertices in Ng(vg). Let ¢ = |V(T)| —a—b, where ¢ > 1. Moreover,
H’ contains two isolated vertices v; and v. Therefore, W(H') = (a +
b+ ¢)N, for some constant value N. Let H € w(G,e) obtained from H’
by removing a edges incident with pendent vertices in V/(T') N Ng(v;) and
joining them to the vertex v;, and also removing b edges incident with
pendent vertices in V(T') N Ng(vz2), and joining them to vz. One may check
that W(H) = (a + 1)(b+ 1)eN > W(H'). Moreover, this correspondence
is obviously an injection.

So, suppose that € € E(H’), then the following occur:

(1) Let U be an odd unicyclic component of H’ which contains the edges
€ and v v3. Furthermore, H' contains an isolated vertex vz. So, W(H') =
4N, for some constant value N. Suppose that H € w(G, €) obtained from
H' by removing the edges of pendent vertices u and w adjacent to vz where
u € Ng(v;) and w € Ng(v2), and joining them to v; and v, respectively,
and also removing the edges v,v3 and v3v, and adding the edges v v2 and
v1Yg. It is easy to check that, W(H) = (JV(U)|+1)N > W(H’). Moreover,
this correspondence is obviously an injection.

(2) Let U be the an odd unicyclic component of H' which contains the
edge € and a > 0 pendent vertices adjacent to v, in the graph G. Also,
suppose that vivs ¢ E(H'). Therefore, H' contains two isolated vertices
v1 and vo. Obviously, W(H’) = 4N, for some constant value N. Suppose
that H € w(G,e) obtained from H’ by removing the edges of pendent
vertices u and w adjacent to vz where u € Ng(v1) and w € Ng(vq), and
joining them to v; and vz, respectively, and also removing the edge v3v,
and adding the edge v v,. Let ¢ = |V/(U)| — a. It is easy to check that,
W(H) = (c+ 1)(e + 1)N > 4N = W(H'), because the girth of U is
greater than or equal to 3, so that |V(U)| —a = ¢ > 3. Moreover, this
correspondence is obviously an injection.

(3) Let T be the tree component of H’ which contains the edges € and
v1v3. Suppose that T contains a > 0 pendent vertices Ng(v2). Moreover,
H’ contains an isolated vertex va. Obviously, by removing the edges €
from T, two subtrees of order ¢ and d + a are obtained, where ¢ > 1 and
d > 2. So, W(H') = (a + ¢+ d)N, for some constant value N. Suppose
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that H € w(G,e) obtained from H’ by removing the edges of pendent
vertices u and w adjacent to v where u € Ng(v1) and w € Ng(vz), and
joining them to v; and v, respectively, and also removing the edges v;v3
and v3v, and adding the edges v1v; and v1v,. It is easy to check that,
W(H) = (a +c+ 1)dN > W(H'), where ¢ > 1 and d > 2. Moreover, this
correspondence is obviously an injection.

(4) Let T be the tree component of H’ which contains the edges &
and vjvs ¢ E(T). Suppose that T contains a > 0 and b > 0 pendent
vertices which are adjacent to v; and v in the graph G, respectively. Also,
H’ contains two isolated vertex v; and ve. Obviously, by removing the
edge € from T, two subtrees of order c and d + a + b are obtained. So,
W(H') = (a + b+ c + d)N, for some constant value N. Suppose that
H € w(G, e) obtained from H’ by removing the edges of pendent vertices
and w adjacent to v3 where u € Ng(v;1) and w € Ng(vz), and joining them
to v1 and va, respectively, and also removing the edge v3v, and adding the
edge v1,. It is easy to check that, W(H') < W(H) = (a+1)(b+c+1)dN,
where ¢,d > 1. Moreover, this correspondence is obviously an injection.

Hence, in all cases it is proved that all non-zero coefficients of the poly-
nomial A(—z) for even (resp. odd) n are positive (resp. negative), and this
completes the proof. a

Lemma 2.10. Let G = C(Sn,,Sns,---,Sn,) be a unicyclic graph on n
vertices with girth g, and &' = C(Sn—g+1,51,-..,51), where Y ;_, n; = n,
and n; > 1. Then ;(G') < G(G), for0<i< n.

