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Abstract
The matching energy of a graph was introduced by Gutman and
Wagner in 2012 and defined as the sum of the absolute values of zeros
of its matching polynomial. In this paper, we completely determine
the graph with minimum matching energy in tricyclic graphs with
given girth and without K4-subdivision.
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1 Introduction

All graphs in this paper are finite, connected, simple and undirected. An
edge e is said to be subdivided when it is deleted and replaced by a path of
length two connecting its ends, the internal vertex of this path being a new
vertex. A subdivision of a graph G is a graph that can be obtained from G
by a sequence of edge subdivisions. For more notations and terminologies
that will be used, see [1]. Let G = (V, E) be a graph with order |V| = n
and size |E| = m. A matching in a graph G is a set of pairwise nonadjacent
edges. A matching is called k-matching if it is of size k. Let m(G) denote
the number of k-matchings of G, where m(G) = m and my(G) = 0 for
k > [2] or k < 0. Inaddition, define mo(G) = 1. The matching polynomial
of graph G is defined as

a(G) = oG, ) = Z(—l)kmk(G)x"'zk.
k>0
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Let Ag, Ag, -+, An be the eigenvalues of a graph G. The energy of graph
G 8] is defined as

EG) =Y Ml
i=1

An important tool of graph energy is the Coulson integral formula [8] (with
regard to G be a tree T):

2 +o00 1 ok
E(T) == A ~ln [ka(T)z ]d:z‘ (1)

k>0

The graph energy has been widely studied by theoretical chemists and
mathematicians. For details, see the book on graph energy [20] and surveys
[10,12]. There are also some recent results about graph energy, see [22,23].

In 2012, Gutman and Wagner [13] defined the matching energy of a
graph G. Let G be a simple graph, and let uy,ug, -, un be the zeros of
its matching polynomial. Then

ME(@G) =) |ul.
i=1

Being similar to eq.(1), the matching energy also has a beautiful formula
as follows [13]:

ME(G) = 2 /0 Lin [Z mk(G)z%] dz. (2)

2
T
k>0

By eq.(2) and the monotonicity of the logarithm function, the matching
energy of a graph G is a monotonically increasing function of any mi(G).
This means that if two graphs G and G’ satisfy mi(G) < mi(G’) for all
k > 1, then ME(G) < ME(G’). If, in addition, mg(G) < my(G’) for at
least one k, then ME(G) < ME(G’). It motivates the introduction of a
quasi-order > as follows: If two graphs G) and G2 have the same order n
and size, then

G > Gy &= mp(G1) 2 mp(Gs) for 1 < k < [g-J.

If G| = G2 and there exists some & such that m(G;) > me(Gz2), then we
write Gy > Ga. If G; > Gy we say that G; is m-greater than G,, or G,
is m-smaller than G,. If G; = G, and G; > G, the graphs G; and G,
are said to be m-equivalent, denote it by G; ~ G;. If G; > G2 we say
that G, is strictly m-greater than G,. It is easy to see that G, = G; =
ME(G,) > ME(G3) and G, » G; = ME(G)) > ME(G5).

As the research of extremal graph energy is an amusing work, the study
on extremal matching energy is also interesting.



A connected simple graph with n vertices and n, n + 1, n 4 2 edges
are called unicyclic, bicyclic, tricyclic graphs, respectively. In [13], the
authors gave some elementary results on the matching energy and obtained
that ME(S;Y) < ME(G) < ME(C,) for any unicyclic graph G, where
St is the graph obtained by adding a new edge to the star S,. In [16],
Ji et al. proved that if G is a bicyclic graph with n > 10 or n = 8§,
ME(S:) < ME(G) < ME(PA™%). In [15], the authors characterize
the connected graphs (and bipartite graphs) of order n having minimum
matching energy with m (n+2 < m < 2n—4) edges. Especially, among all
tricyclic graphs of order n > 5, ME(G) > ME(S};*), with equality if and
only if G = §3* or G = K7~ In [3], the tricyclic graph with maximum
matching energy is characterized. In [27], the authors characterize the
bicyclic graph with given girth having minimum matching energy. For
more results about matching energy, see [2,4-6,14,17,19,21,24-26].

