Toughness and [a, b]-factors with prescribed properties*

Renying Chang^{1†}, Yan Zhu²

¹ School of Science, Linyi University, Linyi, Shandong, 276005, China

² Department of Mathematics, East China University of Science and Technology, Shanghai, 200237, China

Abstract

In this paper, we consider the relationship between toughness and the existence of [a, b]-factors with inclusion/exclusion properties. We obtain that if $t(G) \ge a - 1 + \frac{a-1}{b}$ with b > a > 2 where a, b are two integers, then for any two given edges e_1 and e_2 , there exist an [a, b]-factor including e_1 , e_2 ; and an [a, b]-factor including e_1 and excluding e_2 ; as well as an [a, b]-factor excluding e_1 , e_2 . Furthermore, it is shown that the results are best possible in some sense.

Keywords: [a, b]-factor; toughness; inclusion/exclusion properties

1 Introduction

All graphs considered are simple and finite. We refer the reader to [2] for terminologies and notations not defined here.

Let G be a graph with vertex set V(G) and edge set E(G). For $x \in V(G)$, we denote by $d_G(x)$ the degree of x in G and by $N_G(x)$ the set of vertices adjacent to x in G. We write $N_G[x]$ for $N_G(x) \cup \{x\}$. The minimum degree of G is denoted by $\delta(G)$. For $S \subseteq V(G)$, let $N_G(S)$ denote the union of $N_G(x)$ for every $x \in S$. We use G[S] and G - S to denote the subgraph induced by S and V(G) - S.

^{*}This work is supported by AMEP of Linyi University. This research was supported by the Fundamental Research Funds for the Central Universities, SRFDP(20130074120021) and SRF for ROCS, SEM.

[†]Corresponding author. E-mail: changrysd@163.com

A subset $S \subseteq V(G)$ is called an independent set(a covering set) if every edge of G is incident with at most(at least) one vertex of S. For any disjoint subsets S, $T \subseteq V(G)$, $E_G(S,T)$ denotes the set of edges with one end in S and the other in T and $e_G(S,T) = |E_G(S,T)|$.

Let $f: V(G) \to N$ be an integer function. For any subset $X \subseteq V(G)$, we denote $f(X) = \sum_{x \in X} f(x)$ and $f(\emptyset) = 0$. A spanning subgraph F of G is called an f-factor of G satisfying $d_F(x) = f(x)$ for any $x \in V(G)$. When f(x) = k for all $x \in V(G)$, F is called a k-factor. Let g and f be two integer-valued functions defined on V(G) with $g(x) \le f(x)$ for any $x \in V(G)$. A (g, f)-factor of G is a spanning subgraph F satisfying $g(x) \le d_F(x) \le f(x)$ for any $x \in V(G)$. F is called an [a, b]-factor if g(x) = a and f(x) = b for any $x \in V(G)$.

Chvátal [7] first introduced the concept of toughness, t(G), denoted by

$$t(G)=min\{\frac{|S|}{\omega(G-S)}:S\subseteq V(G),\omega(G-S)\geq 2\},$$

where $\omega(G - S)$ denotes the number of components of G - S and G is not a complete graph. If G is complete, then $t(G) = \infty$. A graph G is k-tough if $t(G) \ge k$.

Chvátal mainly studied the relationship between toughness and the existence of Hamilton cycles and k-factors. He conjectured that every k-tough graph G has a k-factor if k|V(G)| is even(k is a positive integer).

Enomoto et al.[8] confirmed Chvátal's conjecture and showed that the result is sharp.

Theorem 1.1. ([8]) Let G be a graph. If G is k-tough, $|V(G)| \ge k + 1$ and k|V(G)| is even, then G has a k-factor.

Theorem 1.2. ([8]) Let G be a graph with $|V(G)| \ge k+1$ and k|V(G)| is even. For any positive number ε , there exists a $(k-\varepsilon)$ -tough graph G which has no k-factors.

Chen [4] improved Theorem 1.1 by considering k-factors which contain a specified edge or exclude a specified edge under the similar conditions.

