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Let D(G) denote the signless Dirichlet spectral ra-
dius of the graph G with at least a pendant vertex, and
m1 and 7y be two nonincreasing unicyclic graphic degree
sequences with the same frequency of number 1.

In this paper, the signless Dirichlet spectral radius of
connected graphs with a given degree sequence is stud-
ied. The results are used to prove a majorization theo-
rem of unicyclic graphs. We prove that if m; < mg, then
D(G1) £ D(G3) with equality if and only if m; = m9,
where G| and G3 are the graphs with the largest sign-
less Dirichlet spectral radius among all unicyclic graphs
with degree sequences m; and 72, respectively. Moreover,
the graphs with the largest signless Dirichlet spectral ra-
dius among all unicyclic graphs with k& pendant vertices
are characterized.

Key words: Signless Dirichlet spectral radius; Degree se-
quence; Unicyclic graph; Majorization.
AMS Classifications: 05C50.

1 Introduction

Let G = (V(G), E(G)) be a connected simple graph with
vertex set V(G) and edge set E(G). For a vertex u € V(G),
N(u) and d(u) denote the neighborhood and degree of u, re-
spectively. A non-increasing positive integers sequence m =
(do,d1, - -,dn-1) is called the graphic degree sequence if there ex-
ists a simple graph with degree sequence 7. The signless Lapla-
cian matrix of G is defined as Q(G) = D(G)+ A(G), where A(G)
and D(G) are the adjacency matrix and the diagonal matrix of
vertex degrees of G, respectively. Let m; = (do,ds,-+,dn—1) and
Ty = (dy,d}, -+, dl,_;) be two nonincreasing positive sequences.

t t n—1 n—1
IfYdi< > difort=0,1,---,n—2and Y d; = Y d, thenm,

i=0 i=0 i=0 i=0
is said to majorize m, and is denoted by m; < 7o (see [8]). Let
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MG) and u(G) denote adjacent spectral radius and the sign-
less Laplacian spectral radius of G, respectively. Biyikoglu et
al. in [1] and Zhang in [8] considered the relation between the
maximal spectral radius and signless Laplacian spectral radius
of the graphs in two classes of trees with given degree sequences,
respectively. They proved the following result:

Theorem 1.1 (/1],/8]) Let m1 and mo be degree sequences of
trees on n vertices. Assume that G and G, are the graphs with
the mazimal signless Laplacian spectral radius (resp. spectral
radius) among all trees with given degree sequences m, and T,
respectively. If my < ma, then u(Gi1) < u(Ga) (resp. A(Gp) <
A(G2)) with equality holds if and only if m, = mo.

Such a theorem is called the majorization theorem. Let 0, be
the set of unicyclic graphs with given degree sequence . In the
sequel, Liu et al. in [4] and Zhang in [9] proved the majorization
theorems for unicyclic graph.

Theorem 1.2 ([4/,[9]) Let m1 and w2 be unicyclic graphic de-
gree sequences on n vertices. Assume that G; and Gy are the
graphs with the mazimal signless Laplacian spectral radius (resp.
spectral radius) in Qr, and Q,, respectively. If my Q o, then
(G1) < u(Ga) (resp. M(G1) < MGz)) with equality holds if and
only if m = mo.

Subsequently, Liu et al. in [5] proved that the majorization
theorem hlods for pseudographs. Let G be a simple connected
graph with pendant vertex set 0V and nonpendant vertex set
Vo. In this paper, we assume that dV is not empty. The signless
Dirichlet eigenvalue is a real number A such that there exists a
function f # 0 on V(G) such that

{ Q(G)f(u) = Af(u) ue W,
flu)=0 ue V.

The signless Dirichlet spectral radius D(G) is the largest sign-
less Dirichlet eigenvalue (see {7]). Zhang et al. in [7] proved
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a majorization theorem for trees concerning signless Dirichlet
spectral radius.

Theorem 1.3 (/7]) Let m; and m; be two tree degree sequences
such that they have same frequency of the number 1. If my < 7y,
then D(T1) < D(T3) with equality holds if and only if m, = mo,
where T and Ty are the graphs with the mazimal signless Dirich-
let spectral radius among all trees with given degree sequences my
and mo, respectively.