Proof. Let H = S(G) and H' = S(G’). We claim that M(H,r) > M(H',r),
for 1 <7 < [3]. We prove this by induction on n. Let n = g + 2, and let
H be the graph shown in the below figure.

H H _@---
Ul
ul
ng V1 = ng v

Fig. 5. The graphs H and H'

By Theorem 1.2, we have
M(H,r) = M(H—Ulul,r)+M(H—'vl—ul,r—l),
M(H’,T) = M(H,_vlul,r)‘*‘M(H’—’Ul—ul,‘l‘—l).
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Obviously, H —vjuy = H' —vyuy, then M(H —vyuy,7) = M(H' —vjuy,7).
Moreover, the graph H’ — v; — u, is a proper spanning subgraph of H —
vy —uy, then M(H' —v; —uy,r—1) < M(H — vy —uy,7 — 1). So suppose
that n > g + 3. Let v € V(H) be a cycle vertex of degree greater than 2,
and u € V(H) be the quasipendent neighbor of v and «/,v' € V(H') be the
corresponding vertices. Applying Theorem 1.2 to the edges uv and u'v/,
we obtain

MH7r) = MH-uw,r)+MH-u—v,r-1),

MH',ry = MMH -vv', ")+ MH —u -, r-1).
Clearly, H' — u’' — v’ is the proper spanning subgraph of H — « — v and
so M(H' — v —v',r —1) £ M(H —u —v,r — 1). On the other hand, by
induction hypothesis, we have M(H' — u'v',r) < M(H — uv, 7). Thus, the
claim is proved.

Next, to prove lemma, let A;(G) be the set of all elementary subgraphs
of §(G) with 2i vertices which have cycle component. Consequently, The-
orem 1.1 follows that

ax(S(G)) = (-1)'M(S@G),)+ D (-1)*'2
LeA(G)
= (-1)'M(S(G),i) + (-1)"*9712{Ai(G)|.

a2:(S(G")) = (~1)'M(S(C"),3) + Z (=1)i+s-1g
’ Leay(G")

= (-1)'M(S(G"), i) + (-1)*9712|A4(G")].

Obviously, we have |A;(G)| = |A;(G")|. Also, according to the claim
M(S8(G),i) > M(S(G'),%). Therefore, Equation (4) implies that ;(G) =
la2:(S(G))| 2 ¢:i(G') = |a2:(S(G"))|. So, we are done. 0

Corollary 2.11. Let U € U, 4. Then for 0 <i < n we have

(9) If g is an odd number, then ¢;(U) > ¢:i(S);

(#) If g is an even number, then (;(U) > (;(R,), where R, is C,; with
n — 4 pendent vertices attached to one of whose vertices.

Proof. This is an immediate result of Corollary 2.2 and Theorem 2.9 and
the previous lemma. O

Furthermore, one may check that the Q-coefficients of two graphs S; and
R,,, in the previous corollary are not comparable, for n < 6 see Appendix.
More precisely, it is easy to see that ,(S}) = 4 > (x(R.) = 0. On the
other hand, 377, d%, (vi) =n?—n+6and also 37, d} (vi) = n?—3n+12.
Thus, by Equation 1, we have (2(S;}) < (2(R,), for n > 4.
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Now, let G = C(Py,, T3, ...,T,), and w € V(Fy,), such that degew = 1.
Let G’ = v(G,v;) be a graph obtained from G by removing the edge vyv
and adding the edge wvy. For the definition and other properties of the
+y-transformation, the reader is referred to [17].

Theorem 2.12. [17, Theorem 3.1) Let G = C(P,,,Ts,...,Ty) and G' =
¥(G,v1) be a y-transformation of a connected unicyclic graph G. For every
0 < i < n holds &(G) < &(G"), with equality if and only if i € {0,1,n}.

m w

< 2 o]
v2

Fig. 6.

In addition, the previous theorem does not hold for the coefficients of
the signless Laplacian characteristic polynomial. As we see in Fig. 6, one
may check that Qg(z) = z® — 10z* + 342® — 482% + 27z — 4 and Qg (z) =
z5 — 10z + 3523 — 5022 + 25z — 4.

Next, we want to obtain an upper bound for the signless Laplacian coef-
ficients of unicyclic graphs. Here, we recall some definitions and theorems

from the literature.