Theorem 1.3. ([4]) Let G be a graph and $k \ge 2$. If $t(G) \ge k$ and k|V(G)| is even, then for every edge e of G, there exists a k-factor which contains the given edge e, and there also exists a k-factor which does not contain e.

Katerinis and Wang [11] further extended Theorem 1.1 by considering the existence of 2-factors in terms of toughness with inclusion/exclusion properties involved two edges.

Theorem 1.4. ([11]) Let G be a 2-tough graph with at least 5 vertices and let e_1 , e_2 be a pair of arbitrarily given edges of G. Then

- (a) there exists a 2-factor in G containing e1, e2;
- (b) there exists a 2-factor in G avoiding e_1 , e_2 ;
- (c) there exists a 2-factor in G containing e_1 and avoiding e_2 .

As a generalization of Chvátal's conjecture, Katerinis [10] studied the relationship between toughness and the existence of f-factors, as well as [a, b]-factor.

Theorem 1.5. ([10]) Let G be a graph of order n and a, b be two positive integers with $b \ge a$. If $t(G) \ge a - 1 + \frac{a}{b}$ and $a|V(G)| \equiv 0 \pmod{2}$ when a = b, then G has an [a,b]-factor.

When a = 2, Chen [5] obtained a stronger result.

Theorem 1.6. ([5]) Let G be a graph of order at least 3 and b > 2. If $t(G) \ge 1 + \frac{1}{b}$, then G has a [2, b]-factor.

Since the toughness condition about k-factors is sharp, we [3] considered the relationship between toughness condition and the existence of [a, b]-factors for $b > a \ge 2$. We observed the bound of toughness condition in Theorem 1.7 is sharp. The result improved the toughness conditions in Theorem 1.5 and Theorem 1.6.

Theorem 1.7. ([3]) Let G be a graph of order n and a, b be two positive integers with $b > a \ge 2$. If $t(G) \ge a - 1 + \frac{a-1}{b}$, then G has an [a,b]-factor.

Much work has been contributed to the existence of factors with given properties ([1], [14],[15]). In this paper, we consider the existence of [a, b]-factors with inclusion/exclusion properties under the condition of toughness when b > a > 2.

Theorem 1.8. Let a, b be two positive integers with b > a > 2 and e_1 , e_2 be two distinct edges of a graph G. If $t(G) \ge a - 1 + \frac{a-1}{b}$, then G contains an [a, b]-factor containing e_1 and e_2 ; and an [a, b]-factor containing e_1 and excluding e_2 ; as well as an [a, b]-factor excluding e_1 and e_2 .

2 Preliminary lemmas

In order to prove the main theorem, we first give the characterization of (g, f)-factors due to Heinrich [9].

Theorem 2.1. ([9]) Let G be a graph and g, f be integer-valued functions defined on V(G). If g(x) < f(x) for every $x \in V(G)$, then G has a (g, f)-factor if and only if for any subset S of V(G),

$$g(T)-d_{G-S}(T)\leq f(S),$$

where $T = \{x | x \in V(G) - S, d_{G-S}(x) \le g(x)\}.$

The following lemma can be deduced from Theorem 2.1.

Lemma 2.2. ([12]) Let G be a graph and g, f be integer-valued functions defined on V(G) such that $g(x) < f(x) \le d_G(x)$ for every $x \in V(G)$. Let E_1 and E_2 be two disjoint subsets of E(G), then G has a (g, f)-factor F such that $E_1 \subseteq E(F)$ and $E_2 \cap E(F) = \emptyset$ if and only if for any disjoint subsets S and T of E(G)

$$g(T) - d_{G-S}(T) \le f(S) - \alpha(S, T; E_1, E_2) - \beta(S, T; E_1, E_2),$$

where U = V(G) - S - T, $\alpha(S, T; E_1, E_2) = 2|E_1 \cap E_G(S)| + |E_1 \cap E_G(S, U)|$ and $\beta(S, T; E_1, E_2) = 2|E_2 \cap E_G(T)| + |E_2 \cap E_G(T, U)|$.

