On (a, b; n)-graceful labeling of path P_n

Zhishang Zhang ¹, Qingcheng Zhang ² *, Chunyue Wang³ * 1,3School of Applied Science, Jilin Teachers Institute of Engineering and Technology,

Changchun 130052 China

2 School of Mathematics and Statistics, Northeast Normal University, Changchun 130024 China

Abstract This paper devotes to solving the following conjecture proposed by Gvozdjak: "An (a,b;n)-graceful labeling of P_n exists if and only if the integers a,b,n satisfy (1) b-a has the same parity as n(n+1)/2; (2) $0 < |b-a| \le (n+1)/2$ and (3) $n/2 \le a+b \le 3n/2$." Its solving can shed some new light on the solving the famous Oberwolfach problem. It is shown that the conjecture is true for every n if the conjecture is true when $n \le 4a+1$ and a is a fixed value. Moreover, we prove that the conjecture is true for a=0,1,2,3,4,5,6.

Key Words: labeling; (a, b; n)-graceful; path P_n ; conjecture. AMS Classification: 05C78

§1 Introduction

A graph G(V, E) is called graceful graph if there exists an non-negative integer g(v) such that the followings are satisfied (1) $\max\{g(v)|v\in V\} = |E(G)|$; (2) If $u\neq v$ for any $u,v\in V$, then $g(u)\neq g(v)$; (3) If $e_1\neq e_2$ for any $e_1,e_2\in E(G)$, then $g^*(e_1)\neq g^*(e_2)$ for $g^*(e)=|g(u)-g(v)|$ and uv=e.

Let P_n be a path with n+1 vertices consecutively denoted by v_0, v_1, \dots, v_n , and a, b be non-negative integers. If graceful labeling g of P_n satisfies $g(v_0) = a$ and $g(v_n) = b$, then g is called an (a, b; n)-graceful labeling of P_n , denoted by g(a, b; n), and P_n is called (a, b; n)-graceful.

The term "graceful labeling" was introduced by S.Golomb in [1]. A detailed history of the graph labeling problems and relating to results appear

^{*}Corresponding author: zhangqc569@nenu.edu.cn; wang1chun2yue3@163.com

in Gallian in [2].

(a,b;n)-conjecture The graph P_n is (a,b;n)-graceful if and only if all of the following conditions hold:

- (1) b-a has the same parity as $\frac{n(n+1)}{2}$;
- (2) $0 < |b-a| \le \frac{n+1}{2}$;
- $(3) \ \frac{n}{2} \le a + b \le \frac{3n}{2}.$

Gvzdjak has proved that the conditions of (a, b; n)-conjecture are necessary in [3]. For sufficiency, the (a, b; n)-conjecture is true when a = 0 by Lee in [4]. Fan and Liang have shown that the (a, b; n)-conjecture is true for a = 1 and a = 2 in [5]. We will discuss the equal theory of this conjecture and also show that the conjecture is true for a = 0, 1, 2, 3, 4, 5, 6.

In this paper, parameters a, b, n are non-negative integers without special statement. We define

$$g(a, b; n) = (g(v_0), g(v_1), \dots, g(v_n));$$

$$g(a, b; n) \oplus m = (g(v_0) + m, g(v_1) + m, \dots, g(v_n) + m);$$

$$g^{-1}(a, b; n) = (g(v_n), g(v_{n-1}), \dots, g(v_0));$$

$$n - g(a, b; n) = (n - g(v_0), n - g(v_1), \dots, n - g(v_n));$$

$$(x_1, x_2, \dots, x_k) \wedge (x_{k+1}, x_{k+2}, \dots, x_l) = (x_1, x_2, \dots, x_l).$$

§2 Main results

Theorem 1 Let a, b, n satisfy the conditions of (a, b; n)-conjecture. (1) If a is an odd and P_n is (a, b; n)-graceful with $n \leq 4a$, then P_n is (a, b; n)-graceful for all n. (2) If a is a positive even, and P_n is (a, b; n)-graceful with $n \leq 4a + 1$, then P_n is (a, b; n)-graceful for all n.

