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ABSTRACT. In this paper we define and study the Gaussian Fibonacci
and Gaussian Lucas p—numbers. We give generating functions, Bi-
net formulas, explicit formulas, matrix representations and sums of
Gaussian Fibonacci p—numbers by matrix methods . For p = 1 these
Gaussian Fibonacci and Gaussian Lucas p—~numbers reduce to the
Gaussian Fibonacci and the Gaussian Lucas numbers.

1. INTRODUCTION

A. F. Horadam [17] introduced the concept of the complex Fibonacci
numbers and established some quite general identities concerning them.
J. R. Jordan [19] extended some relationships which are known for the
usual Fibonacci sequences to the Gaussian Fibonacci and Gaussian Lucas
sequences.

The Gaussian Fibonacci sequence in [19] is defined as GFy =i, GFy = 1
and GF, = GF,_1 + GF,—5 for n > 1. One can see that

GF, = Fp +1iF,_, (1.1)

where F, is the usual nth Fibonacci number.

The Gaussian Lucas sequence in [19] is defined in a way similar to
Gaussian Fibonacci sequence as GLg = 2 — 4, GL; = 1 + 2i, and GL, =
GLp1 + GL,_5 for n > 1. Also it can be seen that

GLy = Ly +iLn_ (1.2)

where L,, is the usual nth Lucas number.

There are many important generalizations of Fibonacci and Lucas num-
bers. The generalized Fibonacci and Lucas p—numbers [41] are examples
of them and are defined by:

Fp,n = Lpn-1 + F n—p—1 (13)
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with initial conditions F,o =0 and F,,, =1,n=1,2,...,p, and
Lp,n = Lp,n—l +L n—p=1 (1'4)

with initial conditions L,o = p+1and L,, =1, n = 1,2,...,p where
p=0,1,2,... and n =0, 1, +2, 33,...

The complex Fibonacci numbers and Gaussian Fibonacci numbers are
studied by some other authors [3, 14, 18]. The complex Fibonacci polyno-
mials were defined and studied in [16] by Horadam. Harman [14] give a
new approach toward the extension of Fibonacci numbers into the complex
plane. Before this study there were two different methods for defining such
numbers studied by Horadam [17] and Berzsenyi [3]. Harman [14] gener-
alized both of the methods. In [5, 6, 9, 11, 26] theories of the generalized
Fibonacci and Lucas polynomials are developed. Yu and Liang [45] derive
some identities involving the partial derivative sequences of the bivariate Fi-
bonacci polynomials F,(z,y) and the bivariate Lucas polynomials L, (z, y).
Djordjevic [7, 8] considered the generating functions, explicit formulas and
partial derivative sequences of the generalized Fibonacci and Lucas poly-
nomials. Good [12] points out that the square root of the Golden Ratio
is the real part of a simple periodic continued fraction but using (com-
plex) Gaussian integers a + ib instead of the natural integers. For more
information one can see (4, 10, 11, 13, 15, 18, 22, 27, 28, 42, 44, 46].

Asci and Gurel in [1] defined bivariate Gaussian Fibonacci and Gaussian
Lucas polynomials and extended some relationships which are known for
the usual Fibonacci sequence, polynomials and bivariate polynomials to the
bivariate Gaussian Fibonacci polynomials. Also the authors in [2] define
the Gaussian Jacobsthal and Gaussian Jacobsthal Lucas numbers. They
give generating functions, Binet formulas, explicit formulas and Q matrix
of these numbers. They also present explicit combinatorial and determi-
nantal expressions, study negatively subscripted numbers and give various
identities. Similar to the Jacobsthal and Jacobsthal Lucas numbers they
give some interesting results for the Gaussian Jacobsthal and Gaussian
Jacobsthal Lucas numbers

Stakhov and Rozin in [31] established theory of Binet formulas for Fi-
bonacci and Lucas p—numbers. Stakhov [30, 35] generalized Fibonacci
@ —matrix, Fibonacci matrices, and the “Cassini formula”. Also Stakhov
in {29, 32, 33, 34, 36, 37, 38, 39, 40] introduced algorithmic measurement
theory and generalized principle of the golden section. Tuglu et al. in
[21, 43] study the bivariate Fibonacci and Lucas p—polynomials (p > 0 is
integer) from which, specifying z,y and p, bivariate Fibonacci and Lucas
polynomials, bivariate Pell and Pell-Lucas polynomials, Jacobsthal and
Jacobsthal-Lucas polynomials, Fibonacci and Lucas p—polynomials, Fi-
bonacci and Lucas p—numbers, Pell and Pell-Lucas p-numbers and Cheby-
shev polynomials of the first and second kind, are obtained. Tuglu et al.
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[20] introduced m—extension of Fibonacci and Lucas p—~numbers. Lee et
al. in [23, 24, 25] derived a generalized Binet formula for k—generalized
Fibonacci sequence by using determinants and gave several representation
of k—generalized Fibonacci numbers.