Denote by 7,7, the set of all connected tricyclic graphs with order n and
girth g and do not contain a subdivision of K. Clearly, any tricyclic graph
in 7.7, must contain one of the graphs in Figure 1 as an induced graph,
called it a brace. The set 7.7, can be partitioned into three subsets T g
T2, and 7.2, where T} is the set of all tricyclic graphs which contain a
brace of the form () or (b) in Figure 1, 7,2, is the set of all tricyclic graphs
which contain a brace of the form (c¢) or (d) in Figure 1 and T,ﬁg is the set
%f all tricyclic graphs which contain a brace of the form (e), (f) or (g) in

igure 1.

gLet Py, P3+2,PH.2,Pq+2 be four paths where Pri2 = uoup -« Urqq,
Piio = vovy -+ vsq1, Pypo = wowy Wiy and Pyyo = ToTy -~ Tgy1-
Let B(r,s,t,q) be the graph get from P,yq, Psy2, Pry2, Pyy2 by fusing
ug, Vo, Wo, To to u and fusing u,41,Vs41, Wes1, Tq41 tov. Clearly, Bi(r, s,t,q)
is the brace of type (e) in Figure 1. Let T3 = Bi(a,b,b,b)(u)Sn—_a—36-1
where a = [9—;—2J and b= g — 2 —a. Clearly, T3 € 7;13’9. See Figure 2.

The main result of this paper is the following theorem which gives the
graph in 7. ) with minimum matching energy.

Theorem 1. For any graph G € T} ,, G = T3 with equality if and only if
G=T;.

2 Preliminaries
We now exhibit some elemental results which will be used in the sequel.

Lemma 2. [13] Let G be a graph and e one of its edges. Let G — e be the
subgraph obtained by deleting from G the edge e, but keeping all the vertices

of G. Then
ME(G —e) < ME(G).
In [7,9], two fundamental identities are established as follows.

Lemma 3. Let G be a graph, then for any edge e = uv and N(u) = {vi(=
v),ve,"+ , v}, we have the following two identities:
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Figure 1: Braces of the graph in 7., ,.

(T) (T2) (T2)

Figure 2: The graphs Ti, T2 and Ts where Ty € T,),, T2 € T.2,, Tz € T2,
a=|%2]andb=g-2—a.
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mg(G) = mi(G — wv) + m—1(G —u — ) 3)
mi(G) = mp(G —u) + »_mk_1(G —u —vi). (4)
i=1

For any G and a star S;;;, let G(u)S:41 denote the graph obtained by
identifying the vertex u of G with the center of the star S¢4;. For a cycle
C, let G(u)C be the graph got from G and C by identifying the vertex u
of G with any one vertex of C. It is easy to get the following lemma.

Lemma 4. Let G be a graph and u € V(G), then mi(G(u)St4+1) = mi(G)+
tmk_l(G - u).

Lemma 5. [11] If G| > G2, then G1UH > G2 U H, where H 1is an
arbitrary graph.

Lemma 6. [18/ Suppose that G is a connected graph and T an induced
subgraph of G such that T is a tree and T is connected to the rest of G only
by a cut vertex v. If T is replaced by a star of the same order, centered
at v, then the matching energy decreases (unless T is already such a star).
If T is replaced by a path, with one end at v, then the matching energy
increases (unless T is already such a path).

Recall the definition of generalized m-transform in [18]. Say @ is a
branch of a connected graph G with root u if Q is a connected induced
subgraph of G for which u is the only vertex in @ that has a neighbor
not in Q. Let P and Q be branches of a component of a graph G with a
common root ug, which is also their only common vertex. Assume that P
is a path and up has at least one neighbor in G that does not lie on P or Q.
Form a graph from G by relocating the branch Q from uo to v where v is
the other end vertex of the path P (by deleting edges uow and adding new
edges vw for every vertex w in Q adjacent to ug). We refer to the resulting
graph as a generalized m-transform of G.

Lemma 7. [18] If G’ is a generalized m-transform of G, then G’ = G and
so ME(G') > ME(G).

