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Abstract

In this paper, we consider the relationship between toughness and the
existence of [a, b]-factors with inclusion/exclusion properties. We obtain that
if €(G) = a - 1 + %! with b > a > 2 where a, b are two integers, then for
any two given edges e; and e, there exist an {a, b]-factor including e|, e3;
and an [a, b)-factor including e, and excluding e;; as well as an [a, b]-factor
excluding e;, e,. Furthermore, it is shown that the results are best possible in
some sense.
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1 Introduction

All graphs considered are simple and finite. We refer the reader to [2] for
terminologies and notations not defined here.

Let G be a graph with vertex set V(G) and edge set E(G). For x € V(G), we
denote by dg(x) the degree of x in G and by Ng(x) the set of vertices adjacent to
x in G. We write Ng[x] for Ng(x) U {x}. The minimum degree of G is denoted by
6(G). For § € V(G), let Ng(S) denote the union of Ng(x) for every x € S. We use
G[S] and G — S to denote the subgraph induced by S and V(G) - §.
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A subset S € V(G) is called an independent set(a covering set) if every edge
of G is incident with at most(at least) one vertex of §. For any disjoint subsets
S, T € V(G), Eg(S, T) denotes the set of edges with one end in S and the other
in T and eg(S,T) = |Ec(S,T)\.

Let f : V(G) — N be an integer function. For any subset X € V(G), we denote
JX) = T iex f(x) and (@) = 0. A spanning subgraph F of G is called an f-factor
of G satisfying dr(x) = f(x) for any x € V(G). When f(x) = k for all x € V(G), F
is called a k-factor. Let g and f be two integer-valued functions defined on V(G)
with g(x) < f(x) for any x € V(G). A (g, f)-factor of G is a spanning subgraph
F satisfying g(x) < dp(x) < f(x) for any x € V(G). F is called an [a, b)-factor if
g(x) = a and f(x) = b for any x € V(G).

Chviétal [7] first introduced the concept of toughness, {G), denoted by

s _
HG) = mm{w(G—S) S cV(G),w(G-S) 22},

where w(G — §) denotes the number of components of G — S and G is not a
complete graph. If G is complete, then #(G) = co. A graph G is k-tough if (G) = k.

Chvital mainly studied the relationship between toughness and the existence
of Hamilton cycles and k-factors. He conjectured that every k-tough graph G has
a k-factor if k|V(G)| is even(k is a positive integer).

Enomoto et al.[8] confirmed Chvétal’s conjecture and showed that the result

is sharp.

Theorem 1.1. ([8)) Let G be a graph. If G is k-tough, |V(G)| = k + 1 and k|V(G)|
is even, then G has a k-factor.

Theorem 1.2. ([8)) Let G be a graph with |V(G)| = k+ 1 and k|V(G)) is even. For
any positive number &, there exists a (k—&)-tough graph G which has no k-factors.

Chen [4] improved Theorem 1.1 by considering k-factors which contain a
specified edge or exclude a specified edge under the similar conditions.

Theorem 1.3. ([4]) Let G be a graph and k > 2. If «(G) > k and k|V(G)| is even,
then for every edge e of G, there exists a k-factor which contains the given edge e,
and there also exists a k-factor which does not contain e.

Katerinis and Wang [11] further extended Theorem 1.1 by considering the
existence of 2-factors in terms of toughness with inclusion/exclusion properties
involved two edges.

Theorem 1.4. ([11]) Let G be a 2-tough graph with at least 5 vertices and let e,,
ez be a pair of arbitrarily given edges of G. Then

(a) there exists a 2-factor in G containing ey, e,;

(b) there exists a 2-factor in G avoiding e}, e;;

(c) there exists a 2-factor in G containing e, and avoiding e,.
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As a generalization of Chvdtal’s conjecture, Katerinis [10] studied the rela-
tionship between toughness and the existence of f-factors, as well as [a, b]-factor.

Theorem 1.5. ([10]) Let G be a graph of order n and a, b be two positive integers
withb 2 a. If (G) 2 a—~ 1+ % and alV(G)| = 0 (mod 2) when a = b, then G has
an [a, b)-factor.

When a = 2, Chen [5] obtained a stronger result.

Theorem 1.6. ([5]) Let G be a graph of order at least 3 and b > 2. If {G) = 1+,
then G has a [2, bl-factor.