Let G be the set of graphs with at least a pendant vertex. G
is called an extremal graph in G, if G has the maximal signless
Dirichlet spectral radius in G. Motivated by the above results,
we will show that the majorization theorem holds for unicyclic
graphs, and our main result can be stated as follows:

Theorem 1.4 Let m; and my be two unicyclic degree sequences
such that they have same frequency of the number 1. If my < o,
then D(G,) < D(G,) with equality holds if and only if 7, =
7y, where G1 and G, are the extremal graphs in Q,, and Q,,
respectively.

2 The signless Dirichlet spectral radius of
connected graphs

In this section, we will study signless Dirichlet spectral radius
of connected graphs with same degree sequence. Denote by

<Qff> u§E(f(U) + f(v))?

<fif> %‘/f“‘(v)

Ac(f) =

the Rayleigh quotient of signless Laplacian matrix. Then we
have
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Lemma 2.1 ([7]) Let G be a graph such that OV is not empty.
Denote by S the set of all real-valued functions f on V(G) with
f(u) =0 for any u € 8V. Then

(1)D(G) = max Ag(f). Moreover, if Ac(f) = MG) for a

function f € S, then f is an eigenfunction of A\(G).
(2) D(G) > 0. Moreover, if f is an eigenfunction of D(G),
then f(v) > 0 for all v € Vo(G) or f(v) <0 for all v € Vp(G).

In [7], the unit eigenvector f of D(G) is called a Dirichlet
Perron vector of G if f(v) > 0 for all v € V4(G). Denote by
G — uv the graph obtained from G by deleting an edge uv in G
and by G + uv the graph obtained from G by adding an edge
uv.

Lemma 2.2 ([7]) Let G be a graph such that OV is not empty.
Assume u,v,z € Vy and y € V(G) such that uv,zy € E(G) and
uz,yv ¢ E(G). Let f be the Dirichlet Perron vector of G and
G' = G—-w—zy+uz+yv. Then D(G') > D(G) if f(u) = f(y)
and f(z) > f(v). Moreover, D(G') > D(G) if one of the two
inequalities is strict.

Lemma 2.3 ([7]) Let G be a graph such that 8V is not empty,
and P be a path from a non-pendant vertex vy to another non-
pendant verter ve. Suppose that viu; € E(G), vou; € E(G) and
u; 1s not on the path P fori=1,2,---,t witht < d(v;) — 2. By
deleting the t edges vyu1,viug, -, v1u; and adding the t edges
Volly, Ugllg, * + - , Vol We get a new graph G'. Let f be the Dirichlet
Perron vector of G. Then if f(v1) £ f(v2), we have

D(G") > D(G).

Let F, be a set of connected graphs with same degree se-
quence 7, where the frequency of the number 1 in 7 is at least
1. It is easy to see that the following corollary holds.

Corollary 2.4 Let G be an extremal graph in F, and f be the
Dirichlet Perron vector of G. If z,y € V(G) and f(z) > f(y),
then d(z) > d(y).
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Lemma 2.5 Let G € F, and f be the Dirichlet Perron vector
of G. If there are three vertices z,y,z € V(G) such that zy €
E(G), zz ¢ E(G), f(z) = f(v) for allv € N(2) and f(z) >
f(z) > f(y), G is not the extremal graph in F,.

Proof. Assume that G is the extremal graph in F;. Since
f(2) > f(y) 2 0, z is not a pendant vertex and has at least two
neighbors. Furthermore, d(z) > d(y) by corollary 2.4. There
must exist a vertex w; € N(z) such that w;y ¢ E(G) and
wy; # y. Otherwise, every vertex v € N(z) with v # y is ad-
jacent to y. We have N(z) \ {y} € N(y) \ {z}, which implies
d(y) > d(z),a contradiction.

Let P be a path from z to 2. Then there exists we € V(P)N
N(z). We consider two cases.

Case 1: y ¢ V(P). Let Gy = G — 2y — zwz + 2z + yws if
wey € E(G) or G, = G — zy — zw; + zz + yw; if ywp € E(G).
Since f(z) = f(2) > f(y), f(z) > f(wy) and f(z) > flws),
we have G, € F, and D(G;) > D(G) by Lemma 2.2. It is a
contradiction to our assume that G is the extremal graph in 7.

