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Abstract

In this paper we will determine the NBB bases with respect to
a certain standard ordering of atoms of lattices of 321 — 312 — 231-
avoiding permutations and of 321-avoiding permutations with the
weak Bruhat order. Using our expressions of NBB bases we will
calculate the Mébius numbers of these lattices. These values are
shown to be related to Fibonacci polynomials.

1 Introduction

In this paper we give expressions of NBB bases of the lattices of 321-
avoiding perinutations and of 321 — 312 — 231-avoiding permutations with
added maximums and calculate the Mébius numbers of these lattices. These
values are shown to be related to Fibonacci polynomials which we will in-
troduce in Section 2. .

Let S,.(321 — 312 — 231) (resp. Sn(321)) be the partially ordered set
of the 321 — 312 — 231-avoiding (resp. 321-avoiding) permutations with
the weak Bruhat order with an added maximum for n € N. We will de-
termine the NBB bases for S,,(321 — 312 — 231) and S,(321) with respect
to a natural total ordering of their atoms. Using some modified Fibonacci
polynomials and the e expressions of the NBB bases we will determine the
Mébius numbers of 5, (321 — 312 — 231) and 5, (321).

Let P be a poset and Int(P) be the set of intervals of P. The function p :
Int(P) - Z is called the Mébius function if u satisfies szySz p(z,y]) =
0z,z. If P has a maximum element 1 and a minimum element 6, we set
u(P) := u([0,1]). We call u(P) the Mébius number of P.

Our main result is the following.

ARS COMBINATORIA 132(2017), pp. 59-67



Theorem 1.1. For n € N,n > 3, we have u(S,(321 — 312 — 231)) =
1(Sn(321)) = F,_2(—1) where F,(q) is a modified Fibonacci polynomial
which will be defined in Section 2.3.

2 Preliminaries

2.1 Bounded Below Sets

In this subsection we introduce a tool to calculate Mébius numbers of lat-
tices which is given in Blass and Sagan’s paper [2]. Throughout this sub-
section L will denote a finite lattice.

We will use V for the join (least upper bound) and A for the meet
(greatest lower bound) in L. Since L is finite it also has minimum 0 and
maximum 1. Set u(L) := p([ﬁ,ﬂ) We give a combinatorial description of
u(L). Let A(L) be the set of atoms of L. Endow A(L) with an arbitrary
total order which we denote <4 to distinguish it from < in L. In Blass and
Sagan’s paper the authors give an arbitrary partial order to A(L) but in
this paper only the case of a total order will be considered. A nonempty
set D C A(L) is a bounded below set (BB set for short) if for every d € D
there is an a € A(L) such that a 94 d and ¢ < VD. Hence a € A(L) is
simultaneously a strict lower bound for d in the total order <4 and for vD
in <. We will say that B C A(L) is an NBB set if B does not contain any
bounded below set D. In particular an NBB set is not a BB set. We will
call B an NBB base for 1if VB =1 and B is an NBB set.

The following theorem is a special case of Blass and Sagan’s result (2].

Theorem 2.1. Let A(L) be the set of atoms of a finite lattice L and <4
be a total order on A(L). Then we have

p(L)=> (-1)& (1)
B

where the sum is over all NBB bases of 1 and |- | denotes cardinality.

Lemma 2.1. Let A(L) be the set of atoms of a finite lattice L with a
total order 9 and X C A(L) be an NBB base for 1. Let a € A(L) be the
minimum with respect to J. Then we have a € X.

Proof. Ifa g X then X is a BB set since for any = € X we have a <z and
z < VX = 1. This contradicts the assumption that X is a NBB set. O

2.2 Weak Bruhat Order

In this subsection we will introduce the weak Bruhat order [4]. Let o be
an element of the permutation group S,, for n € N. We set Inv(o) :=
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{G,HN <i<j<n,0(i) >0(5)}. Wewrite o <7 if and only if Inv(o) C
Inv(t). This defines the weak Bruhat order. In particular the weak Bruhat
order is a lattice.

Remark 2.1. For permutations g(1)o(2) <+ -a(n),7(1)7(2) -+ - 7(n) € Sy,
if 7(1)7(2) - - - 7(n) covers o(1)o(2)---o(n) in the weak Bruhat order then
we have

1. o(k) = 7(k) for k # 4,7,
2. o(i) = 7(j) = o) = 1 = 7(6) = 1

for some 1 < i < j < n. This is a straightforward consequence of the
definition of the weak Bruhat order. Hence we omit the proof.