In addition, the lemmas below are essential to the proof of our main theorem.

Lemma 2.3. ([13]) Let G be a graph and H = G[T] such that $\delta(H) \ge 1$ and $1 \le d_G(x) \le k-1$ for every $x \in V(H)$ where $T \subseteq V(G)$ and $k \ge 2$. Let T_1, \ldots, T_{k-1} be a partition of the vertices of H satisfying $d_G(x) = j$ for each $x \in T_j$ where we allow some T_j to be empty. If each component of H has a vertex of degree at most k-2 in G, then H has a maximal independent set I and a covering set C = V(H)-I such that

$$\sum_{i=1}^{k-1} (k-j)c_j \le \sum_{i=1}^{k-1} (k-2)(k-j)i_j,$$

where $c_i = |C \cap T_i|$ and $i_i = |I \cap T_i|$ for j = 1, ..., k-1.

Lemma 2.4. ([3]) Let G be a graph and H = G[T] such that $d_G(x) = k - 1$ for every $x \in V(H)$ and no component of H is isomorphic to K_k where $T \subseteq V(G)$ and $k \ge 2$. Then H has a maximal independent set I and a covering set C = V(G) - I satisfying

$$|V(H)| \leq (k - \frac{1}{k+1})i' + \sum_{j=0}^{k-2} (j+1)i''_j, \ |C| \leq (k-1 - \frac{1}{k+1})i' + \sum_{j=0}^{k-2} ji''_j,$$

where $i' = |I'| = |\{x | x \in I, d_H(x) = k-1 = d_G(x)\}|, i''_j = |\{x | x \in I'' = I-I', d_H(x) = j < d_G(x)\}|.$

3 Proof of the main result

We also need the following lemmas to prove our main theorem.

Lemma 3.1. ([7]) If a graph G is not complete, then $t(G) \leq \frac{1}{2}\delta(G)$.

Lemma 3.2. Let G be a graph with toughness $t(G) \ge a - 1 + \frac{a-1}{b}$, where a, b are integers satisfying b > a > 2. Let S, T be a pair of disjoint subsets of V(G). If $S \ne \emptyset$ and $T \ne \emptyset$, then

$$a|T|-d_{G-S}(T)\leq b|S|-4.$$

Proof of Lemma 3.2. By the contrary, suppose that there exists a pair of disjoint subsets S, T of V(G) with |S| > 0, |T| > 0 satisfying $a|T| - d_{G-S}(T) > b|S| - 4$. That is,

$$a|T| - d_{G-S}(T) \ge b|S| - 3.$$
 (1)

Moreover, suppose that S, T is a pair of minimal sets respect to (1). Then by the minimality of S and T we obtain the following claim.

Claim 1.([15])

- (1) Given S, if T is a minimal set with respect to (1), then $d_{G-S}(x) < a$ for all $x \in T$.
- (2) Given T, if S is a minimal set with respect to (1), then $d_T(x) > b$ for all $x \in S$.

Let H' = G[T]. If there exist components of H' which are isomorphic to K_a , let m be the number of these components. Set $H = H' - mK_a - T_0$, where $T_0 = \{x \in T | d_{G-S}(x) = 0\}$. Denote $t_0 = |T_0|$.

If |V(H)|=0, we get $\omega(G-S)=t_0+m$. By (1), we have $at_0+ma\geq b|S|-3$. That is, $1\leq |S|\leq \frac{a}{b}(t_0+m)+\frac{3}{b}$. If $\omega(G-S)=1$, then either m=1 or $t_0=1$. It follows that $b-1\geq a\geq b|S|-3$. And it implies that |S|=1 since $S\neq\emptyset$ and b>a>2. Then there exists one vertex x in T such that $d_G(x)\leq a-1+|S|=a$. Since $\delta(G)\geq 2t(G)\geq 2(a-1)+2\frac{a-1}{b}>a$, a contradiction. If $\omega(G-S)=t_0+m>1$, we have

$$a-1+\frac{a-1}{b} \le t(G) \le \frac{|S|}{\omega(G-S)} = \frac{|S|}{t_0+m} \le \frac{a}{b} + \frac{3}{b(t_0+m)} \le \frac{a}{b} + \frac{3}{2b}.$$

That is, $b(a-1) \le \frac{5}{2}$, a contradiction.