Since the toughness condition about k-factors is sharp, we [3] considered the
relationship between toughness condition and the existence of [a, b]-factors for
b > a = 2. We observed the bound of toughness condition in Theorem 1.7 is
sharp. The result improved the toughness conditions in Theorem 1.5 and Theorem
1.6.

Theorem 1.7. ([3]) Let G be a graph of order n and a, b be two positive integers
withb>a 22 If(G) 2 a— 1 + %, then G has an [a, b]-factor.

Much work has been contributed to the existence of factors with given proper-
ties ([1], [141,[15)). In this paper, we consider the existence of [a, b]-factors with
inclusion/exclusion properties under the condition of toughness when b > a > 2.

Theorem 1.8. Ler a, b be two positive integers with b > a > 2 and e,, e; be two
distinct edges of a graph G. If (G) > a~1 + 9;—’ then G contains an [a, bl-factor
containing e) and e,; and an (a, b)-factor containing e\ and excluding e;; as well
as an [a, b]-factor excluding e, and e,.

2 Preliminary lemmas

In order to prove the main theorem, we first give the characterization of (g, f)-
factors due to Heinrich [9].

Theorem 2.1. ([9]) Let G be a graph and g, f be integer-valued functions defined
on V(G). If g(x) < f(x) for every x € V(G), then G has a (g, f)-factor if and only
if for any subset S of V(G),

&(T) - dg-s(T) < f(S),

where T = {x|x € V(G) - S, dg-s(x) < g(x)}.

The following lemma can be deduced from Theorem 2.1.
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Lemma 2.2. ([12]) Let G be a graph and g, f be integer-valued functions defined
on V(G) such that g(x) < f(x) < dg(x) for every x € V(G). Let E, and E; be two
disjoint subsets of E(G), then G has a (g, f)-factor F such that E, C E(F) and
E3 N E(F) = 0 if and only if for any disjoint subsets S and T of E(G)

g(T) - dG—S (T) < f(s) - a(S’ T;Elv EZ) —ﬂ(sa T; El, E2)9

where U = V(G) - S - T, a(S,T; Ey, E3) = 2|[E) N Eg(S)| + |E) N Eg(S, U)| and
B(S,T; Ey, E3) = 2|E; N Eg(T)| + |E2 N EG(T, U

In addition, the lemmas below are essential to the proof of our main theorem.

Lemma 2.3. ([13]) Let G be a graph and H = G[T] such that 6(H) > 1 and
1 <dg(x) < k-1 foreveryx € V(H) whereT C V(G)andk > 2. LetTy,..., Ty,
be a partition of the vertices of H satisfying dg(x) = j for each x € T; where we
allow some T ; to be empty. If each component of H has a vertex of degree at most
k—2 in G, then H has a maximal independent set I and a covering set C = V(H)-1
such that

k-1 k-1
D lk= ey < Y (k= 2k = i,
J=1 J=1

wherec;=|[CNTjandij=UNTj|forj=1,..., k-1

Lemma 2.4. ([3]) Let G be a graph and H = G[T) such that dg(x) = k - 1 for
every x € V(H) and no component of H is isomorphic to Ky where T € V(G) and
k 2 2. Then H has a maximal independent set I and a covering set C = V(G) -1
satisfying

] o k-z . 17 1 ot k-z sel?
V(DI < (k= )i +,-=Zo(’“)"' €< (k=1 )i +;ﬂ,~,

wherei’ = |I'| = [{x|x € I, dy(x) = k=1 = dg(x)}|, i;.’ =|{xixel” =I-r, dy(x) =
J <dg(0M.

3 Proof of the main result

We also need the following lemmas to prove our main theorem.
Lemma 3.1. ([7)) If a graph G is not complete, then {(G) < -;-6(6).

Lemma 3.2. Let G be a graph with toughness (G) 2 a— 1+ 1,‘,—', where a, b are
integers satisfying b > a > 2. Let S, T be a pair of disjoint subsets of V(G). If
S#0andT + 0, then

alT| - dg-s(T) s bIS| - 4.
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Proof of Lemma 3.2. By the contrary, suppose that there exists a pair of disjoint
subsets S, T of V(G) with |S| > 0, IT| > 0 satisfying a|T| — dg-s(T) > bIS| — 4.
That is,

a|T| - dg-s(T) 2 blS| - 3. 1

Moreover, suppose that S, T is a pair of minimal sets respect to (1). Then by
the minimality of S and T we obtain the following claim.
Claim 1.([15])

(1) Given S, if T is a minimal set with respect to (1), then
dg-s(x) <aforallxeT.