Let G be an arbitrary graph with a specified vertex v. Denote by G; for
i=1,2,--- ,n—1 the graph obtained from G by adding n — 1 new vertices
to G in the following way: attach at v i — 1 pendent edges and a path of
length n — <. It is easy to get the following lemma.

I.A:emma 8. ./27/ Let G; (i =1,2,---,n—1) be defined above, then Gy >
Gg >+ > Gn_jy.

3 The proof of the main results

3.1 The graph in 7;!, with minimum matching energy

Let G, be a graph shown in Figure 3, where the graph G and the cycle share
a common vertex u and there may have some stars rooted on the cycle. The



graph G,, shown in Figure 3, can be got from G by transforming all stars
r(})]oted on the cycle to a star rooted on u with the number of vertices not
changed.

G, G,

Figure 3: The graph G, and G».

Lemma 9. Let G; and Gy be the graph shown in Figure 3, then Gy = Gy
with equality if and only if G = Gs.

Proof. Denote the vertices of the cycle in Gy and G5 by u,up,ug, -+ ,u,
and u,u},ub, - ,u, in clockwise respectively. Suppose G; ¥ G, that
is, there is at least one star rooted on u; for some 1 < i < s. Suppose
there are ¢ stars rooted on the vertices of the cycle in G;. Without loss
of generality, assume that S, 4; is rooted on u; where 1 < i < £. Let
T = Zf=l r;. For convenience, use the notation H; to denote the graphs
defined recursively as follows: let Hy = G(u)Cs; and if H;_; is defined
already, then H; = H;_;(u;)Sy, +1. Clearly, G; = H;. By Lemma 4,

mp(G1) = me(He—1) + remp—1(He-1 — ug)
= mp(He_2) + re—1mp_1(He—2 — ue—1) + remp—y (He—1 — ue)

[4
= me(Ho) + Y _ rimu_y(Hig — ws).

i=1
mk(Gg) = mk(Ho) + T'mk_l(Ho - u).

Note that r = Zf=1 r; and it is not hard to see that H;_; —u; = Hy—u; >
Ho —ufori=1,2,---,£ The proof completes.
[}

Let G3 be a graph which contains the graph Cr, (uv)Cr, (v)Cr,, all tree
branches of G3 are stars and all its star branches are rooted on vertices of
C,,. Denote the vertices of C; in G3 by v,v;,v2, -+ ,vr,—1 subsequently.

G4 is a graph that can be get from G3 by deleting the edges vv;, vv,,—;
and adding the edges uv;, uv.,—;. See Figure 4.

Lemma 10. Let Gs and G4 be the graphs defined above, then G3 = Gjy.
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Figure 4: The graph G and Ga.

Proof. By eq.(3),
mk(G3) = mk(G:; - ‘Ul’vz) + mk_l(G:; - vy — vg)

and
mi(Ga) = m(Gy — v1v2) + Me_1(Gq — vy — v2).

If r3 = 3, by Lemma 9, (G3 —vv2) > (G4 —v1v2). Now suppose r3 > 4.
By eq.(3),
My (G3—v102) = My(G3—V1V2—Vry—1Vry—2)+Mk—1(G3—V1V2—Vry—1—Vry—2)
and
M(Gy—v1v2) = Mp(Gq—V1V2—Vry—1Ury—2) +Mk_1 (G4 —V1V2—Vry 1 ~Vry—2).
By Lemma 9 and Lemma 5, (G3 — v1¥2 — ¥Ury—1Vpy—-2) > (G4 — v1v2 —
Vpy—1Vpy—2) aNd (G3 — V1V — Upy—1 — Ura—2) > (G4 — V1V2 — Ury—1 — Ury—2).
So my(G3 — v1v2) > mi(G4 — vyv2) and the inequality is strict for some k.

Similar discussion will prove that mi_1(G3 —v1 —v2) = mx_1(G4—v1 ~v2)
and the inequality is strict for some k. The proof completes. -

Let G be any graph, u € V(G) and r > g. G5 = G(u)C; and Ge can
be got from G(u)C, by attaching r — g pendent edges at u.

Lemma 11. Let Gs and Gg be defined above, then Gs > Gs.