In this article we define and study the Gaussian Fibonacci p—Numbers
and Gaussian Lucas p—Numbers. We give generating functions, Binet
formulas, explicit formulas, matrix representations and sums of Gaussian
Fibonacci p—numbers by matrix methods. By defining these Gaussian
p—Fibonacci and Gaussian p—Lucas Numbers for special cases for p = 1,
GF, is the Gaussian Fibonacci and GL, is the Gaussian Lucas numbers
defined in [19].

2. GAUSSIAN FIBONACCI AND GAUSSIAN LUCAS p—NUMBERS
Definition 1. Let p be an integer the Gaussian Fibonacci p—numbers
{GFpn}oe , are defined by the following recurrence relation

GFpn=GFppn-1+GFpn_p-1, n>p (2.1)
with initial conditions GFpo=1,GFpn=1,n=12,.,p

It can be easily seen that
GFon=Fpn+iFpnp

where Fj, , is the nth Fibonacci p—number.
Definition 2. The Gaussian Lucas p—numbers {GLp . }o.  are defined by
the following recurrence relation

GLpn =GLpn1+GLpn_p-1, n>p (2.2)
with initial conditions GLpo =p+1-pi, GLpn=1, n=1,2,3,...,p—1
and GLpp, =1+ (p+1)i

Also
GLp,n = Lp'n + iLP,n—P
where Ly ,is the nth Lucas p—number.

2.1. Some Properties of Gaussian Fibonacci and Gaussian Lucas
p—Numbers.

Theorem 1. The generating function for the Gaussian Fibonacci p-numbers
is
o0
t+i(1—1t)
o) = 3 CFont” = T ot
and for the Gaussian Lucas p—numbers is

[= -] .
Z +1—-pt—ilp—pt—(p+1)tP

n=0
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Proof. Let g(t) be the generating function of the Gaussian Fibonacci p,
GF, 5. Then

g(t) — tg(t) — tP*1g(t)

GFp,o + tGFpJ - tGFp,o

o0
+ ) t"GFpn — GFppno1 — GFpn_2
n=2

= t+i(l1-t)
By taking g(t) in parenthesis we get

The proof is completed. ]

Binet’s formulas are well known and studied in the theory of Fibonacci
numbers. Let z1, 22,23, ...,Zp, Tp+1 be the different roots of the character-
istic equation of the recurrence relation (1.3). Then the Binet formula of
the Fibonacci p-numbers are given in [31].

Now we can give the Binet formula for the Gaussian Fibonacci p-numbers
and the Gaussian Lucas p—numbers

Theorem 2. Forn >0

GFpn = k12l +koal +..Akp125 1144 (k12777 + kazy ™" + ... 4 kpy125,T)
and

GLpn = 127 +t225 +...Htpr12pyy +i (2] 7 + 2z 7 + o+t z),T) .
Proof. Theorem can be proved by mathematical induction on n. )

Theorem 3. The ezplicit formulas of Gaussian Fibonacci p—numbers and
Gaussian Lucas p—numbers forn > 1 andp > 1 are

L55 | =58
6Fa= Y ("R X (")
k=0 k=0

and

GL =[§J_—” (n"pk)nl%gj———"_p (""”'pk).
" = n — pk k = n—p-—pk k

Proof. Theorem can be proved by mathematical induction on n. O

Taking p = 1 gives
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Corollary 1. [1] Usual ezplicit formulas of Gaussian Fibonacci numbers
and Gaussian Lucas numbers are

L=, n—k-—1 ,L# n—k—2
GF, = k};; ( k ) +1 ; ( k )
and
L#) n (n—k I'LE-] n—-1 (n—k-1
GL"=,§’M( k )“ kg n—k—l( k )
Theorem 4. Forn > p
GLpn =GFpn41 +PGFpn—p

Proof. 1t can be seen from the generating functions. O

Corollary 2. [19] Forn > 1
GL, =GF,41 +GF-1.
Theorem 5. The sums of the Gaussian Fibonacci and Gaussian Lucas

p—numbers are given as:
n

(i) Y GFpx = GFppyps1 — 1

s
(#) Y GLpx = GLpnip+1 — [1+ (p+1) 4]
k=0
Proof. By the definition of Gaussian Fibonacci p—numbers;
GFpn=GFpn-1+GFypn_p1 (2.3)
Replace n with n + p + 1 in identity (2.3) to obtain
GFpnip=GFpnipt1— GFpn

and further

n n n
Y GFktp = I GFpript1— > GFyx
=0

= k=
kno n+p+1 ’ P n
= S GRi+ Y, GRyx-Y GFRyx— GFp
k=0 k=n+1 k=0 k=0
P P
= ZGF ntl — ZGFp,k
k=0 k=0