Now we consider that |V(H)| > 0. Let $H = H_1 \cup H_2$ where H_1 is the union of components of H which satisfies that $d_{G-S}(x) = a - 1$ for any vertex $x \in V(H_1)$ and $H_2 = H - H_1$. By Lemma 2.4, H_1 has a maximal independent set I_1 and a covering set $C_1 = V(H_1) - I_1$ such that

$$|V(H_1)| \leq (a - \frac{1}{a+1})i_1' + \sum_{j=0}^{a-2} (j+1)i_j'', \ |C_1| \leq (a-1 - \frac{1}{a+1})i_1' + \sum_{j=0}^{a-2} ji_j'',$$

where $i'_1 = |I'_1| = |\{x | x \in I_1, \ d_{H_1}(x) = a - 1 = d_{G-S}(x)\}|,$ $i''_j = |\{x | x \in I''_1 = I_1 - I'_1, \ d_{H_1}(x) = j < d_{G-S}(x)\}|, \ 0 \le j \le a - 2.$

On the other hand, let $T_j = \{x \in V(H_2) | d_{G-S}(x) = j\}$ for $1 \le j \le a-1$. By the definition of H_2 , we know that there exists one vertex with degree at most a-2 in G-S from each component of H_2 . According to Lemma 2.3, H_2 has a maximal independent set I_2 and a covering set $C_2 = V(H_2) - I_2$ such that

$$\sum_{j=1}^{a-1} (a-j)c_j \le \sum_{j=1}^{a-1} (a-2)(a-j)i_j,$$

where $c_j = |C_2 \cap T_j|$ and $i_j = |I_2 \cap T_j|$ for j = 1, ..., a - 1. Set W = V(G) - S - T and $U = S \cup C_1 \cup (N_G(I_1'') \cap W) \cup C_2 \cup (N_G(I_2) \cap W)$. Then

$$\begin{split} |U| & \leq |S| + |C_1| + \sum_{j=0}^{a-2} (a-1-j)i_j'' + \sum_{j=0}^{a-1} ji_j, \\ \omega(G-U) & \geq m + t_0 + i_1' + \sum_{j=0}^{a-2} i_j'' + \sum_{j=0}^{a-1} i_j. \end{split}$$

Now we show that $|U| \ge t(G)\omega(G - U)$.

It holds obviously when $\omega(G-U)>1$. When $\omega(G-U)=1$, by the previous discussion we obtain that $t_0=m=0$, then $|I_1|+|I_2|=1$, hence for any independent vertex $x\in T$, $d_{G-S}(x)+|S|\geq \delta(G)\geq 2t(G)>t(G)$, and $|U|\geq d_{G-S}(x)+|S|>t(G)$.

Therefore

$$|S| + |C_1| + \sum_{j=0}^{a-2} (a-1-j)i_j'' + \sum_{j=0}^{a-1} ji_j \ge t(G)(m+t_0+i_1' + \sum_{j=0}^{a-2} i_j'' + \sum_{j=0}^{a-1} i_j).$$
 (2)

From (1) we have

$$a(t_0+m)+|V(H_1)|+\sum_{j=1}^{a-1}(a-j)i_j+\sum_{j=1}^{a-1}(a-j)c_j\geq b|S|-3.$$

It follows that

$$a(t_0+m)+|V(H_1)|+b|C_1|+b\sum_{j=0}^{a-2}(a-1-j)i_j''+\sum_{j=1}^{a-1}(a-j)c_j$$

$$\geq bt(G)(m+t_0+i_1'+\sum_{j=0}^{a-2}i_j'')+\sum_{j=1}^{a-1}(bt(G)-bj-a+j)i_j-3.$$