In order to prove Theorem 1, we will give the following Lemmas.

Lemma 1 Let a, b, n satisfy the condition (1) of (a, b; n)-conjecture, the possible types are given as follows:

- (1) a is an odd, b is an odd, $n \equiv 0 \pmod{4}$; (2) a is an even, b is an even, $n \equiv 0 \pmod{4}$;
- (3) a is an odd, b is an even, $n \equiv 1 \pmod{4}$; (4) a is an even, b is an odd, $n \equiv 1 \pmod{4}$;
- (5) a is an odd, b is an even, $n \equiv 2 \pmod{4}$; (6) a is an even, b is an odd, $n \equiv 2 \pmod{4}$;
- (7) a is an odd, b is an odd, $n \equiv 3 \pmod{4}$; (8) a is an even, b is an even,

 $n \equiv 3 \pmod{4}$.

Lemma 2 Let a, b, n satisfy the conditions of (a, b; n)-conjecture, then a, b+a+1, n+2(a+1) satisfy the conditions of (a, b+a+1; n+2(a+1))-conjecture.

Proof We first show that a, b+a+1, n+2(a+1) satisfy the condition (1) of (a, b+a+1; n+2(a+1))-conjecture. When $a \equiv 1 \pmod{2}$, we can get $a+1 \equiv 0 \pmod{2}$ and $2(a+1) \equiv 0 \pmod{4}$. Then $n \equiv n+2(a+1) \pmod{4}$. So n(n+1)/2 has the same parity as (n+2(a+1))(n+2(a+1)+1)/2, and b-a has the same parity as b+(a+1)-a=b+1, thus the result is true.

When $a \equiv 0 \pmod{2}$, $a+1 \equiv 1 \pmod{2}$ and $2(a+1) \equiv 2 \pmod{4}$. According to Lemma 1, there are four types of a, b, n that satisfy the condition (1) of (a, b; n)-conjecture.

- (1) When $n \equiv 0 \pmod{4}$, b is an even, then $(n+2(a+1)) \equiv 2 \pmod{4}$, b+a+1 is an odd, b+a+1-a=b+1 is an odd, (n+2(a+1))(n+2(a+1)+1)/2 is an odd;
- (2) When $n \equiv 1 \pmod{4}$, b is an odd, then $(n+2(a+1)) \equiv 3 \pmod{4}$, b+a+1 is an even, b+a+1-a=b+1 is an even, (n+2(a+1))(n+2(a+1)+1)/2 is an even;
- (3) When $n \equiv 2 \pmod{4}$, b is an odd, then $(n+2(a+1)) \equiv 0 \pmod{4}$, b+a+1 is an even, b+a+1-a=b+1 is an even, (n+2(a+1))(n+2(a+1)+1)/2 is an even;
- (4) When $n \equiv 3 \pmod{4}$, b is an even, then $(n+2(a+1)) \equiv 1 \pmod{4}$, b+a+1 is an odd, b+a+1-a=b+1 is an odd, (n+2(a+1))(n+2(a+1)+1)/2 is an odd.

So when $a \equiv 0 \pmod{2}$, then the conclusion is true.

Next we shall show that a, a + b + 1, n + 2(a + 1) satisfy condition (2) of (a, b + a + 1; n + 2(a + 1))-conjecture.

When $n \equiv 0 \pmod{2}$, $0 < |b-a| \le (n+1)/2$ if and only if $b \ne a$ and $a-n/2 \le b \le a+n/2$. So $b+(a+1) \ne a$ and $a-n/2+(a+1) \le b+(a+1) \le a+n/2+(a+1)$. Since a-n/2-(a+1) < a-n/2+(a+1), we have $b+(a+1) \ne a$, then $a-(n+2(a+1))/2 \le b+(a+1) \le a+(n+2(a+1))/2$, a-n/2-(a+1) < a-n/2+(a+1), $0 < |b+(a+1)-a| \le (n+2(a+1))/2$.