Proof. Denote the vertices of C, in G5 by u,uj,ug, - ,ur_) subsequently
and denote the vertices of C, in Gg by u,v1,v2,- -+ , V41 subsequently. By
eq.(3),

my(Gs) = mi(Gs — watiz) + me—1(Gs — u1 — u2)

and
mk(Gsg) = mp(Ge — v1v2) + mg—1(Ge — v1 — va).

By Lemma 8, (Gs —u1uz) > (Ge—v1v2) and (Gs—uj —ug) > (Ge—v1 —g).
The proof completes. O
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Let T € ’1;1,9 be the graph in which three cycles of length g share a
common vertex v and there are n — 3g + 2 pendent edges attached at u.
See Figure 2.

Theorem 12. For any G € T}, G = Ty with equality if and only if
G=T.

Proof. If G contains a brace of type (a) in Figure 1. Firstly, by the inverse
generalized w-transform and Lemma 6, assume the left and the middle
cycles of G share a common vertex, the middle and the right cycles of G
share a common vertex, and all tree branches of G are stars. Secondly, by
Lemma 9, assume all star branches of G are rooted at vertices of the middle
cycle. Lastly, by Lemma 10, Lemma 9 and Lemma 11, G > T3.

If G contains a brace of type (b) in Figure 1, assume G 2 T;. Firstly, by
the inverse generalized w-transform and Lemma 6, assume all three cycles
of G share a common vertex and all tree branches of G are stars. Then by
Lemma 9 and Lemma 11, G > T3. :

The proof completes.
O

3.2 The graph in 729 with minimum matching energy

Let P.y2, Psy2, Py2 be three paths where P.yo = uouy -« ups1, Poyo =
UgVy * - Vg1 and Prig = wowy - - - weg1. Let 0(r, s,t) be the graph got from
Py 3, P2, P,y o by fusing ug, v, wp to v and fusing uyy1,vsq1, Wes1 to v.

Lemma 13. [27] Let G be any bicyclic graph containing 8(r,s,t) and
having n vertices, then G > 6(r,s,t)(u)Sn—r—s—t-1 with equality if and
only ’lf G 0(7’, s, t)(u)sn—r—s—t—l-

Let G7 be the graph containing 6(r, s, t)(w;)C,y (w; can be changed to
u; or v;), having n vertices and all vertices of Cy except w; having degree 2.
Let Gg be the graph contained 8(, s,t)(u)C,y and havingn—r—s—t—g—1
pendent edges attaching at u. Clearly, |Gg| = n.

Lemma 14. Let G; and Gy be defined above, then G; = Gg.

Proof. Denote the vertices of Cy in G7 by w;, u}, ub, - , ug_; subsequently
and d)enote the vertices of Cy in Gg by u,uf,uj, - ,u,_, subsequently. By
eq.(3),

mi(G7) = mp(Gr — wjuy) + me_1(Gy — uj — uh)

and
’mk(Gg) = mk(Gs — u'l'uf_,') + ’mk_l(Ga - u'l' — u’z’)

If g = 3, by Lemma 13, (G7 — uju}) > (Gs — ufuy). If g > 4, by eq.(3),
mi(Gr—ujup) = mp(Gr~ujus—ug_1ug_o)+mi—1(Gr—ujuy—ug_;—uy_s)

and

", 1 ", 4 " "1 " n
mi(Gs—ujuy) = mi(Gs—uyuy —ug_jug_o)+me_1(Ge—ujug —uy_—uy_,).
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By Lemma 13 and Lemma 5, (G7 — vjuy — u,_,u,_,) > (Gs — ujuy —
U1t — Ug—1tg—2 1Y%2

ug_yuy_p) and (G7 —ujuh — ug_y — ug_p) > (Gs — ufug —ug_; — Ug_3)-

So mk(G7 — ujub) > mi(Gs — ufugy) and the inequality is strict for some

" Similarly, we can prove my_1(Gv —uj —up) = mk_1(Gs —uf —ugy) and

the inequality is strict for some k. This completes the proof. -

Recall that Gg is the graph containing 6(r, s, t)(u)Cy and having n —
r —s—t—g— 1 pendent edges attaching at u. Suppose now Gg € ’I;,""g
and 7 < s < t. Let T € T2, be the graph containing 6(a, b, b)(u)C, and
having n — a — 2b — g — 1 pendent edges attaching at u, where a = [9;—2J
and b= g — 2 — a. See Figure 2.
Lemma 15. Let Gs,T; € T;2, be defined above, then Gs = T» with equality
if and only if Gg = Ts.
Proof. Let H, € ’];ﬁg be the graph contained 6(r,s, s)(u)C, and having

n —r —2s — g — 1 pendent edges attaching at u.
Claim 1 If s < t, then Gg > H;.