(2) Given T, if S is a minimal set with respect to (1), then
dr(x)>b forallx e S.

Let H' = G[T]. If there exist components of H’ which are isomorphic to
K, let m be the number of these components. Set H = H' — mK, — Tq, where
To = {x € T|dg-s(x) = 0}. Denote #, = |Tol-

If [V(H)| = 0, we get w(G — S) = 1o + m. By (1), we have ary + ma > b|S| - 3.
Thatis, 1 < IS| < &(to + m) + 3. f w(G = §) = 1, then either m = L or o = 1.
It follows that b — 1 > a > b|S| - 3. And it implies that |S| = 1 since S # @ and
b > a > 2. Then there exists one vertex x in T such thatdg(x) <a-1+|§| = a.
Since 8(G) 2 2H(G) = 2(a-1)+2“—;1 > a, acontradiction. If w(G-S) = fp+m > 1,
we have
3 a 3

Sl __ 18l _a, La,3
b b(to+m)~ b 2b

w(G-S8) T to+m

That is, b(a — 1) < 3, a contradiction.

Now we consider that |V(H)| > 0. Let H = H; U H, where H, is the union of
components of H which satisfies that dg_s(x) = a — 1 for any vertex x € V(H,)
and H, = H — H,. By Lemma 2.4, H, has a maximal independent set I; and a
covering set C; = V(H,) — I) such that

<

a—l+g—;—15t(G)s

L o S N <
|v<H1)|s(a-a+1)z.+J_Z=(;u+1)zj, |c||s<a-1—a—+7)zl+;ﬂ,-,

where i{ = |I]| = |{x]x € I}, dy,(x) = a -1 =dg_s(X)},
i =lxxely =h -1}, dg,(x) = j<dg-s (), 0 < jSa-2.

On the other hand, let T; = {x € V(H))ldg-s(x) = j} for 1 £ j<a-1. By the
definition of H», we know that there exists one vertex with degree at most a — 2 in
G - S from each component of H,. According to Lemma 2.3, H; has a maximal
independent set I; and a covering set C; = V(Ha) — I such that

a-1 a-1
D@ jej < Y (a=Da- i,
j=1

j=1
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wherec; =|CoNTjlandij =L NTjlfor j=1,..., a~ 1.
SetW=V(G)-S-TandU=SUCU (Ng(I;') NW)U C, U (Ng(ll) N W).
Then

a-2
WUI<ISI+ICi+ ) (a= 1= pif +Z;z,,
Jj=0 Jj=0
a-2 a-1
WG-U)yzm+1g+1i +Zi;’+2i,.
j:o j=0

Now we show that |U| > {G)w(G - U).

It holds obviously when w(G — U) > 1. When w(G - U) = 1, by the previous
discussion we obtain that to = m = 0, then |I;|+|l;| = 1, hence for any independent
vertex x € T, dg-s(x) + |S| 2 6(G) = 26(G) > «(G), and |U| = dg_s(x) +IS| >

#G). o
Therefore
a=2 a=2 a-1
IS1+ICil+ D (a=1- i} + Zﬂ, HG)m + o+ i+ D 07+ Y i) (@)
70 ==

From (1) we have

alto +m) + IV(H1)|+Z(a Dij +Z(a jej 2 bS] -3.

J=1 j=1
It follows that
a-2
alt + m) + |V(H)| + BIC1| +b ) (@ =1 - )i + Z(a e
Jj=0 J=1
a-2 a-1
2 bHGYm + o+ 1y + ), i)+ D (BHG) — bj - a+ j)ij = 3.
=0 =1
That is

a-2

VDI +BICH+b Y (@@= 1= i + Z(a ej
j=0

a-2 -1

> bHG)(i) + Z i)+ Z(bt(G) bj-a+ ji
j=0 J=1

+(bG) —a)to+m) -3
a-2

2 bUG) + ) i) + Z(bt(G) bj-a+ j)i;
j=0 j=1

+(ba-b- 1)ty +m)—-3.
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By Lemma 2.4, we have