When $n \equiv 1 \pmod{2}$, $0 < |b-a| \le (n+1)/2$ if and only if $b \ne a$ and $a-(n+1)/2 \le b \le a+(n+1)/2$. So $b+(a+1) \ne a$ and $a-(n+1)/2+(a+1) \le b+(a+1) \le a+(n+1)/2+(a+1)$. As a-(n+1)/2-(a+1) < a-(n+1)/2+(a+1), we obtain $b+(a+1) \ne a$, then $a-(n+1)/2-(a+1) \le b+(a+1) \le a+(n+1)/2+(a+1)$, $0 < |b+(a+1)-a| \le (n+1+2(a+1))/2$.

Finally, we shall prove that a, b+a+1, n+2(a+1) satisfy the condition (3) of (a, b+a+1; n+2(a+1))-conjecture.

When $n \equiv 0 \pmod{2}$, $n/2 \le a+b \le 3n/2$, we know $n/2+(a+1) \le$

 $a+b+(a+1) \le 3n/2+(a+1)$. As $3n/2+(a+1) \le a+b \le 3n/2+3(a+1)$, we can get that $(n+2(a+1))/2 \le a+b+(a+1) \le 3(n+2(a+1))/2$.

When $n \equiv 1 \pmod{2}$, $n+2(a+1) \equiv 1 \pmod{2}$, $n/2 \le a+b \le 3n/2$ if and only if $(n+1)/2 \le a+b \le (3n-1)/2$, then $(n+1)/2+(a+1) \le a+b+(a+1) \le (3n-1)/2+(a+1)$, So $(n+1+2(a+1))/2 \le a+b+(a+1) \le 3(n+2(a+1))/2$.

Lemma 3 Let a, b, n satisfy the conditions of (a, b; n)-conjecture. If graceful labeling of path P_n is g(a, b; n), then the path $P_{n+2(a+1)}$ satisfies conditions of (a, b+(a+1); n+2(a+1))-conjecture and the graceful labeling is g(a, b+(a+1); n+2(a+1)).

Proof According to Lemma 1, we have a, b+a+1, n+2(a+1) satisfy the conditions of (a, b+a+1; n+2(a+1))-conjecture. Let $v_0, v_1, \dots, v_{n+2(a+1)}$ be the vertices of path $P_{n+2(a+1)}$. Put the vertices labeling f as follows:

$$f(a, b+a+1; n+2(a+1))$$
= $(a, n+2(a+1)-a, a-1, n+2(a+1)-(a-1), \dots, 1,$
 $n+2(a+1)-1, 0, n+2(a+1)) \land (g(a, b; n) \oplus (a+1)).$

Hence $f(v_0) = a$, $f(v_{n+2a+2}) = b + (a+1)$. Considering the vertices labeling set A of $P_{n+2(a+1)}$.

$$A = \{f(v_i) \mid i = 0, 1, \dots, 2a+1\} \cup \{f(v_i) \mid i = 2a+1, 2a+2, \dots, n+2(a+1)\}$$

$$= \{0, 1, \dots, a\} \cup \{n+a+2, n+a+3, \dots, n+2(a+1)\} \cup \{a+1, a+2, \dots, a+n+1\}$$

$$= \{0, 1, \dots, n+2(a+1)\}.$$

There are n + 2a + 3 different numbers of set A which are the same as the number of vertices of $P_{n+2(a+1)}$, so the vertices labelings are different.