P
= > (GFpkint1 — GFpk)
k=0
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and by definition of Gaussian Fibonacci p—numbers

n n+p
Z Glpkipt1 = GFpnipr1 —GFpp+ Z GFpk

n
= GFonipt1 = GFpp + Z GFpk+p
k=0

and thus
n n
Z GFpktp+1 — ZGF detp = GFpnipr1 — GFpp
k=0 k=0

So we get the solution

n
Z GFpr = GFpnipt1 —GFpp
k=0
= GFp,n+p+l - 1

Corollary 3. [19] Forn >0

iGFk = GFn+2 -1

k=0

Corollary 4. [19] Forn >0

Y GLi = GLpy2 — (1 +2i)
k=0

Lemma 1. [43] Forn >0

n
> Foklpni = (n+p)Fpn
k=0
n
Z Fokt1Lpn-k = (n+p+1)Fopa
k=0
ZF k+1lpn-k+1 = (n+1)Fpage
k=0
n
EF ,kL n—k+l = an,n+l
k=0
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Theorem 6. Forn >0

n
S GFpuGLpn—s = —2i(n+p)Fpn+(i+1)@n+p+1) Fpnis
k=0
- (n + 1) Fp,n+2

Proof. By the definition and lemma 1

n n
> GFoiGLpn-t = Y (Fpk+iFpr—p) (Lpnk +iLpn—t-p)
k=0 k=0

n
= Z [FpeLpn—k + iFpxLpn—k—p + iF; pk—pLpn—tk
k=0
_Fp,k—pr,ﬂ—k-—p]

It can be easily seen that

prk_P = F vk+1 - vak

Lp,n—k—p = Lp,n«k+l - Lp,n—lc

and

n n
> GFkGLon—k = Y |FpiLpn-k+iFpk(Lpn-r+1 — Lpn-k)
k=0 k=0
+i (Fpe+1 — Fpk) Lp,n—k

— (Fpe+1 = Fpr) (Lpn—k+1 — Lp,n—k)]

n
= Z [FokLpn—k + i FpkLpn—k+1
k=0
_in,kLp,n—k + 'in,k+1Lp,n—lc —iF ,kLp,n—k
~ (Fpk+1Llpn—k+1 — Fpk+1Lpn—k
—FprLpn—k+1+ FprLlpn—i))

n
z [‘LF ,kLp,n—k+1 - in,kLp,n-—k + in,k+1Lp,n—k —iF ,kLp,n—k.
k=0

—Fpr+1Lp k41 + Fp 1 Lpnk + FpxLpn—r+1]

= (+1)> FpiLpn-ks1—2 Y FprLpn-k
k=0 k=0

n n
+(G+1))_ Fper1Lpn-k— > Fprs1Lpnk+i
k=0 k=0
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by lemma 1

n
Z GFpkGLpn-x = (i+1)nFpas1 —2i(n+p)Fpn
k=0
+(@+1)(n+p+1) Fpnyr — (n+1) Fpni2
= =2in+p)pn+(E+1)2n+p+1)Fpnn
- (n + 1) F, yn+2-

Theorem 7. For m,n > 1, then

P
GFp,m+n = Fp.mGFp,n+l + Z F ,m—kGF n—p+k
k=1

Proof. The formula is trivially true forn=pand n=p+ 1.

p
GFom+p = FpmGFpp+1+ z Fom-kGFpk
k=1

and
P
GFpmipt1 = FomGFppy2+ ZF ;m-kGFp 1
k=1
Assume it is true for n =t — p and n =t where t > p+ 1, that is,

P
GFpmtt—p = FpmGFpt—py1 + Z Fpm—kGFpt—2p+k (2.4)
k=1

P
GFp‘m.*.g = Fp,mGF g1+ Z Fp,m_.kGF St—ptk- (25)
k=1

Adding identities (2.4) and (2.5)
GFomtt-p+GFpmit = Fpom(GFptpi1+GFpeia)

P
+)  Fpmk (GFptmpti + GFpt_2pik)
k=1

and further
GFP,m+t+1 = Fp,mGFp,t+2 + F, ym—1 (GFP.t—p+l + GF, .t—2p+1)
+Fpm-2 (GFpt—ps2 + GFp,t-2p12)
+Fp,m-3(GFpt—ps+3 + GFpt—2p43)
+... + Fp,m_p (GFp.t + GFp’t_p) .
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By the definition of recurrence relation (2.1)
GFpmtts1 = FpomGFpuia+ Fpm—1GFp—py2 + Fom-2GFpt—pt3
+oo + Fpm—pGFptt1

P
= FomGFper2+ Z Fpm—kGFp,t—ptrt1-
k=1

Corollary 5. [1] Form,n > 1
GFm+n = FmGFn+l + Fm_lGFn.