2.3 Modified Fibonacci Polynomials

In this subsection we introduce some modified Fibonacci polynomials.

Definition 2.1. Define the sequences {Fn(q)}nen by the following recur-
rence relation

1. Fi(q) =1 and Fa(q) =1,
2. Fit2(q) = Fit1(q) + ¢Fi(q) for k> 1.
We call {Fn(q)}nen modified Fibonacci polynomials.

The Fibonacci polynomials {F!(q)}nen are defined by the recurrence
relation Fy, »(q) = ¢Fy,,(q)+Fy(q) for k > 1 with Fi(g) = 1and F3(q) =4
[5]. It is easy to see that F}(g) = ¢*~1Fi(g~2%).

The right sparse subsets of [n] are the subsets which contain no pair of
adjacent elements and which do not contain 1. There are 5 right sparse

subsets ¢, {2}, {3},{4},{2,4} of [4].
A simple calculation yields the following proposition.

Proposition 2.1. We have

> ¢! = Fa(q) (2)

X:right sparse set of [n—1]

forneN.
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3 The case of 321 — 312 — 231-avoiding permu-
tations

Let S,,(321,312,231) be the set of 321 — 312 — 231-avoiding permutations
in Sp. Let V = {a1,a9,...,ax} with @) < a2 < --- < ax be any subset
of positive integers. The standardization of a permutation = on V is the
permutation st(7) on [n] obtained from 7 by replacing the letter a; with
the letter i. For example st(5248) = 3124.

Lemma 3.1. For a permutation o(1)o(2)---o(n) € S,(321,312,231), if
(i) =0(j) +1 for some 1 <i< j<n, then we have j =i + 1.

Proof. If j > i+ 2, we have 0(i + 1) < 0(j) =1 or o(i + 1) > o(j) + 2.
In the case of o(i + 1) < o(j) — 1, we have st(o(i)a(i + 1)o(5)) = 312
and this contradicts the assumption that o(1)o(2)---o(n) is an element of
5,(321, 312, 231). In the case of o(i + 1) > a(j) + 2, we have st(o(i)o(i +
1)a(j)) = 231 and this contradicts the assumption that o(1)a(2)---o(n) is
an element of 5,(321,312,231). Hence we have j =i + 1. a

Recall that an order ideal of a poset P is a subset I such that if z € I
and y <z theny € I.

Proposition 3.1. The poset S,(321,312,231) is an order ideal in the weak
Bruhat order.

Proof. For permutations 7 = 7(1)7(2) -- - 7(n) € S,(321,312,231) and 0 =
0(1)o(2)---o(n) € S,, we show that if o < 7 then ¢ € §,(321,312,231).
By Remark 2.1 and Lemmna 3.1, we have

1. o(k) =7(k) for k #i,i+1,
2.0()=myo(i+l)=m+1,7@i)=m+land7(i+1)=m

forsomel <i<nandl<m<n-1.

Thus 7 and o coincide everywhere except for the pair of adjacent entries
at positions ¢ and i+ 1, which are m,m+1in ¢ and m+1,m in 7. Clearly
the only patterns in ¢ which possibly do not appear in 7 must involve the
two elements m and m + 1.

Now, it is evident that there cannot be any occurrence of 321 in o
involving m or mn + 1, since otherwise the same pattern would appear in 7.

Analogous arguments show that an occurrence of 312 in ¢ involving m
or m+ 1 would imply an occurrence of 321 in 7. Hence o does not contain
a 312 pattern.

Similarly an occurrence of 231 in ¢ involving m or m+1 would imply an
occurrence of a 321 pattern in 7. Hence ¢ does not contain a 231 pattern.
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Then we can conclude o € S, (321, 312,231) and therefore S,(321, 312,231)

is an order ideal in weak Bruhat order.
a

Definition 3.1. Let 5,(321 — 312 — 231) be the partially ordered set of
321 — 312 — 231-avoiding permutations of length n with the weak Bruhat
order with an added mazimum for n € N. We denote the added mazimum
by 1.