We denote B as the set of edges labeling of $P_{n+2(a+1)}$. Then

```
B = \{f^*(v_{i-1}v_i) \mid i = 1, 2, \dots, n+2(a+1)\}
= \{|f(v_{i-1}) - f(v_i)| \mid i = 1, 2, \dots, n+2(a+1)\}
= \{|f(v_{i-1}) - f(v_i)| \mid i = 1, 2, \dots, 2a+1\} \cup \{|f(v_{2a+1}) - f(v_{2a+2})|\} \cup \{|f(v_{i-1}) - f(v_i)| \mid i = 2a+3, 2a+4, \dots, 2a+2+n\}
= \{n+2, n+3, \dots, n+2a+2\} \cup \{n+2a+2-(2a+1)\} \cup \{1, 2, \dots, n\}
= \{1, 2, \dots, n+2a+2\}.
```

The number of the edges of $P_{n+2(a+1)}$ is the same as the number of the set B, thus f^* is a one to one mapping. Therefore the Lemma is obtained. \square

By using induction arguments, we can get the following Lemma 4.

Lemma 4 Let a, b, n satisfy the conditions of (a, b; n)-conjecture. If graceful labeling of path P_n is g(a, b; n), then the path $P_{n+2m(a+1)}$ satisfies conditions of (a, b+m(a+1); n+2m(a+1))-conjecture and the graceful

labeling is g(a, b + m(a + 1); n + 2m(a + 1)).

Lemma 5 Let a, n be non-negative integers and $n \geq 2a$, then the possibility of b satisfying the conditions of (a, b; n)-conjecture are as follows:

- (1) If $n \equiv 0 \pmod{4}$, then $b = \{\frac{n+4(k-1)}{2} a \mid 0 \le k \le a+1, k \ne a+1-\frac{n}{4}\}$;

- (2) If $n \equiv 1 \pmod{4}$, then $b = \{\frac{n+1+4(k-1)}{2} a \mid 0 \le k \le a+1\}$; (3) If $n \equiv 2 \pmod{4}$, then $b = \{\frac{n+4(k-1)}{2} a \mid 0 \le k \le a+1\}$; (4) If $n \equiv 3 \pmod{4}$, then $b = \{\frac{n+4(k-1)}{2} a \mid 0 \le k \le a+1\}$;

Proof From the condition (2) and condition (3) of (a, b; n)-conjecture, we have $0<|b-a|\leq \frac{n+1}{2}$ and $\frac{n}{2}\leq a+b\leq \frac{3n}{2}$, which is equal to $b\neq a$, $a-\frac{n+1}{2}\leq b\leq a+\frac{n+1}{2}$ and $\frac{n}{2}-a\leq b\leq \frac{3n}{2}-a$.

Case(a) n is an even.

Since $n \ge 2a$, we have $\frac{n}{2} - a - (a - \frac{n}{2}) = n - 2a \ge 0$ and $\frac{3n}{2} - a - (a + \frac{n}{2}) = n - 2a \ge 0$. Then $b \ne a$, $a - \frac{n}{2} \le b \le a + \frac{n}{2}$, $\frac{n}{2} - a \le b \le \frac{3n}{2} - a$. So $b \ne a$, $\frac{n}{2} - a \le b \le \frac{n}{2} + a$. If $k = a + 1 - \frac{n}{4}$, then $\frac{n+4(k-1)}{2} - a = a$. According to Lemma 1 and condition(1) of conjecture, we will get the results as follows: If $n \equiv 0 \pmod{4}$ and a is an even, then b is an even and $b = \{\frac{n+4(k-1)}{2} - a \mid$ $1 \le k \le a+1, k \ne a+1-\frac{n}{4}\};$

If $n \equiv 0 \pmod{4}$ and a is an odd, then b is an odd and $b = \{\frac{n+4(k-1)}{2} - a \mid$ $1 \le k \le a+1, k \ne a+1-\frac{n}{4}$;

If $n \equiv 2 \pmod{4}$ and a is an odd, then b is an even and $b = \{\frac{n+4(k-1)}{2} - a \mid$ $1 \le k \le a+1\};$

If $n \equiv 2 \pmod{4}$ and a is an even, then b is an odd and $b = \{\frac{n+4(k-1)}{2} - a \mid$ $1 \le k \le a+1\}.$

Case(b) n is an odd.