Proof. By eq.(3), we get
mk(Gg) = m(Gs — vwg) + mk_l(Gg —-v - wt)

and
mk(Hl) = mk(Hl - ‘U‘U),) + mk—l(Hl -V - w,).

Because s < t, from Lemma 8, my(Gs — vw;) > mi(H; — vw,) and the
inequality is strict for some k, mg—_1(Gg — v — w;) > me_1(Hy — v — w,)
and the inequality is strict for some k. 0

Similar discussion like Claim 1, we can assume r + s +2 = g.

If s —r > 2, let Hy € 7.2, be the graph containing 8(r +1,s — 1,5 —
1)(x)Cy and having n — r — 2s — g pendent edges attaching at .

Claim 2 If s —r > 2, then Hy > Ha.

Proof. By eq.(3),
my(H,) = mp(H — vw,) + My (Hy — v —wy)

and
mk(Hz) = mk(Hz - vw,_l) + mk_l(Hg -V — W)

From Lemma 8, my(H; — vw,) > mi(Ha — vw,_1) and the inequality is
strict for some k.
By eq.(3), we get

M1 (H1—v—ws) = My 1 (H1 —v—Ws —Vs0s—1 ) +mp—o( H1 —0—Ws —vs—Vs—1)
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and
mi_1(Hz —v —we_1) =my_ 1 (Ho — v — we_y — Ury1Ur)

+mi_2(H2 —v — ws—1 — Ury1 — uy)

From Lemma 8, mg_1(H1 — v —w; — U505—1) = My—_1(Ho — v — we—1 —
Ur41Uy) and the inequality is strict for some k, mg_o(Hy — v — ws — v, —
Ug—1) 2 Mig—o(He — v — ws—3 — Ur+1 — U,) and the inequality is strict for
some k. O

From Claim 1 and Claim 2, the proof of the lemma completes.

Recall that Gy is the graph containing é(r, s,t)(u)C, and having n—r—
s —t — g — 1 pendent edges attaching at u. Let Gg be the graph contained
0(r,s,t)(u)Cy, having n vertices and all vertices of Cy except u having
degree 2. Similar to the proof of Lemma 13 in [27], the following lemma
can be got.

Lemma 16. Let Gg and Gg be defined above, then Gg = Gg with equality
if and only if Go = Gg.

Theorem 17. For any G € 7;,2,9, G = T, with equality if and only if
G=Ts.

Proof. The brace of G is of type (c) or (d) in Figure 1. Suppose the brace
of G contains a bicyclic graph 8(r, s,t) for some r,s,t and a cycle C. By
Lemma 6, assume all tree branches of G are stars. By inverse generalized
w-transform, assume 6(r, s,t) and the cycle C share a common vertex vg in
G. By Lemma 9, assume that all the vertices of the cycle C except v are
(g)f degree 2. By Lemma 11, assume that the length of the cycle C in G is

If the common vertex vp of 8(r, s,t) and the cycle Cy is u; (or v;, w; for
some i), by Lemma 14 and Lemma 15, G > T5.

If the common vertex vg of 8(r,s,t) and the cycle C, is u (or v), by
Lemma 16 and Lemma 15, G > T with equality if and only if G = T,.

3.3 The graph in 7}, with minimum matching energy

Recall that B1(r, s, t, ¢) has been introduced in Section 1. Suppose r < s <
t < g without loss of generality. Let Gio = B1(r, 8,t,q)(u)Spn—r—s—t—q-1.
Clearly, |G| = n.