Our poset 3'\(321 312 —231) is a lattice because the set of 321 —312—
231-avoiding permutations is an order ideal of the weak Bruhat order. We
denote the join operator of s, (321 — 312 — 231) (resp. the weak Bruhat
order) by V(a21,312,231} (resp. V).

For permutations o, 7 € 5,(321,312,231) 0 V(321,312,231} T = TifovT ¢
S.(321,312,231) and 0 V(321,312,281 T = 0 VT if 0 V T € 5,(321, 312, 231).

We denote the adjacent transposition that mterchanges iand i+ 1 by
;. The set of adjacent transpositions {o1,02,...,0n-1} is the set of atoms
of 5,(321 — 312 — 231).

Since the join of o; and ¢;41 in the weak Bruhat order has a 321-pattern,
we can state the following Lemnma.

Lemma 3.2. We have (o] V{321’312,231} Ji+1 = T fOT 1<i<n— 2.

We give a total order <3 312,231} as follows,

01 <4321,312,231} 02 (321,312,231} * " * <{321,312,231} On-1- (3)
Lemma 3.3. For 1< ji <ja < - <ji <n—1with jpop1 — jp = 2, we
have V{321'312’231}{0j1,0'j2, v ,O’jl} =0§,0j,...0j.
Proof. The join of 6},,0j,,...,0; in the weak Bruhat order is 5,05, ... 03
since 0;,0;, = d;,0;, for p,q € {j1,72,...5t}. Also we have ¢;,0;,...0;5 =
2. (W =101+ )70 +2)- - (G2 — D@2+ D +2)--- (i - (G +
1)51(ji +2) - - - n. Hence the permutation o; 0, ...0; has no 321-patterns,
231-patterns and 312-patterns. O

Proposition 3.2. Let {0;,,0i,,...0:} be a subset of the atoms of§n(321—
31%— 231) with i} < iy < --- < ix.Then {0;,,0i;,...0:,} is an NBB base
of 1 if and only if

1. i1 =1,ip =2,
2. ip+2<ipy for2<p<k-1.
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Proof. (=)

We have i, = 1 by Lemma 2.1 since oy is the minimum with respect
to 4. If V{321'312,231}{0i2,0}'3, ..+,0i } = 1 then the set {04,045, ..,04. }
is a BB set since 0y < 1 and 0} ¢ {0i,,04;,...,0i,}. This contradicts the
fact that {o;,,0i,,...,0;,} is an NBB base. Hence we have

V(321,312,231} {05, Tizy - - -1 Oi } # 1. From Lemimna 3.2 we have ip+2<
ipt1 for 2 <p <k —1. Ifi; > 3, then we would have
V{32]’3]2,231}{0’i1 1 0dgy0ey Uik} =04,0iy...04, by Lemma 3.3, and this con-
tradicts the assumption that the join of {ci,,04,,...,0:,} is 1. Hence we
have iy = 2.

(=) ~

We have V(391,312,231}{0%,,045,...,05,} = 1 since 4; = 1,43 = 2 and
01 Vog has a 321-pattern. For 1 < p; < py < --- < p; < k, we have to show
that {aim,aipz,...,aim}(c {o1,02,...,0k}) is not a BB set. If p; = 1,
{aim 1Giyyseres Ti m} is not a BB set since ¢; is the minimum with respect
to Q.

If py > 2, then V{321'312'231}{0’,‘” 1Tipysene ’oim} = 0y, 0i,, '+ i, by
Lemma 3.3. Since 0p < V(321 312,231} aim,oi”,...,aim} if and only if
P € {ipysipss---1ipn}, the set {0y, ,0:,,...,0:, } is not a BB set. O

—

Theorem 3.1. 1(S,(321 — 312 — 231)) = F,_2(-1)

Proof. From Theorem 2.1 and Proposition 3.2 we have u(fS'Z (321 — 312 —
231)) = 3= 5 (—1)X| where the sum is over {0;,, 0i;,...,0:,} C
{01,0’2, cee ,0'.,.,_1} with

1.4y =1,ip = 2,
2. ip+2<4pfor2<p<k-1.

Since i; = 1 and i = 2 we have u(5,(321 — 312 — 231)) = (-1)2 x
>y (=)I¥! where the sum is over right sparse sets of [n — 2]. O

4 The case of 321-avoiding permutations

Let S,(321) be the set of 321-avoiding permutations in S,,.