It is clear that $n \ge 2a$ if and only if $n \ge 2a+1$. Since a, b are integers, we have $b \ne a$, $a - \frac{n+1}{2} \le b \le a + \frac{n+1}{2}$, $\frac{n+1}{2} - a \le b \le \frac{3n}{2} - a$. So $b \ne a$, $\frac{n+1}{4} - a \le b \le \frac{n+1}{2} + a$. If $k = a + 1 - \frac{n+1}{4}$, then $\frac{n+1+4(k-1)}{2} - a = a$. According to Lemma 1 and condition (1) of conjecture, we will get the results as follows:

If $n \equiv 1 \pmod{4}$ and a is an odd, then b is an even and $b = \{\frac{n+1+4(k-1)}{2} - a \mid$ $1 \le k \le a+1\};$

If $n \equiv 1 \pmod{4}$ and a is an even, then b is an odd and $b = \{\frac{n+1+4(k-1)}{2} - a \mid$ $1 \le k \le a+1\};$

If $n \equiv 3 \pmod{4}$ and a is an odd, then b is an odd and $b = \{\frac{n+1+4(k-1)}{2} - a \mid$ $1 \le k \le a+1, k \ne a+1-\frac{n+1}{4}$;

If $n \equiv 3 \pmod{4}$ and a is an even, then b is an even and $b = \{\frac{n+1+4(k-1)}{2} - a \mid 1 \le k \le a+1, k \ne a+1-\frac{n+1}{4}\}$.

Lemma 6 Let a, n be non-negative integers and $n \geq 4a + 1$, then the number of the b satisfying the conditions of (a, b; n)-conjecture is a + 1and the types of b are as follows:

- (1) If $n \equiv 0 \pmod{2}$, then $b = \{\frac{n+4(k-1)}{2} a \mid 1 \le k \le a+1\}$; (2) If $n \equiv 1 \pmod{2}$, then $b = \{\frac{n+1+4(k-1)}{2} a \mid 1 \le k \le a+1\}$

Lemma 7 Let a be a fixed value. If P_n is (a, b; n)-graceful with $n \leq 6a + 2$, then P_s is (a, t; s)-graceful with $s \leq 6a + 2$.

Proof Suppose that s > 6a + 2 and a, t, s satisfy the conditions of (a,t;s)-conjecture, there exists $n_0 \in \{4a+1,4a+2,\cdots,6a+2\}$ and $m \in Z^+$ such that $s = n_0 + 2m(a+1)$.

Case (a) $s \equiv 0 \pmod{2}$.

According to Lemma 6, there exists $k_0 \in \{0, 2, \dots, a+1\}$ such that $t = \frac{s+4(k_0-1)}{2} - a$. We define $b_0 = \frac{n_0+4(k_0-1)}{2} - a$, then $t = b_0 + m(a+1)$. It follows from Lemma 6 and the contents of subject that the labeling $g(a,b_0;n_0)$ of P_{n_0} exists. In view of Lemma 4, we obtain that there is a labeling g(a, t; s) of P_s .

Case (b) $s \equiv 1 \pmod{2}$.

According to Lemma 6, there exists $k_0 \in \{0, 2, \dots, a+1\}$ such that $t = \frac{s+1+4(k_0-1)}{2} - a$. We define $b_0 = \frac{n_0+1+4(k_0-1)}{2} - a$, then $t = b_0 + m(a+1)$. It follows from Lemma 6 and the contents of subject that the labeling $g(a,b_0;n_0)$ of P_{n_0} exists. In view of Lemma 4, we obtain that there is a labeling g(a, t; s) of P_s .

Lemma 8 Let a, b, n satisfy the conditions of (a, b; n)-conjecture and b = 2a + 1. Then a, n - (a + b), n - b satisfy the conditions of (a, n-(a+b); n-b)-conjecture with $4a+1 < n \le 6a+2$.