Lemma 18. LetG € 7;?‘,g be a graph which contains $1(r, s,t,q) as a brace,
then G = G0 with equality if and only if G & G)o.

Proof. First prove the following claim.
Claim: f(r,s,t,q) with a vertex of degree 2 deleted is strictly m-
greater than £ (r, s,t,q) with a vertex of degree 4 deleted.
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Proof. Choose a vertex of degree two and a vertex of degree four in 5, (r, s, ¢, ),
say T, and u. Let H = §,(r, s,t,q). First suppose m = 1.

Ifg=1,by Lemma 8, H —z; > H —z; —uu; —uwv; » H —u.

If ¢ > 2, by eq.(3),

mp(H — 1) = my(H —xy —vzg) + my_1(H — 21 — v — Z4)

and

me(H —u) = mp(H —u — 2q2q-1) + Me—1(H —u — g — Tg—1)-

Note that H —zy —v—z4 & H —u—Tq—Tg-1, 50 mx—1(H — 2, —v—x4) =
mg_1(H — u — 4 — z4-1). By the above discussion when ¢ = 1, we know
H—z—vzyg > H—-u—x4zq_1.

When m = g, the proof is similar to the case m = 1. Next suppose
1 <m < gq. By eq.(3),

me(H — 2m) = mp(H — T —uz1) + Mp1(H — T —u —11)

and
me(H —u) = me(H — v — Tm—1Zm) + M1 (H — 4 — T;m—1 — Tm)-

Note that (H ~Zp —u— 1) 2 (H -4 — Zm—1 — Tm), 50 Mg 1 (H — T —
u _xl) = mk—l(H —U—Tm-1—" xrn)-
By eq.(3),

me(H —zm—uz)) = mip(H —Tm —u1 —vZq) +my 1 (H —Tm —uz) —v—24)
and

me(H — 1 — Zm1Zm) =mi(H — 4 — Tm_1Tm — TqZTq—1)

+ Mg 1(H = U = Tm—1Zm — Tg — Tg—1)-

Note that (H — 2 ~uz) —v —24) = (H — 4 — Zm_1Zm — Tq — Tq-1), SO
Mi—1(H — Tm —uz) — v — ) = M1 (H — U — T 1Tm — Tg — Tg-1)-
After deleting two edges uu,,uv; of H — z,, — uzr; — vx4, by Lemma 5
and Lemma 8, my(H — T, —uz) —vTq—uu; —uvy) = mp(H —u—Tm_1Tm —
T4Tq—-1) and the inequality is strict for some k. So my(H —zm —uz)—vz,) >
Mp(H — U — Tm—1Tm — TqTq—1) and the inequality is strict for some k. The
proof of the Claim completes. O

Next prove the lemma. Suppose G # Gio.

By Lemma 6, assume that all tree branches at the cycles of G are stars.
Without loss of generality, suppose that G is the coalescence of the vertex
t; (new notations for these vertices) in 8i(r, s,t,q) and the center of Sy, 41
fori=1,2,---,¢, and Zf=1r,~ =n-—-r—s—t—gq—2 For convenience,
use the notation H; to denote graphs defined recursively as follows: let
Hg = By(r,s,t,q); and if H;_ is defined already, then H; = H;_1(t:)Sr, +1-
Note that H, = G.
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By Lemma 4,

mi(G) = my(He-1) + remp—1(He-1 — te)
=mp(He—2) + re—ymp_1(He—g — te_1) + remp_1(He—y — te)

e
= m(Ho) + Zrimk—l(Hi—l - ti),

i=1
and
my(Gro) = mi(Ho) + (n— 7 — s —t — g — 2)my_1 (Ho — w).

For i > 2, Hy—t; is a proper subgraph of H;_; —¢;,so H;_;—t; > Ho—t,.
By the Claim, Hg — t; > Ho — u when t; is of degree 2 in Hy. Because
G #Gio, €22, 0r¢=1andt is of degree 2 in B1(r, s,¢,g). The proof
completes. -

Suppose r < s <t < g and 7 + s + 2 = g without loss of generality.
Let Gio = Bi(r, Sat1Q)(u)Sn—r—s—t—q—-ly Gn =5 (T,S,S, 8)(¥)Sn—r_3s—1.
Clearly, G10,G11 € T;},. Similar proof like Claim 1 in Lemma 15, the
following lemma can be got.