-
IVEHDI +bIC1l + b ) (@~ 1= )i

Jj=0
1 a-2
S@-—=+bla-1-—= ))z,+§(;+1+bﬁz
a=2
+b ) (a=-1- i}
=0
a-2
=((@a-Db+1)+1- —)z + Z(ba b+ j+1)if.
Jj=0
Therefore

a-1
D@-2@-pij+a=- DG+ D+1- 2*-’),
j=1

a-2
+Z(ba -b+j+ i

j=0

a-2 a-1
2 b(G)iy +bKG) ) ] + ) (bHG) —bj—a+ j)ij
j=0 J=1
+ba-b-1)t+m)-3
a-2 a-1
> (b + 1)a - 1)i, + b¥(G) Z + Z(bt(G) bj-a+ ji;
j=0 J=1
+Hba—-b—-1)(to +m) - 3.
Finally,
a-2

Z(a 2)a- j)z,+Z(ba b+ j+ )i}
j...
a-2

> Z(bt(G) bj-a+ pij+biG) ) i}

j=0
+(ba b— 1)t +m)-3.

Now we consider the following cases.
Casel. 1o +m>0.
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In this case, we have

a-2

Z(a 2)a - J):,+Z(ba b+ j+ i
Jj=0
a-2
> Z(bt(G) bj—a+ pij+b(G) D 1]
Jj=0

Thus at least one of the following cases must hold.

Subcase 1.1 There exists at least one j satisfying (a — 2)(a — j) > bt(G) - bj -
a+ j. Then 1(G) < "ZL"(;‘;'LW <a-1+%.(j <a-1),acontradiction.

Subcase 1.2 ba—- b+]+l > bt(G) for some j € {0,1,2,...,a-2}. It follows
that #(G) < a — 1 + %%, a contradiction.

Case2. tp+m= 0

In this case, we first show the following claim.

Claim2.C,UC, # 0.

Proof. If C, UC; = 0, then |T| = ij + j‘;,‘ i;. Combined with (1) and (2), we
have

Z(a 2)(bHG) - bj - a+ ji; + (bH(G) - bla - 1) - 1)ifl <3.

]._

Since t(G) 2a-1+ % Land j<a-1,we get

(@=2ITI < D (bla= 1)+ (1 - b)j— i+ (a- iy <3.

j=1

ByClaim 1, |T| > b+1 > 4(b > a > 2), a contradiction. o

Next we show that for any vertex x € C;, d;,(x) = 1(i = 1,2). Without loss of
generality, we may assume that for any vertex x € Cy, dj,(x) = 1. If there exists
one vertex in C, with at least two neighbors in I, then

a-2
WWI<IS1+ICi+ ) = 1= j)if + ij, - L
Jj=0 Jj=0
And
a-2 a-2
IS12 €G)iy + D i + Z,,) 1Cil + Z(a - 1= )i} + Zﬂ,) +1.
Jj=0 j=0 Jj=0
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According to (1), it follows that

a-2 a-1
V()| +BICi+b ) (a—1- i + Z(a jes
Jj=0
a-2
2 bUG)E; + ) i)+ Z(bt(G) ~bj—a+j)ij+b-3
=0 J=l
a-2
> bUGY; + ) i) + Z(bt(G) bj-a+ ji.
j=0 J=1

By the previous discussion, we obtain that

a-2

Z(a 2)a - ])z,+2(ba b+ j+ )i

> Z(bt(G) bj-a+ j)ij+bt(G) Z .

j=0

Similarly to Case 1, we also obtain a contradiction. a
Now, let x € C; and U’ = U - {x}. Then

a-2

WG -U")= (G- U)>t|+ij+sz
j=0 j=0
asdp(x) = 1. And
a-2
)= UI-1<IS|+ICl+ ) (a=1= )i} +Zm—1
Jj=0 j=0

Similarly, we have |U’| 2 §G)(i] + j_'g i + $%} i;) and we also obtain that

a-2
Z(a 2)a- fij+ ) (ba—b+j+ )i}
=l j=0
a-2
> Z(bt(G) bj—a+ jij+b(G) Y ij
Jj=0
a contradiction.
The proof is complete. o

Now we begin to prove our main results.
Proof of Theorem 1.8. Let E;, E; be two edge sets with E} U E, = {e}, e2}.
The theorem holds if and only if G contains an [a, b]-factor F such that E| C E(F),



E, N E(F) = 0 where E; or E; may be empty. By the contrary, suppose that G
does not contain such an [a, b]-factor F. Then, by Lemma 2.2, there exists a pair
of disjoint subsets S, T of V(G) such that

alT| = dg_s(T) > blS| ~ a(S,T; E\,E2) - B(S, T Ei, Ey), 3

where W =V(G)-S —-T,a(S,T; Ey,E}) = 2|E; N Eg(S)| + |E; N Eg(S, W)| and
B(S,T; Ey, E3) = 2|E; N Eg(T)| + |[E3 N E(T, W)|.