That is

$$|V(H_1)| + b|C_1| + b \sum_{j=0}^{a-2} (a-1-j)i_j'' + \sum_{j=1}^{a-1} (a-j)c_j$$

$$\geq bt(G)(i_1' + \sum_{j=0}^{a-2} i_j'') + \sum_{j=1}^{a-1} (bt(G) - bj - a + j)i_j$$

$$+(bt(G) - a)(t_0 + m) - 3$$

$$\geq bt(G)(i_1' + \sum_{j=0}^{a-2} i_j'') + \sum_{j=1}^{a-1} (bt(G) - bj - a + j)i_j$$

$$+(ba - b - 1)(t_0 + m) - 3.$$

By Lemma 2.4, we have

$$|V(H_1)| + b|C_1| + b \sum_{j=0}^{a-2} (a - 1 - j)i_j''$$

$$\leq (a - \frac{1}{a+1} + b(a - 1 - \frac{1}{a+1}))i_1' + \sum_{j=0}^{a-2} (j+1+bj)i_j''$$

$$+ b \sum_{j=0}^{a-2} (a - 1 - j)i_j''$$

$$= ((a-1)(b+1) + 1 - \frac{b+1}{a+1})i_1' + \sum_{j=0}^{a-2} (ba - b + j + 1)i_j''.$$

Therefore

$$\sum_{j=1}^{a-1} (a-2)(a-j)i_j + ((a-1)(b+1) + 1 - \frac{b+1}{a+1})i_1'$$

$$+ \sum_{j=0}^{a-2} (ba-b+j+1)i_j''$$

$$\geq bt(G)i_1' + bt(G) \sum_{j=0}^{a-2} i_j'' + \sum_{j=1}^{a-1} (bt(G)-bj-a+j)i_j$$

$$+ (ba-b-1)(t_0+m) - 3$$

$$\geq (b+1)(a-1)i_1' + bt(G) \sum_{j=0}^{a-2} i_j'' + \sum_{j=1}^{a-1} (bt(G)-bj-a+j)i_j$$

$$+ (ba-b-1)(t_0+m) - 3.$$

Finally,

$$\sum_{j=1}^{a-1} (a-2)(a-j)i_j + \sum_{j=0}^{a-2} (ba-b+j+1)i_j''$$

$$\geq \sum_{j=1}^{a-1} (bt(G)-bj-a+j)i_j + bt(G) \sum_{j=0}^{a-2} i_j''$$

$$+(ba-b-1)(t_0+m)-3.$$

Now we consider the following cases.

Case 1. $t_0 + m > 0$.

In this case, we have

$$\sum_{j=1}^{a-1} (a-2)(a-j)i_j + \sum_{j=0}^{a-2} (ba-b+j+1)i_j''$$

$$> \sum_{j=1}^{a-1} (bt(G)-bj-a+j)i_j + bt(G) \sum_{j=0}^{a-2} i_j''.$$

Thus at least one of the following cases must hold.

Subcase 1.1 There exists at least one j satisfying (a-2)(a-j) > bt(G) - bj a+j. Then $t(G) < \frac{a^2-a+(b-a+1)j}{b} \le a-1+\frac{a-1}{b}(j \le a-1)$, a contradiction. **Subcase 1.2** ba-b+j+1 > bt(G) for some $j \in \{0,1,2,\ldots,a-2\}$. It follows

that $t(G) < a - 1 + \frac{a-1}{b}$, a contradiction.

Case 2. $t_0 + m = 0$.

In this case, we first show the following claim.

Claim 2. $C_1 \cup C_2 \neq \emptyset$.

Proof. If $C_1 \cup C_2 = \emptyset$, then $|T| = i_0'' + \sum_{j=1}^{a-1} i_j$. Combined with (1) and (2), we have

$$\sum_{j=1}^{a-1} (a-2)(bt(G)-bj-a+j)i_j + (bt(G)-b(a-1)-1)i_0'' \le 3.$$

Since $t(G) \ge a - 1 + \frac{a-1}{b}$ and $j \le a - 1$, we get

$$(a-2)|T| \le \sum_{i=1}^{a-1} (b(a-1) + (1-b)j - 1)i_j + (a-2)i_0'' \le 3.$$

By Claim 1, $|T| \ge b+1 > 4(b > a > 2)$, a contradiction.