Now we introduce the matrices @, and R, that play the role of the
Q-matrix. Let Q, and R, denote the (p + 1) x (p + 1) matrices defined as

10 0 --- 01
10 0 - 00
o1 0 --- 00
Qp = .. . .
o0 - 00
L 00 - 0 10 4 (p+1)x(p+1)
and
(144 1 1 -~ 1 1 1]
1 11 - 11 ¢4
1 11 -- 1 24¢ 0
Ry = : SRR
1 1 ¢ - 000
| 1 i 0 -~ 00 0] (p+1)x(p+1)
Then we can give the following theorem:
Theorem 8. Letn > 1. Then
GF, pm+p+l GF, pntp GF, p,nt+2 GF, pn+1
GFontp GFpnip-1 =+ GFpnn GFpn
QpRy = : : : :
GFpni2 GFpnt1 -+ GFpn-pts GFpnopi2
GFpnt1 GFon o GFpnptz GFpn—ph1
Proof. Theorem can be proved by mathematical induction on n. O

Now we introduce the matrices B and C for finding the sums of Gaussian
Fibonacci p—numbers. For p > 1 let B = (b;;) denote the (p+2) x (p +2)
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matrix such that

1 0 0 - 0
110 0 0 1
010 O 0 0
B= 01 0 0 o
00 0 0
[0 0 0 - 0 1 0]
or
[ 1 00 o0 0]
1
0
B= )
0 @»
=3 0 -
let C = (ci;) denote the (p+ 2) x (p + 2) matrix such that
[ 1 0 00 0 0 0]
144 144 1 1 111
i 1 11 11 4
c=| 0 1 11 140
0 1 1 4 0 00
| 0 1 0 0 0]
or
1 0 0 0 0]
144
i
C= 0 R,
| 0 ]
and let E, also be the (p +2) X (p + 2) square matrix such that
1 00 ... 00
Sn
_ Sn—l
Ba=| s, Q:
Sn—p
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where S, denote sums of Gaussian Fibonacci p—numbers defined as
Sn = Z GF]J,k'
k=0
Then we have the following theorem:

Theorem 9. Let B, C and E, be the matrices in (2.6), (2.7) and (2.8)
respectively. Then forn > 1

B"C = E,,.

Proof. By induction method. If n = 1, then from the definition of the
matrix E, and Gaussian Fibonacci p—numbers,

BC=E1

Assume that the theorem holds for n > 1

B™*C = E,.
Then for n + 1 we have
B"tC = BB"C =BE,
1. 00 0 ... 0][ 1 00 ... 0 0]
1 Sp
_ 0 Sn-1
0 Qp Sn—2 Qp
| O ] L Sn-p |
[ 1 00 0 0]
lS'n+1
— Sn
- Sn—-l ;+1
| Sn-pt1 ]
= En+1-

Theorem 10. (Cassini Identity) Forn >0
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GFonip+1  GFpnyp - GFpni2 GFpn+1

GF, yn+p GF, pm+p—-1 " GF, p,n+1 GF, 7
GF yn+2 GFp,n+1 Tt GF ,n—p+3 GF n—p+2
GFpn1 GFpn + GFpn—pi2 Fon—p+1
GFp,p-t-l GFp,p oo GFPJ
GFPaP GFP'P"I e GFP;O
= (D7 s : s
GFp2 GF,y --- GF 2-p
GF,1 GF,o -+ GF,1

Corollary 6. [19] Forn >0
GFpny2GF, —GF2 = (-1)"" (2 -4).

3. CONCLUSION

In this paper we define and study the Gaussian Fibonacci p—Numbers
and Gaussian Lucas p—Numbers. We give generating functions, Binet for-
mulas, explicit formulas, matrix representations and sums of Gaussian Fi-
bonacci p—numbers by matrix methods. By defining these Gaussian Fi-
bonacci and Gaussian Lucas p—Numbers for special cases for p = 1, GF,
is the Gaussian Fibonacci and GL,, is the Gaussian Lucas numbers.
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