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Abstract

In this paper, we establish some general identities involving the
weighted row sums of a Riordan array and hyperharmonic numbers.
From these general identities, we deduce some particular identities in-
volving other special combinatorial sequences, such as the Stirling num-
bers, the ordered Bell numbers, the Fibonacci numbers, the Lucas num-
bers and the binomial coefficients.
Keywords Hyperharmonic numbers ; Stirling numbers; Ordered Bell
number; Lucas numbers; Fibonacci numbers

1. Introduction and preliminaries

The hyperharmonic numbers are denoted by ¥ and are defined by

(see 3])
HED = i Hi(k)v

i=1
for k,n > 1. In particular, HO = 1/nforn > 1 and HY =H, = PIHIRE -3
Moreover, define H{) = 0 for k < 0 or n < 0. The generating function of
the hyperharmonic numbers is

H(k)(:z:) = iH&k)m" = :(1111_-(-1::??1 , (1.1)

n=0

and these numbers can be expressed as

n .
HY _Z( nei )3

j=1
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Recently, many works have been devoted to the study of harmonic num-
ber identities by various methods. For example, in [1-3], S. Cheon and
El-Mikkawy presented some harmonic number identities by means of the
Riordan array method. In 5], Chu established some harmonic number iden-
tities by the theory of hypergeometric series. In [7], Munarini presented a
general identity involving the row sums of a Riordan array and harmonic
numbers.

In the present paper, we give some general identities involving the
weighted row sums of a Riordan array and hyperharmonic numbers. From
these general identities, we can establish some identities involving hyper-
harmonic numbers and some other special combinatorial sequences.

For convenience, we recall some definitions and notations. Throughout
the paper, we denote the Stirling numbers of the second kind by {7}, and
let F,, Ln, bu, I;S,k) be the Fibonacci numbers, the Lucas numbers, the or-
dered Bell numbers and the higher order ordered Bell numbers, respectively.
These numbers satisfy the following generating functions (see [1-6]):

o0 T

$®(z) =3 {:}?TT = “;;1—)"- (1.2)
°°n=k

F(z) =Y Faz" = 1— :’_ - (1.3)
v
had 2—2z

L(z) =) Lnt" = 7———;, (1.4)

~ no:oo- ™ 1

B@) =} by=5"2, (1.5)
n=0°° i 1 .

B®(z) = ZOE,(PZ—! - (2 = ez) . (1.6)

Additionally, it is known that F, = £5£°, and L, = ¢" + ¢", where
@ =1t8 Y5 and ¢ = 1545

Let c(x) be the generating function of the sequence {cx }xen, then

e(z) = i caz"  and f: %x" = /0 “Re(t))dt, (1.7)
n=1

n=0

where R is the operator defined by

R(e(a)) = L= (19)
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Due to[9, 11, 12, 13], a Riordan array is a pair of formal power se-
ries (g(z), f(z)). It defines an infinite, lower triangular array (dnk)nkeN
according to the rule

dp i = [2"]g(2)(f(2)".

Hence we write (dn k) = (g(z), f(z)).

Let (g(x), f(z)) be a Riordan array and a(z) be the generating function
of the sequence {ax}ren, i€, a(z) = Y pooarz®. As in [7], define the
operator 7z by

Tr(a(z)) = g(z)a(f(x Z (Ed,. kak) z" (1.9)

n=0 \k=0

We denote the weighted row-sum sequence by {dl{‘ ] }nen, and {s;}nen,
where

o — 3> (k;fj)d,.,j and sp =Y jdn;, (1.10)

j=0 3=0

and denote the weighted diagonal sum sequence by {lLk]}neN, where

(3) .
k+
=3 :( ; ”)d,,_,,,-. (1.11)

j=0

These sequences satisfy the following generating functions respectively:

n=0 n=0 \j=0
__ 9=
T - @ "
- n_ _9@)f(=)
T) = nZ;BSn-’E = nZ=0 (Zﬂi ”) (1-f(z)?*’ (143
oo o fI%] ;
W(z) =Y ilzn =" (i (k +J) dn—j,j) z"
n=0 n=0 \ j=0 J
9(z) (1.14)

T U—=f@)FT
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2. General identities

In this section, we establish three general identities related to the weighted
row sums of a Riordan array and hyperharmonic numbers.
Theorem 2.1. Let (d, k) = (g(x), f(z)) be a Riordan array with weighted