Case 2: y € V(P). If N(2) \ {ws} C N(y), then y # wo
and yws ¢ FE(G) by the above discussion. Let Go = G — zy —
2wy + T2 + ywo. Since f(z) > f(y) and f(z) > f(w2), we have
G, € Fr and D(G;) > D(G) by Lemma 2.2. It is a contradiction
to our assume that G is the extremal graph in F,. Now assume
that there exists a vertex ws such that w3 € N(z) \ {w2} and
w3 € N(y). Let G3 = G—zy— zws+yws+z2. Since f(z) > f(y)
and f(z) > f(ws), we have G3 € F, and D(G3) > D(G) by
Lemma 2.2, a contradiction. So G is not the extremal graph in
F. A

Theorem 2.6 Let G be an extremal graph in F, and f be the
Dirichlet Perron vector of G. Then the vertices of G can be
relabeled {vo,v1,: -+, Vn-1} such that f(vo) > f(v1) = f(v2) >
oo 2 f(vn-1), d(wo) 2 d(v1) > d(v2) = -+ > d(vn-1), and
dist(ve) < dist(vy) < dist(ve) < -+ < dist(v,—1), where dist(v;)
1s the distance between v; and vp.
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Proof. Assume that V(G) = {vo,v1, " -, Vn—1} such that f(vo) >
f(v1) > f(v2) > -+ > f(vn-1). Then by Corollary 2.4, we have
d(v) > d(v1) > d(va) > -+ = d(v,-1). Furthermore d(v;) =
d(v;) if f(v:) = f(v;). In the following, we prove dist(vo) <
dist(vy) < dist(vp) < -+ < dist(vn—1) by induction. Clear-
ly, dist(vg) < dist(v;). Assume that dist(vo) < dist(vy) <
dist(vy) < --- < dist(v;). We will prove that dist(v;) < dist(vis1)-
Let ‘/1 = {’Uo, V1, ,'Ui} and % = {’Ui+1, Vig2y " vn—l}- Note
that G is connected. There exists the smallest integer s €
{0,1,2,---,i} such that N(v,)NV; is not an empty set. Without
loss of generality, assume f(v;) > f(vit1)- In the following we
prove dist(v;) < dist(viy1).

First, we prove dist(v;) < dist(vs) + 1. Otherwise, we have
dist(v;) > dist(v,) + 1. Clearly, v; # v, and v; ¢ N(v;). Let
v, € VaN N(v;). Then there are three vertices vp, v;, vs such that
vsvp € E(G) and f(vs) = f(vi) > f(vig1) = f(vp). Let vy be any
vertex in N(v;). If v, € Vo, we have f(vs) > f(vig1) = f(vg). If
v, € V}, we have dist(v,) < dist(v;) — 1 < dist(vy) +1 -1 =
dist(v,). Thus s < g such that f(vs) > f(v,). So we have f(vs) >
f(v,) for any v, € N(v;). Then G is not an extremal graph in
F» by Lemma 2.5, a contradiction. So dist(v;) < dist(vs) + 1.
Let P be the shortest path from vy to v;+; and v; be the last
vertex which belongs to V; on the path P. Note that N{v;)NVs is
not an empty set. So dist(v,) < dist(v;). We have dist(vit1) >
dist(vy) + 1 > dist(vs) + 1 > dist(v;). B

3 The majorization theorem for unicyclic graph

In this section, we will give the majorization theorem for
unicyclic graph involving signless Dirichlet spectral radius.

Lemma 3.1 (/8]) Let m, and w2 be two nonincreasing graphic
degree sequences, where m = (do,d1,- - ,dn-1), 72 = (dg, d}, -,
d._,). If my Q m,, then there exist a series of graphic degree
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sequences Ty, Ty, -+, My Such that my A7) I wh Q-+ QA7) < my,
and only two components of m; and m;1 are different by 1.