Proof We define m = n - (a+b) - a = n - 4a - 1, k = n - b = n - 2a - 1and $s = \frac{k(k+1)}{2}$. Since b = 2a+1 is an odd, then the possible cases of a, b, n satisfying (a, b, n)-conjecture are as follows:

(1) a is an odd, $n \equiv 0 \pmod{4}$.

It is easy to get m, k and $s = k(\frac{n}{2} - a)$ are odds. Since 4a + 1 < $n \le 6a + 2$, we have $m \ne 0$. So $0 < |n - (a + b) - a| \le \frac{n - b + 1}{2}$ and $\frac{n-b}{2} \le n - (a+b) + a \le \frac{3(n-b)}{2}$.

(2) a is an odd, $n \equiv 3 \pmod{4}$.

It is easy to get m, k and s are evens. Since $4a+1 < n \le 6a+2$, we have $m \neq 0$. So $0 < |n - (a + b) - a| \le \frac{n - b + 1}{2}$ and $\frac{n - b}{2} \le n - (a + b) + a \le \frac{3(n - b)}{2}$. (3) a is an even, $n \equiv 1 \pmod{4}$.

It is easy to get m, k and s are evens. Since $4a+1 < n \le 6a+2$, we have

 $m \neq 0$. So $0 < |n - (a + b) - a| \le \frac{n - b + 1}{2}$ and $\frac{n - b}{2} \le n - (a + b) + a \le \frac{3(n - b)}{2}$.

(4) a is an even, $n \equiv 2 \pmod{4}$.

It is easy to get m, k and s are odds. Since $4a+1 < n \le 6a+2$, we have $m \ne 0$. So $0 < |n-(a+b)-a| \le \frac{n-b+1}{2}$ and $\frac{n-b}{2} \le n-(a+b)+a \le \frac{3(n-b)}{2}$. \square

Lemma 9 Let a, b, n satisfy the conditions of (a, b; n)-conjecture. If $n \ge 4a + 1$, then a, b - (a + 1), n - 2(a + 1) satisfy the condition(1) of (a, b - (a + 1); n - 2(a + 1))-conjecture.

Proof According to Lemma 1, considering the following cases:

- (1) When a is an odd, $n \equiv 0 \pmod{4}$, b is an odd, b (a+1) is an odd, b (a+1) a is an even, as $n 2(a+1) \equiv 0 \pmod{4}$, we have $\frac{(n-2(a+1))(n-2(a+1)+1)}{n}$ is an even.
- (2) When a is an odd, $n \equiv 1 \pmod{4}$, b is an even, b (a+1) is an even, b (a+1) a is an odd, as $n 2(a+1) \equiv 1 \pmod{4}$, we have $\frac{(n-2(a+1))(n-2(a+1)+1)}{2}$ is an odd.
- (3) When a is an odd, $n \equiv 2 \pmod{4}$, b is an even, b (a+1) is an even, b (a+1) a is an odd, as $n 2(a+1) \equiv 2 \pmod{4}$, we have $\frac{(n-2(a+1))(n-2(a+1)+1)}{n}$ is an odd.
- (4) When a is an odd, $n \equiv 3 \pmod{4}$, b is an odd, b (a + 1) is an odd, b (a + 1) a is an even, as $n 2(a + 1) \equiv 0 \pmod{4}$, we have $\frac{(n-2(a+1))(n-2(a+1)+1)}{n}$ is an even.
- (5) When a is an even, $n \equiv 0 \pmod{4}$, b is an even, b (a+1) is an odd, b (a+1) a is an odd, as $n 2(a+1) \equiv 2 \pmod{4}$, we have $\frac{(n-2(a+1))(n-2(a+1)+1)}{2}$ is an odd.
- (6) When a is an even, $n \equiv 1 \pmod{4}$, b is an odd, b (a+1) is an even, b (a+1) a is an even, as $n 2(a+1) \equiv 3 \pmod{4}$, we have $\frac{(n-2(a+1))(n-2(a+1)+1)}{2}$ is an even.
- (7) When a is an even, $n \equiv 2 \pmod{4}$, b is an odd, b (a+1) is an even, b (a+1) a is an even, as $n 2(a+1) \equiv 0 \pmod{4}$, we have $\frac{(n-2(a+1))(n-2(a+1)+1)}{2}$ is an even.
- (8) When a is an even, $n \equiv 3 \pmod{4}$, b is an even, b (a + 1) is an odd, b (a + 1) a is an odd, as $n 2(a + 1) \equiv 1 \pmod{4}$, we have $\frac{(n-2(a+1))(n-2(a+1)+1)}{2}$ is an odd.