Next we show that for any vertex $x \in C_i$, $d_i(x) = 1(i = 1, 2)$. Without loss of generality, we may assume that for any vertex $x \in C_2$, $d_{l_2}(x) = 1$. If there exists one vertex in C_2 with at least two neighbors in I_2 , then

$$|U| \le |S| + |C_1| + \sum_{i=0}^{a-2} (a-1-j)i_j'' + \sum_{i=0}^{a-1} ji_j - 1.$$

And

$$|S| \ge t(G)(i_1' + \sum_{j=0}^{a-2} i_j'' + \sum_{j=0}^{a-1} i_j) - (|C_1| + \sum_{j=0}^{a-2} (a-1-j)i_j'' + \sum_{j=0}^{a-1} ji_j) + 1.$$

According to (1), it follows that

$$|V(H_1)| + b|C_1| + b \sum_{j=0}^{a-2} (a-1-j)i_j'' + \sum_{j=1}^{a-1} (a-j)c_j$$

$$\geq bt(G)(i_1' + \sum_{j=0}^{a-2} i_j'') + \sum_{j=1}^{a-1} (bt(G) - bj - a + j)i_j + b - 3$$

$$> bt(G)(i_1' + \sum_{j=0}^{a-2} i_j'') + \sum_{j=1}^{a-1} (bt(G) - bj - a + j)i_j.$$

By the previous discussion, we obtain that

$$\sum_{j=1}^{a-1} (a-2)(a-j)i_j + \sum_{j=0}^{a-2} (ba-b+j+1)i_j''$$

$$> \sum_{j=1}^{a-1} (bt(G)-bj-a+j)i_j + bt(G) \sum_{j=0}^{a-2} i_j''.$$

Similarly to Case 1, we also obtain a contradiction. Now, let $x \in C_2$ and $U' = U - \{x\}$. Then

$$\omega(G-U') = \omega(G-U) \ge i'_1 + \sum_{j=0}^{a-2} i''_j + \sum_{j=0}^{a-1} i_j$$

as $d_{l_2}(x) = 1$. And

$$|U'| = |U| - 1 \le |S| + |C_1| + \sum_{i=0}^{a-2} (a - 1 - j)i_j'' + \sum_{i=0}^{a-1} ji_j - 1.$$

Similarly, we have $|U'| \ge t(G)(i'_1 + \sum_{j=0}^{a-2} i''_j + \sum_{j=0}^{a-1} i_j)$ and we also obtain that

$$\sum_{j=1}^{a-1} (a-2)(a-j)i_j + \sum_{j=0}^{a-2} (ba-b+j+1)i_j''$$

$$> \sum_{j=1}^{a-1} (bt(G)-bj-a+j)i_j + bt(G) \sum_{j=0}^{a-2} i_j,$$

a contradiction.

The proof is complete.

Now we begin to prove our main results.

Proof of Theorem 1.8. Let E_1 , E_2 be two edge sets with $E_1 \cup E_2 = \{e_1, e_2\}$. The theorem holds if and only if G contains an [a, b]-factor F such that $E_1 \subseteq E(F)$,

 $E_2 \cap E(F) = \emptyset$ where E_1 or E_2 may be empty. By the contrary, suppose that G does not contain such an [a, b]-factor F. Then, by Lemma 2.2, there exists a pair of disjoint subsets S, T of V(G) such that

$$a|T| - d_{G-S}(T) > b|S| - \alpha(S, T; E_1, E_2) - \beta(S, T; E_1, E_2), \tag{3}$$

where W = V(G) - S - T, $\alpha(S, T; E_1, E_2) = 2|E_1 \cap E_G(S)| + |E_1 \cap E_G(S, W)|$ and $\beta(S, T; E_1, E_2) = 2|E_2 \cap E_G(T)| + |E_2 \cap E_G(T, W)|$.