Let C(n, g) be the set of all unicyclic graphs obtained from C, by adding
to it n — g pendent vertices. The following lemmas hold for adjacency
coefficients of unicyclic graphs.

Lemma 2.13. {11, Lemma 2.4] Let G € A, ; where g £0 (mod 4). Then
|ai(G)| € |ai(Lng)|, fori=1,2,...,n.

Lemma 2.14. [11, Lemma 2.5] Let G € i, 4 \ C(n,g), where g =0 (mod
4). Then |ai(G)| < |ai(Lng)|, fori=1,2,...,n.

Lemma 2.15. [11, Lemma 3.6] Let g be an even number, where n > g and
g 2 8. Then |ai(Lny)| < |ai(Lng)|, fori=1,2,...,n.

Lemma 2.16. [11, Lemma 3.7] Let G € C(n,g) and g be even (g > 8).
Then |ai(G)| < |ai(Lng)l, fori=1,2,...,n.

Accordingly, we have the following corollary.

Corollary 2.17. Let U € Up g, n 2 6, and U ¥ C,. Then Gi(U) <
Ci(Ln3), fori=1,2,...,n.

Proof. For any U € il,, 4, one may see that S(U) € Uzn, 2. So, by Equa-
tion (4), we have

(i(U) = |a2,-(S(U))|, forl1<i<n.
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Hence, we consider the adjacency coefficients of S(U). Applying Lem-
mas 2.13, 2.14, 2.15, and 2.16, one may obtain that |a:(S(U))| < |a2i(L2n,6)|-
This completes the proof. a

3. AN APPLICATION

The energy of a graph, £(G), is defined as the sum of the absolute value
of its eigenvalues. This concept was introduced by Gutman in [6).

Let A be an n by m matrix with real entries. The singular values of the
matrix A are the square root of the eigenvalues of AA*, where A* is the
transpose of A. If A is a symmetric matrix, then its singular values are
the absolute value of its eigenvalues. So, the energy of a graph G is indeed
the sum of the singular values of its adjacency matrix [16]. Nikiforov in
[16] has extended the concept of graph energy for arbitrary matrices. More
precisely, for any n x m matrix A, the energy of A is defined as the sum of
its singular values.

Let 01(G),...,0n(G) be the singular values of the incidence matrix
of the graph G. By Equation (2), it is easy to obtain that 0;(G) =
v/ Vi(G). Hence, the incidence energy is defined as ZZ(G) = }_._, 0i(G) =
o1 VVi(G) (see [8, 9, 12]). Furthermore, the following theorem holds for
the incidence energy of graphs.

Theorem 3.1. [12] Let G be a graph, then ZE(G) = &N,

Also the kth elementary symmetric function of the n real numbers
T1,%2,...,Zn, k < n, is defined as

Si(z1,...,20) = > I] .

SC{l,..n},|S|=k i€S
One may see that

Qa(z) = 2" =811y )™ 1 + So(vy, ..., un)z" 2
— .8, 0m).
So, we have S;(v1,...,vn) = (. For other properties of elementary sym-
metric functions, the reader is referred to [1]. We write (z1,...,2,) =
(y1y.- -2 ¥n) if Sk(z1,...,Zn) < Sk(¥1,.-.,Yn), for 1 < k < n, where
1,22, ..y Zn, Y¥1,Y2, ..., Yn are real numbers. Efroymson, Swartz, and

Wendroff proved the following theorem.
Theorem 3.2. [3] If (z1,...,Zn) 2 (¥1,.--,¥n), then 3 2F <30, v8,
forany0<a<l.

As a trivial consequence of the Theorem 3.2, we have the following The-
orem.

Theorem 3.3. Let G and G’ be two graphs of order n. If {;(G) < G:(G'),
for 0 < i < n; then ZE(G) < ZE(G').
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So, the following corollaries hold.
Corollary 3.4. Let U = C(Th,...,T,). Then we have
E(C(T1,---,Sniy- -, Tg)) STEWU) < TE(C(Th, - - -, Tic1y Payy Tigry - - - Tg))s
fori=0,1,...,n. Moreover, both extremal graphs are unique.
Proof. Using Corollary 2.1, the result follows. O
Corollary 3.5. Let U = C(Ty,...,T,). Then

TE(C(Sny, ...+ 5n,)) STEWU) S IE(C(Pryy- - -+ Pny))-

Moreover, both extremal graphs are unique.
Proof. Using Corollary 2.2, the result follows. a

Theorem 3.6. [10, Thoerem 1.3] For n = 8,12,14; and n > 16, £(Ln,6) >
£(Cy).