TOW-SUM Sequence {d£{° ]}neN- For any sequence {hn,}nen having h(z) =
3o o hnz™ as its ordinary generating function and satisfying the relation

h(z) —h ’
R(h(z)) = (I)m 2 = 1{ (fx()x) , 1)
we have
n hd[kl n h n—j k B n
ZJ’:l-_J-.—;_J— = Z 7]' Z ( ;:z)dn—j.i = Edn,jH;k+l) . (22)
i=1 i=0 j=

Proof. By (1.7), (2.1) and (1.9), we obtain the generating function:

h RO 1
EX / R(h(#))d = / " Ri—r@)

Hence
oo n h'd[kl ] o0 00
Z Z 7 T‘t—J " = Z d!:c]xn Z hxn
n=1 \j=1 J n=0 n=1 n
9(z) L = Y@ H*(f(2)) = Ta(H*D(2)).

~ 0= F@)* (1 - f(=))
Then identity (2.2) holds. Note that it reduces to the conclusion of (7] when
k=0. a
Similarly, we obtain the following theorem.

Theorem 2.2. Let (dnx) = (9(z), f(z)) be a Riordan array. For any
sequence {hn}nen having h(z) = Yoo  haz™ as its ordinary generating
function and satisfying the relation

Riba) = L=t - L) 23)
we have
Z" e s’," Z ; sz,,-,, _Zdn, (H® -HY). (24)
=0 i=0
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Moreover, the next theorem can be established.

Theorem 2.3. Let (d.x) = (9(z), f(z)) be a Riordan array. For any
sequence {hn}nen having h(z) = Y oo haz™ as its ordinary generating
function and satisfying the relation

we have
3] n
Zn h; l?_] Z };, Z (k +z) y ZH(k+l)d eiie (26)
j= i=0

Proof. From (1.7), (2.5) and (1.1), we have

_ ) L, 1
Z g / R(h(t))dt = b 1—tf(2) dt = In(l —zf(z))

Hence

n=0 =1

B (u) oSSl

g(z) 1
= T @ maaf@) ~ (OH @)

-£ (S

n=0

Then (2.6) holds. O

3. Identities involving special combinatorial sequences

From the general identity (2.2), we obtain some identities involving the
hyperharmonic numbers, and some other combinatorial sequences, such as
the ordered Bell numbers, the higher order ordered Bell numbers the Stir-
ling numbers, the Fibonacci numbers, the Lucas numbers and the binomial
coefficients.

Theorem 3.1. Let n > 1,k > 0 be any positive integers, then

nb(k+l)+22( ) (BEAD = Z{’;}jm}"*”, (3.1)

j=1
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n n
an—l + 22 (?) Ej—ll;n—j = Z {?}]'Hj : (32)
=2

j=1
where 1-75.1) =b;,
Proof. The coefficients of the Riordan array (dnx) = (1,€* — 1) are

eT —1)* n) k!
[z7)(e* - 1)* = k![x"](__kl_l)_ _ { }k'

kfnl"
Moreover,
k()= — L1 =) _ 2
d (17) (2 __ e‘“)k'“ ’ R(h(x)) 1 _ f(l') 2 — ez 1 ’
S0 we have

TL! 'n,=1,

plk+1) 25,
d£:°|=~b3—-— , hn={(;__1§g'; nz=2,

)

and identity (2.2) becomes

kD nfy BEDm
ool Loy A1) { _}—'H. .
(n—1) Z:z (G- (n-j) ; jJnl™

By multiplying both sides by n!, we obtain (3.1). Setting & = 0 in (3.1)
further gives us (3.2). a

Theorem 3.2. Let g € C, and let r and k be any positive integers, then

i'i’ rn—j—i—1\[k+)gii
: r—1 i ]

n .
=3 (’" tn-g- 1) HEDgn—i, (3.3)

Proof. For the Riordan array

= (#1747 = ()

we obtain

0 1
)= j;dﬁflzn T A-qrA-oE (k=) = 1= f@) " 1=z
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So we have
n N .
kl _ r+n—i—1\/k+1i : _
dnl_Z( .1 ; ¢~ and h,=1, n2>1.
=0
Then Eq. (3.3) holds. a
In Theorem 3.2, setting ¢ = 2,1, and 1/2, we have
Corollary 3.3. The following relations hold:

i"z—:j(r+n—j—i—1)<k+i> 1 _E":(Mn—j—l)H}"“’
o r—1 i Jg2ts = r—1 27
“fr+n—j+k 1 " fr+n—j-1 (k+1)

. ( r+k )3_2( r—1 )Hj ’

=1 J=0

i"" r+n—j—i—1\(k+i 2"+J'=Z": P =1\ g,
£t £ r—1 1 7 4 r—1 J

F=1 i=0 j=0

Setting further » = 1 in Corollary 3.3 yields Corollary 3.4, and setting
further k£ = 0 in Corollary 3.4 yields Corollary 3.5.