Proof of Theorem 1.4: Let G; and G, be the extremal
graphs in §,, and §),,, respectively. Assume that f is the Dirich-
let Perron vector of G;. Then by Theorem 2.6, the vertices of
G, can be relabeled {vo, vy, - -+, vn—1} such that f(ve) > f(vy) >
F2) 2 - > fvn-a), d(we) 2 d(v1) 2 d(vg) > -+ > d{va-r),
and dist(vo) < dist(vy) < dist(vg) < --- < dist(v,-1). By Lem-
ma 3.1, without loss of generality, assume m, = (do, d1,- -, dn—1)
and mp = (dg,d}, - -,d,_;) such that d, =d, — 1, d, = d, + 1
with0<r<s<n-1,andd, =d, for m # r,s. Note that
m; and me have the same frequency of the number 1. We have
ds =d,+12>2+1=23. Since G; is a unicyclic graph, there
exists a vertex v; which is not in any path from v, to v, such
that v, € N(v;). Let G = Gy — vsv, + v,v. Since f(v,) > f(vs),
we have G € Q,, and D(G;) < D(G) < D(G3) by Lemma 2.3.
[ |

Let Uy be the unicyclic graph obtained from C; by attaching
k paths of almost equal lengths at one vertex, where Cj is a
cyclic of length 3. Then we have the following result

Lemma 3.2 Let v = (k,2,---,2,1,---,1) such that the fre-
quency of the number 1 is k. Then Uy is the only extremal
graph in €2,

Proof. Let G be an extremal graph in §2, and f be the Dirichlet
Perron vector of G. Assume that C is the cyclic of G. Then by
Theorem 2.6, the vertices of G can be relabeled {vo, vy, -+, vn-1}
such that f(vo) = f(v1) > f(us) 2 -+ > f(vav), d(vo) >
d(vi) > d(ve) > --- > d(vn-1), and dist(vg) < dist(v;) <
dist(vy) < -++ < dist(v,-1). So we have d(v) = k, d(v;) =
d(v2) == d(vn—k—l) = 2 and d(vn—k) == d(vn—-l) =1
Clearly, vo € V(C).

Claim: f(z) > f(u) for any z € V(C) and u € V(G)\ V(C).

Let zy € E(C). Without loss of generality, assume z #
Vo,y # Vo and u ¢ OV. Let uz12;--- 2z, be the path such that
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d(u) = d(z1) = d(22) = -+ = d(2m-1) = 2 and d(2) = 1. Since
f(z) > f(zm) and f(y) > f(zm), we have min{f(z), f(y)} >
f(zm-1). Otherwise, let G1 = G — 2pm_12m — TY + Zm-1T + Zm¥Y
if f(y) € f(zm-1) or Gi = G = Zm—12Zm — TY + Zm_1Y + ZmT
if f(z) € f(zm-1). Then Gi € Q, and D(G;) > D(G) by
Lemma 2.2. It is a contradiction to our assume that G is the
extremal graph in Q,. If min{f(z), f([¥)} < f(2m-2), let G2 =
G — 2Zm-22Zm—1 — TY + Zm—2T + Zm-1¥Y if f(y) < f(2m-2) Or Go =
G = Zm—2Zm—1 — TY + Zm—2y + 2m-1Z if f(z) < f(2m-2). Then
G2 € Q, and D(G;) > D(G) by Lemma 2.2, a contradiction. So
min{f(z), f(¥)} > f(2m-2). By repeating the similar discussion
as above, we have f(z) > min{f(z), f(y)} > f(u).

By the claim, we have vy, v;,v2 € V(C). If vivp ¢ E(C),
there exists v, € V(C) and v, ¢ V(C) such that v,v; € E(C)
and v, € N(vg). Clearly, vs ¢ N(v) and f(vs) > f(v;) by the
claim. Let G' = G —vov; — v1Vs + VoVs +v1v;. Then G’ € ), and
D(G'") > D(G) by Lemma 2.2, a contradiction. So v1v, € E(C).
Since dist(vg) < dist(v;) < dist(vg) < --- < dist(vn-1), we have
|dist(w) — dist(z)| < 1 for any w,z € V. So G = Ui and Uy is
the only extremal graph in Q,. B

Theorem 3.3 Let G be a unicyclic graph with k pendant ver-
tices. Then D(G) > D(U:) with equality holds if and only if
G = U.

Proof. Let 7w be the degree sequence of G. Clearly, # < v.
Then we have D(G) > D(Ui) with equality holds if and only if
G = Ui by Theorem 1.4 and Lemma 3.2. B
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