Corollary 3.7. Let U be a unicyclic graph of order n > 4. Then ZE(U) <
ZE(Cy), if n =15, otherwise TE(U) < I€(Ln 3)-

Proof. First, one may check that £(C1o) =~ 12.9443 and £(L0,6) =~ 12.9321.
So, by Theorem 3.1, we find that ZE(Ls3) < ZE(Cs). Next, for n # 5, by
Theorems 3.6 and 3.1, we obtain that ZE(L, 3) > Z£(C,). On the other
hand, using Corollary 2.17 and Theorem 3.3, we conclude that ZE(U) <
ZE(Ln 3), if U # C,. This completes the proof. O

Corollary 3.8. Let U € Uy, 4. Then ZE(U) > TE(S;}), where g is an odd
number, and ZE(U) > TE(R,), in which Ry, is Cy with n—4 pendent vertices
attached to one of whose vertices.

Proof. This is an immediate consequence of Theorem 3.3 and Corollary 2.11.
O

APPENDIX

We compute the signless Laplacian characteristic polynomial of unicyclic
graphs of order up to 6.

s ke ok ok ke ok ok ok ok ok ke o ok o o o e ok sk ok sk ok sk skok s sk ok ok ok sk ok ek sk ke sk ok sk ok ok ok ok sk sk ok ok ok koo skkokok ok

n=4
sk k¢ o o 3k ke 3 3K ok sk 3k 3k 3 o ok 3k ok 3k ke e sk ok ok sk e e e e ok ok e o o o ok sk sk ok ok sk ok e ok e ke ok ok ke ok kol sk ek e keok ok b

A1

385



1) z* — 8z + 1922 — 16z + 4
2) z* — 823 4 2022 — 162
AR KA RAAAA AR AR KA K FAAKF AR K RAAA KA KKK AA KA KA AR A KA A KA K

n=>5
skt ok ok ko ook o ok ok ok ok ok ook ok ok ok ok ok sk ok ok ook o ok ok sk ok ok ok ook sk ok sk ok ok ko ok ok ok ok

X A I ALY

1 2 3 4 5

1) z° — 10z* + 322° — 4222 + 23z — 4
2) z5 — 10z* 4 332% — 4422 4+ 23z — 4
3) z° — 10z* + 342 — 462% + 20z

4) z° — 10z* + 342> — 4822 + 27z — 4
5) z® — 10z* 4 352> — 5022 + 25z — 4

ok sk ok sk ok ke ke ok ok e o o ke e s o sk e e e ok st ok sk sk sk sk sk e sk sk e s s ke ok ke sk sk sk sk e s e e ke ke ke sk oke ke sk skeok ko sk ok ok

n==6
ok 3k sk ok ok o s 2k sk 3 s sk 3k 3 ok ok >k ok ok ok K 3k ok ok sk 3K ok ok K 5k ok 2K oK 3k 2k 3k 2K ok 3k 5k oK ok ok 3K 3K 9k ok 3 3 ok sk ok ok ok ok ke ok sk ok

X X. ar oa.

Al A A 10
11 {2

1) 28 — 1225 + 482 — 862> + 7522 — 30z + 4
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2) z° — 122° + 50x* — 922° 4 79z° — 30z + 4
3) 8 — 122° 4 51z% — 962° 4 802? — 2=

4) z° — 1225 + 52z% — 100z + 8422 - 24x

5) % — 122° + 51z° — 98z° 4 882% — 34z + 4
6) 8 — 122° 4 5274 — 1022° + 9522 — 38z + 4
7) 8 — 122% + 52z* — 1022> + 9222 — 34z + 4
8) z° — 12¢° + 53z% — 1082° + 104z% — 42z + 4
9) 2% — 122° + 53z¢ — 1062> + 9222 — 24z

10) z° — 122° 4 53z¢ — 1062° + 952% — 34z +4
11) z° — 122° + 51z* — 962° + 81z° — 30z + 4
12) z% — 122° 4 5224 — 1002° + 83z% — 24z

13) z° — 122% + 54z — 1122° + 1052° — 36z
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