Lemma 19. Let Gy and G1, be defined above, then Gip = G, with
equality if and only if G0 & G1;.

Recall that T3 = Bi(a,b, b,b)(v)Sp—a—3b—1 Where a = [9;—2J and b =
g — 2 — a, see Figure 2. Clearly, T3 € 7;,3_9.

Lemma 20. Let Gyy and Tz be defined above, then Gy; = T3 with equality
if and only if Gy, = Ts.

Proof. Let H = Bi(r + 1,5 — 1,8 — 1,8 — 1)(w}Sp—r—-3s41. Just need to
prove the following claim.

Claim: If s—r > 2, then G;; >~ H.
Proof. By eq.(3),

mi(Gr) = mi(G1y — vzs) + me—1 (G — v — z4)

mg(H) = mp(H —vze—y) + mp—1(H —v — z5_1).
First compare my(G11 — vz,s) with mg(H — vrs-1). By eq.(3),

mE(Gr1 — vrs) = me (G — vzs — vw,) + meg—1(G11 — vzs — v — w;)
and

mg(H —vxs_y) = me(H —vze—y —vwe—y) + mp— 1 (H —vzs) —v —ws_1).
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By Lemma 8, (G1y —vz, —vw,) = (H —vZe—) —vws_y), S0 me(G11 —vTs —
vw,) > my(H — vxy_) — vw,—;) and the inequality is strict for some k.

By eq.(3),

Mp—1(G11 — vTs — v — Wy) =my_1(G11 — vTs — ¥ — W5 — Vs—1Vs)
+ mi_2(Gr1 — VTs — U — W — Vg1 — Vs)

and

mp—1(H — vTs_1 — v — Wem1) =me—1(H —Ts_1 — ¥ = Wom1 — UrUri1)

+mpg—g(H —vTsoy —V — We_) — Uy — Urq1)-

By Lemma 8, my_1(G11 — vTs — v — Ws — Vs—1s) = Mgy (H —vTs_1 —v—
We—) — Urty+1) and inequality is strict for some &, and my_2(G11 — vz —
V= Wy = Vg1 — Vs) > Mp—o{H —VTs—] — U — We1 — Ur — Ur41) and the
inequality is strict for some k.

From the above discussion we know that mi(Gy1 — vzs) = mp(H —
vz ) and the inequality is strict for some k.

Next compare my_1(Gy —v—2z5) with mg_(H —v—z,_1). By eq.(3),

mi_1(G11 — v — z5) =mg—1(G11 — ¥ — Ts — Vs—1Vs)
+ mg_2(G11 — v — Ty — Vs_1 — Vs)

and

mk—1(H —v—z4_1) =mp—1(H — v — To_1 — Urllr41)

+ mg—2(H — v — Ts_1 — Uy — Ury1)-

By Lemma 8, my_1(G11 —v—Z5s —Vs_1Us) = M1 (H —v— o1 —Urlryy)
and the inequality is strict for some k, and my_2(G11 —v—Ts—Vs—1 —Vs) >
mi—2(H — v — z5_1 — ur — ur41) and the inequality is strict for some k.

From the above discussion, mg—1(G11 —v —25) 2 me—1(H — v —T5—1)
and the inequality is strict for some k.

The proof of the Claim completes. -

l Using the Claim several times as needed, the proof of the lemma com-
pletes.
a

From Lemma 18, Lemma 19 and Lemma 20, the following theorem can
be got.

Theorem 21. Letr < s<t<qandr+s+2=g. For any graph G in
T2, with Bi(r,s,t,q) as its brace, then G = Ts with equality if and only if
G =T,.
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Let Pr+2, P9+2, Pt+2, Pq+2, .qu +2 be five paths where Pr+2 = UQUY -7 Ur4d,
Pyp = w1+ Vsq1, Prya = wowy « - - Wy, Pyi2 = zoz1 -+ - Tgy1, P42 =
YoY1 - Yg+1- Let Ba(r, s,t,9,q1) be the graph got from Py, Pot2, Piya,
FPyy2, Py, 42 by fusing uo, vo, wo, o to u, fusing u,41, Vs+1, Yo to v and fus-
ing w1, Zg41, Yq,+1 to vh. Clearly, Ba(r, s,t,q,q1) is the brace of type (f)
in Figure 1. Let T3 = f2(a,b,a,b,0)()Sn-20-20—2 Where a = |232] and
b=g—2—a. Obviously T; € T .