Meanwhile, as $t(G) \ge a - 1 + \frac{a-1}{b}$, by Theorem 1.7, G contains an [a, b]-factor. Therefore,

$$a|T| - d_{G-S}(T) \le b|S|. \tag{4}$$

Now we show the following claim.

Claim. $S \neq \emptyset$ and $T \neq \emptyset$.

Proof. If $S \cup T = \emptyset$, then $\alpha(S, T; E_1, E_2) = \beta(S, T; E_1, E_2) = 0$, and $a|T| - d_{G-S}(T) > b|S|$, a contradiction to (4).

Then we consider the following cases.

Case 1. $S = \emptyset$ and $T \neq \emptyset$. Then $\alpha(S, T; E_1, E_2) = 0$. And we obtain that $\beta(S, T; E_1, E_2) \neq 0$ from (3) and (4). It follows that $E_2 \neq \emptyset$. Hence either $E_2 = \{e_2\}$ or $E_2 = \{e_1, e_2\}$.

If $E_2 = \{e_2\}$, then $E_1 = \{e_1\}$, which is the case of containing e_1 and excluding e_2 . According to (3) again,

$$a|T| - d_G(T) > -2|E_2 \cap E_G(T)| - |E_2 \cap E_G(T, W)|.$$

And $a|T|-d_G(T) \le (a-\delta(G))|T| \le (a-2t(G))|T| \le (2-a-\frac{2(a-1)}{b})|T| < (2-a)|T|$. It yields that $(2-a)|T| > -2|E_2 \cap E_G(T)|-|E_2 \cap E_G(T,W)| > -2$.

If $|T| \ge 2$, then 2(2-a) > (2-a)|T| > -2, a contradiction as a > 2.

If |T| = 1, $2|E_2 \cap E_G(T)| + |E_2 \cap E_G(T, W)| \le 1$, then 2 - a = (2 - a)|T| > -1, a contradiction, too.

If $E_2 = \{e_1, e_2\}$, then $E_1 = \emptyset$, which is the case of excluding e_1 and e_2 . Then

$$a|T| - d_G(T) > -2|E_2 \cap E_G(T)| - |E_2 \cap E_G(T, W)|.$$

And since $\delta(G) \ge 2t(G) > a + 1$, that is, $\delta(G) \ge a + 2$,

$$a|T|-d_G(T)\leq (a-\delta(G))|T|\leq -2|T|.$$

If $|T| \ge 2$, then

$$-2|T| > -2|E_2 \cap E_G(T)| - |E_2 \cap E_G(T, W)| \ge -4$$

a contradiction.

If |T| = 1, $2|E_2 \cap E_G(T)| + |E_2 \cap E_G(T, W)| \le 1$, then

$$-2 > -2|E_2 \cap E_G(T)| - |E_2 \cap E_G(T, W)| > -1,$$

Figure 1: A graph contains no [2, b]-factor excluding e_1 , e_2 with toughness $\frac{3}{2}$

a contradiction, too.

Case 2. $S \neq \emptyset$ and $T = \emptyset$. Then $\beta(S, T; E_1, E_2) = 0$. Meanwhile, we obtain that $\alpha(S, T; E_1, E_2) \neq 0$. It follows that $E_1 \neq \emptyset$. Hence either $E_1 = \{e_1\}$ or $E_1 = \{e_1, e_2\}$.

If $E_1 = \{e_1\}$, then $E_2 = \{e_2\}$, which is the case of including e_1 and excluding e_2 . From (3), we have $b|S| < \alpha(S, T; E_1, E_2) = 2|E_1 \cap E_G(S)| + |E_1 \cap E_G(S, W)| \le 2$, which is impossible since b > a > 2.