Meanwhile, as #(G) 2 a—-1+ "—;—1, by Theorem 1.7, G contains an [a, b]-factor.
Therefore,

a|T| - dg-s(T) < b|S|. C))

Now we show the following claim.

Claim. S #Qand T # 0.

Proof. If S UT = 0, then o(S,T; Ey,E>) = (S, T; E1,E») = 0, and a|T| -
dg.s(T) > blS|, a contradiction to (4).

Then we consider the following cases.

Casel. S =0and T # 0. Then a(S,T; E;,E;) = 0. And we obtain that
B(S,T; E,, E3) # 0from (3) and (4). It follows that E, # 0. Hence either E; = {e,)
orE; = e, ez].

If E; = ey}, then E; = (e}, which is the case of containing ¢, and excluding
e2. According to (3) again,

a|T| - do(T) > =2|E2 N Eg(T)| | E2 N Eg(T, W).

AndalT|-dg(T) < (@a—-6(GHIT| < (@-20G)T| £ 2-a- 3‘—",;—'2)|T| <@2-a)T|.
It yields that (2 — a)IT| > -2|E; N Eg(T)| =| E2 N Eg(T, W)| > -2.

If |7} = 2, then 2(2 — a) > (2 — a)|T] > -2, a contradiction as a > 2.

IfIT)|=1,2|E; N Eg(T)|+|E; N Eg(T,W)| < 1, then2 —a= (2 -a)T| > -1,
a contradiction, too.

If E; = {e1, €2}, then E) = 0, which is the case of excluding ¢, and e;. Then

alT| = dg(T) > =2|E2 N Eg(T)| = E2 0 EG(T, W).
And since 6(G) = 2¢(G) > a + 1, thatis, 6(G) 2 a + 2,
alT| - dg(T) < (a - S(G)T| < -2|T).
If [T| 2 2, then
=2|IT| > =2|E; NEg(T)| —| E2 N Ec(T,W)| > —4,

a contradiction.
IfIT|=1,2|E; N Eg(T)| + |E; N Eg(T, W)| < 1, then

-2> =2|E;NEg(T) —| E2 N Eg(T,W)| > —1,
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Figure 1: A graph contains no [2, b]-factor excluding e;, e, with toughness %

a contradiction, too. o

Case2. S # @and T = 0. Then 8(S,T; E), E;) = 0. Meanwhile, we obtain
that a(S,T; E1, E2) # 0. It follows that E; # 8. Hence either E|, = {e} or

= {e1, €2}

IfE, = {e;}, then E, = {e;]}, which is the case of including e; and excluding e;.
From (3), we have b|S| < a(S,T; E), E2) = 2|E) N Eg(S)| + |[E1 N Eg(S,W)| £ 2,
which is impossible since b > a > 2.

E| = |e}, 2}, then E; = @, which is the case of containing e; and ¢;. And

biS| - 2lEy N EG(S)| —| E1 N Eg(S, W)l < 0.

Then 4iS| < 2|E; N Eg(S)| + |E; N Eg(S, W)| as b > a > 2. We get a contradiction
since 2|E; N Eg(S)| + |E; N Eg(S,W)| < 4.

This complete the proof of the claim.

Now since S # 0 and T # 0, by Lemma 3.2, we have

alT| - dg-s(T) < bS| -
But (S, T; E1, E2) + B(S, T; Ey, Ez) < 4, it follows from (3) that
a|T| - dg-s(T) > b|S| -

a contradiction.
The proof is complete. o

Remark 1. The bound of toughness in Theorem 1.8 is sharp. To see this,
consider the graph G : V(G) = V(A)U V(B)U V(C) where A, B and C are disjoint
with A = Knp+iya-1), B = (nb+ 1)K, and C = Kp(g-1). Set other edges in G are a
perfect matchmg between A and B and all the pairs between B and C. This follows
that 1(G) = &2lieDona-l) « g1 4 221 (G) — a— 1+ % when n — 0. By
Theorem 1.7, we get that G has no [a, b] factor. And it follows immediately that
the bound of toughness in Theorem 1.8 is also sharp.

Remark 2. When a = 2, see Figure 1. The graph G in Figure 1 contains no
(2, b)-factor excluding e, e, with #(G) = 3 >a—1+ %L forb > a=2.
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