Let Ppi0 = z122---2¢,41. Let Bs3(r,s,t,49,91,92) be the graph got
from Pry2, Py, P, Poyo, Py 42, Pgy42 by fusing ug,vo, 30 to u, fusing
Wo, T0, Yq, +1 t0 v, fusing u,41,Vs41,20 to v} and fusing wii1, Tg41, 2,41
to vy. Clearly, B3(r, s,t,q,q1,92) is the brace of type (g) in Figure 1. Let

4 = Bs(a,b,a,b,0,0)(u)Sp—_20—25~3 where a = [9-;—3J andb=g—-2—a.
Obviously Ty’ € 7.2,

Similar discussion like the proof of Theorem 21 can give the following

theorem.

Theorem 22. (1)Let G € T2, with Ba(r, s,t,9,q1) as its brace, then G »
T3 with equality if and only if G = Ty.

(2)Let G € 7;,3,9 with B3(r,s,t,9,q1,92) as its brace, then G > Ty with
equality if and only if G = Ty .

Theorem 23. Let T3,T3, T3’ € T2, and be defined above, then Ts < T <
Ty.
Proof. First prove T3 < T3. By eq.(3),

me(T3) = mp(Ts — vzy) + me—1(Tz —v — xp)

and

m(T3) = my (T4 — vé:rb) + my—1 (T3 — 'Ué — Tp).
Note that T3 — v —x; is a proper subgraph of T4 — v} ~zp, so (T3 —v—x3) <
(T3 — vy — ).

It is obvious that a =b—1ora =5b. Whena =b-1, (T3 —vzxp) =
(T3 — vhxp); when a = b, similar discussion like in Lemma 15, we know
(T — vzp) < (Té - véxb).

Next prove T3 < T§'. By eq.(3),

mi(T3) = me(T3 — v1v3) + M1 (T3 — v} — v3)

and
mi(T3') = me(T5' — vivp) + M1 (T3 — v) — v3).

From the inverse generalized m-transform, we know that (T3 — vjvj) <
(T — viop) and (T§ — vf — 04) < (TY — v — ). .

Combining Theorem 21, Theorem 22, Theorem 23, the following theo-
rem can be got.
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Theorem 24. For any G € T2,, G = T3 with equality if and only if
G=Ts.

Theorem 25. Let T} € 7;,1,9,
then Ty > T2 > T3.

Proof. First prove Ty > T5. Suppose the vertices of one Cy in T is denoted
by u, 1,2, -+ ,Zg-1. By €q.(3),

T, € T2, Tz € T2, be defined previously,

'rnk(Tl) = me(Ty — xl.’Bz) +mp_ 1 (Th — 21 — T2)
and

mg(T) = my(To — vwp) + mp_y (T2 — v — wp).
When g = 3, (T} — z122) & (T> — vwp); when g > 3, by Lemma 8, (T; —
xlxg) bas (Tz . vw,,).

By Lemma 8 and Lemma 2, (T} — ) — z2) > (T2 — v — wp).
Next prove T > T3. Suppose the vertices of C, in T3 is denoted by

Uy Y1,Y2, 1 Yg—-1- By GQ‘(3)’
me(T2) = me(T2 — y192) + me—1(T2 — y1 — v2)

and
mi(T3) = me (T3 — vap) + M1 (T3 — v — 3).

When g = 3, (To — y1y2) = (T3 — vzp); when g > 3, by Lemma 8, (T2 —

n1y2) = (T3 — vzy).
By Lemma 8 and Lemma 2, (T2 — y1 — y2) > (T3 —v — zp).
O

Combing Theorem 12, Theorem 17, Theorem 24 and Theorem 25, the
main result Theorem 1 can be got.
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