Corollary 3.4.
n H(k+1)

n—j
F Ly
i ) g2iti = 27

i=0

r+n—j+1\1 i (k+1)
- = H:
( r+1 )j j=20 7

i+j n )
(k + z) 2 Y ZHJ(HI)?‘J .

i J =

M- 507

1

[
Il

n-—

’P’J=

[
]
—
-
]
o

Corollary 3.5.

gl\’J=

7]- 23211 E’T’

Hi=n+1)H,—n,

=", ~ Z—.

j

o,
i
i
o,

'M=

.
Il
—
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Theorem 3.6. Let r, k be any positive integers, then

"R rn—j—i—1\[k+i\ Fae;_;
ST () By

=Z (r+n-—j— I)H;k+1)Fn—j- (3.4)
=0

r—1

Proof. We replace ¢ in identity (3.3) first by ¢ and then by ¢, do some
simplification by the relations ¢? = p+1 and @? = @+ 1, take the difference
of the two identities just obtained, divide both sides by v/5, and finally
simplify by Eq. (1.3). O
In Theorem 3.6, setting r = 1, we have
Corollary 3.7.
n ﬂ—J o n
1 k+1

35S B (SR LENES 3Ll

i=1 J i=0 j=0
Theorem 3.8. Let o € C, and let r > 1,k > 0 be integers, then

EEC TR e o

J=1 =0

The proof of Theorem 3.8 is similar to that of Theorem 3.2. Setting
a =1,k =0 in Theorem 3.8 gives the next two identities.

Corollary 3.9.
i n—j+k+1 1;‘5 n =3\ g+
; n—j—r Jj 4 T J ’
=1 Jj=

n—-j+1\1 _ (n-j .

2GR

=1

Theorem 3.10. Letn > 2,k >0, o, € C and 8 #0, then

Za“rﬂ’ [§]<k+"7jfi)(" - )(a-}-ﬁ)"_’ %(—ap)t

n—j—1i i

i=1 i=0

_ i (n J) H'(lk—-;l)(a + ﬁ)n—zj(__aﬂ)j (3.6)
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and

“od + B L (ki fhn = =1\ onojos
2= Z( i )( n—j—i )aﬁ

j=1 i=0

1PN . »
=y ( )H( Do+ B (—apB) . (3.7)
j=

Proof. Let (dnx) = (1, (@ + B)z — afz?), then

! )8y (-apy

o CRl

and we have
¥ = ?n‘_, (k : j) dn,j = jg}] (k : j) (n j) (a+B)¥ " (—ap)*?
- (")t mri—sy

; k
j=0

= [z7] = ax)k+11(1 o)t Zn: (k ; 1) (k +” z_ 1) (%)i

— O

[P H)

and
fiiz) _ oa+B-2apz A e
R = T ) = T an) = Ba) hn=a"+f", n21.
By (2.2), identities (3.6) and (3.7) can be established. O

In identity (3.6), setting o = (lﬂg@)m and 8 = (lﬁzé)’", we have
Corollary 3.11.
. n
j

741 k+n—-j—i\fn—j—1 [n-i-2
poet £ n—j—1 i m

8] n=7) g+
(e

j=

TL’

¥
o

In Corollary 3.11, setting k = 0 gives the conclusion of [7]. Moreover,
by the proof of Theorem 3.10, we have
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Corollary 3.12. Letm 22,k >0, a,8 € C and 8 # 0, then

(7] . ,

Z( )( . z)(a+ﬁ)'" %(—af)
m—1 1

j=0
B0 e

j=0

In (3.8), setting o = L:?@, B = 1:23/-5 and o = B = 1 gives the following
relations:

(3 ) ) m . )
i (k+m.—z>(m.—z)2m_2i=Z(k-‘i-z)<k+m‘—z)‘
~\ m-—i i P AN m—i

From the general identities (2.4) and (2.6), we can also establish partic-
ular identities involving other special combinatorial sequences, which are
left to the readers.
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