 $E_1 = \{e_1, e_2\}$, then $E_2 = \emptyset$, which is the case of containing e_1 and e_2 . And

$$|b|S| - 2|E_1 \cap E_G(S)| - |E_1 \cap E_G(S, W)| < 0.$$

Then $4|S| < 2|E_1 \cap E_G(S)| + |E_1 \cap E_G(S, W)|$ as b > a > 2. We get a contradiction since $2|E_1 \cap E_G(S)| + |E_1 \cap E_G(S, W)| \le 4$.

This complete the proof of the claim.

Now since $S \neq \emptyset$ and $T \neq \emptyset$, by Lemma 3.2, we have

$$a|T| - d_{G-S}(T) \le b|S| - 4.$$

But $\alpha(S, T; E_1, E_2) + \beta(S, T; E_1, E_2) \le 4$, it follows from (3) that

$$a|T| - d_{G-S}(T) > b|S| - 4$$
,

a contradiction.

The proof is complete.

Remark 1. The bound of toughness in Theorem 1.8 is sharp. To see this, consider the graph $G: V(G) = V(A) \cup V(B) \cup V(C)$ where A, B and C are disjoint with $A = K_{(nb+1)(a-1)}$, $B = (nb+1)K_{a-1}$ and $C = K_{n(a-1)}$. Set other edges in G are a perfect matching between A and B and all the pairs between B and C. This follows that $t(G) = \frac{(nb+1)(a-1)+n(a-1)}{nb+1} < a-1+\frac{a-1}{b}$, $t(G) \to a-1+\frac{a-1}{b}$ when $n \to \infty$. By Theorem 1.7, we get that G has no [a,b]-factor. And it follows immediately that the bound of toughness in Theorem 1.8 is also sharp.

Remark 2. When a=2, see Figure 1. The graph G in Figure 1 contains no [2,b]-factor excluding e_1 , e_2 with $t(G)=\frac{3}{2}>a-1+\frac{a-1}{b}$ for b>a=2.

References

- [1] Akbari S., Kano M.: $\{k, r-k\}$ -factors of r-regular graphs. Graphs Combin. 30, 821-826(2014)
- [2] Bondy J. A., Murty U. S. R.: Graph theory with applications. Springer, Berlin(2008)
- [3] Chang R., Zhu Y., Liu G.: Toughness and [a, b]-factors in graphs. Ars Combin. 105, 451–459(2012)
- [4] Chen C.: Toughness of graphs and k-factors with given properties. Ars Combin. 34, 55-64(1992)
- [5] Chen C.: Toughness of graphs and [2, b]-factors. Graphs Combin. 10, 97–100(1994)
- [6] Chen C., Liu G.: Toughness of graphs and [a, b]-factors with prescribed properties. J. Comb. Math. Comb. Comput. 12, 215-221(1992)
- [7] Chvátal V.: Tough graphs and hamiltonian circuits. Dis. Math. 5, 215–228(1973)
- [8] Enomoto H., Jackson B., Katerinis P., Saito A.: Toughness and the existence of k-factors. J. Graph Theory 9, 87–95(1985)
- [9] Heinrich K., Hell P., Kirkpatrick P., Liu G.: A simple existence citerion for (g, f)-factors. Dis. Math.85, 313-317(1990)
- [10] Katerinis P.: Toughness of graphs and 2-factors and the existence of factors. Dis. Math.80, 81-92(1990)
- [11] Katerinis P., Wang T.: Toughness of graphs and 2-factors with given properties. Ars Combin. 95, 161-177(2010)
- [12] Lam P., Liu G., Li G., Shui W.: Orthogonal (g, f)-factorization in networks. Networks 35, 274–278(2000)
- [13] Liu G., Zhang L.: Toughness and the existence of fractional K-factors of graphs. Dis. Math. 9, 1741-1748(2008)
- [14] Wang T., Wu Z., Yu Q.: 2-tough graphs and f-factors with given properties. Util. Math. 90, 187–197(2013)
- [15] Wu Z., Liu G., Yu Q.: Toughness and [a, b]-factors with inclusion/exclusion properties. Sci. China Math. 54, 1491–1498(2011)