Proposition 4.1. The poset S,(321) is an order ideal in the weak Bruhat
order.

Proof. 1t is sufficient to show that if o has a 321-pattern with ¢ < 7 in the
weak Bruhat order then 7 has a 321-pattern. For 0,7 € S, with o0 < 7
there exist 1 < i < j < n such that



1. o(k) = 7(k) for k #1,7,
2.0())=1(J)=0()-1=7() - 1.

from Remark 2.1. Set o(i) = 7(j) = m. If o contains an occurrence of
321 not involving its elements of index i and j, then obviously the same
occurrence appears in 7.

Otherwise, suppose that o(i) = m is involved in an occurrence of 321 in
o. If such an occurrence has elements preceding (%), then such elements
must be greater than m+1, analogously, if such an occurrence has elements
following o (i), then such elemnents must be smaller than m. Thus the same
occurrence must appear in T.

A similar argument can be used if o(j) = m + 1 is involved in an
occurrence of 321. Therefore we can conclude that $,(321) is an order

ideal.
a

Therefore the set of permutations which contain no 321-patterns is an
order ideal in the weak Bruhat order.

Definition 4.1. Let 3’:(321) be the partially ordered set of 321-avoiding
permutations with the weak Bruhat order with an added mazimum for n €
N. We denote the added mazimum by 1.

Our poset .§:(321) is a lattice because the set of 321-avoiding permu-
tations is an_order ideal of the weak Bruhat order. We denote the join
operator in Sn(321) (resp. the weak Bruhat order) by V(az1) (resp. V).

For permutations o,7 € 5,(321), 0 V(az1} 7 = 1if o V 7 has a 321-pattern
and o V(321) 7 = ¢ V 7 if 0 V 7 has no 321-patterns.

Lemma 4.1. We have 0; V301 041 = 1 for1<i<n-2.

Proof. The join of o; and 041 in the weak Bruhat order has a 321-pattern.
O

We give a total order <i33; on {01,02, -+ ,0n_1} as follows:

0y <321 02 <321 *+* <321 On—1- (4)

A proof analogous to that of Lemma 3.3 yields the following result.

Lemma 4.2. For 1 < ji <ja<--- <ji £n—1 with jp41 — Jp = 2, we
have V321{ajl'aj2v""0jl}=0j10j2“'0-j('

Proposition 4.2. Let {0;,,04,,...,0i,} be a subset of the atoms of§';(321)
with i) < i < --+ < ix.Then {04,,0i,,...,04.} is an NBB base of 1 if and
only if
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1. 43 =1,ip =2,
2 ip+2<idpy for2<p<k-1.

Proof. (=)

We have i; = 1 by Lemma 2.1 since ¢ is the minimum with respect
to 4. If Vagl{a,-z,a,-a,...ai,‘} = 1 then {Uig:a'i;;---:aik} is a BB set
since 0; < 1 and o7 ¢ {0i3,0i5,...,0: }. This contradicts the fact that
{oi,0i,,...,0:} is an NBB base. Hence we have Va1 {0i,,04;,...,04,} #
1. From Lemma 4.1 we have i, +2 < ipyy for 2 <p < k-1 Ifiz > 3,
then we would have V32;{0;,,04,,...,04.} = 05,04, ...0i, # T by Lemma
4.2. This contradicts the assumption that the join of {¢y,,04,,...,0:,} is
1. Hence we have i3 = 2.

(<) -

We have Vao1{0;,,0i,,...,0i, } = 1 since i3 = 1,%2 = 2 and 0 V 03 has
a 321-pattern. For 1 < p; < po < -+ < g < k, we have to show that
{04,060, 10i,, } is not a BB set. If p; = 1, {0i,,10i0,s-- 104, } is not
a BB set hecause o is the minimum with respect to «.

If py > 2, then V331 {0y,,0i,,,...,0i,} = 0i, 04, ---0;, by Lemma
4.2. Hence {0i, ,0i,,,-..,0i, } is not a BB set,
since o, < V321{0i,,, 1 Oipgyene ,aim} ifand only if p € {ip,,%p;, ... ip}. O

An argument analogous to that of previous section then yields the fol-
lowing result.

Theorem 4.1. u(5,(321)) = F,_a(—1)
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