Lemma 10 Let a, b, n satisfy the conditions of (a, b; n)-conjecture, a > 0 and $b \neq 2a + 1$. Then a, b - (a + 1), n - 2(a + 1) satisfy the conditions of (a, b - (a + 1); n - 2(a + 1))-conjecture for $n \geq 4a + 2$.

Proof We have a, b - (a + 1), n - 2(a + 1) satisfy the condition(1) of (a, b - (a + 1); n - 2(a + 1))-conjecture from Lemma 9.

Case (a) n is an even.

Because of $n \geq 4a+2$, we get $n-2(a+1) \geq 2a$. It is clear that $0 < |b-a| \leq \frac{n+1}{2}$ is equal to $0 < |b-a| \leq \frac{n}{2}$. So $a-\frac{n}{2} \leq b \leq a+\frac{n}{2}$ and $\frac{n}{2}-a \leq b \leq \frac{3n}{2}-a$. Since n > 4a+1, we have $a-\frac{n}{2} \leq \frac{n}{2}-a$ and $a+\frac{n}{2} \leq \frac{3n}{2}-a$. Hence $\frac{n}{2}-a \leq b \leq \frac{n}{2}+a$ and $\frac{n-2(a+1)}{2}-a \leq b-(a+1) \leq \frac{n-2(a+1)}{2}+a$. Since $n-2(a+1) \geq 2a$, we have $a-\frac{n-2(a+1)}{2} \leq \frac{n-2(a+1)}{2}-a$ and $a+\frac{n-2(a+1)}{2} \leq \frac{3(n-2(a+1))}{2}-a$. Hence $a-\frac{n-2(a+1)}{2} \leq b-(a+1) \leq a+\frac{n-2(a+1)}{2}$ and $\frac{n-2(a+1)}{2}-a \leq b-(a+1) \leq a+\frac{n-2(a+1)}{2}$ and $\frac{n-2(a+1)}{2}-a \leq b-(a+1) \leq \frac{3(n-2(a+1))}{2}-a$. Since 2(a+1) is an even, we have n-2(a+1) is an even. Hence $0 \leq |b-(a+1)-a| \leq \frac{n-2(a+1)+1}{2}$ and $\frac{n-2(a+1)}{2} \leq b-(a+1)+a \leq \frac{3(n-2(a+1))}{2}$. Since $b \neq 2a+1$, we have $0 < |b-(a+1)-a| \leq \frac{n-2(a+1)+1}{2}$ and $\frac{n-2(a+1)}{2} \leq b-(a+1)+a \leq \frac{3(n-2(a+1))}{2}$. Thus the condition (2) and condition (3) are obtained.

Case (b) n is an odd.

It is clear that $\frac{n}{2} \le a+b \le \frac{3n}{2}$ is equal to $\frac{n+1}{2} \le a+b \le \frac{3n}{2}$. According to $0 < |b-a| \le \frac{n+1}{2}$ and $\frac{n+1}{2} \le a+b \le \frac{3n}{2}$, then $a - \frac{n+1}{2} \le b \le a + \frac{n+1}{2}$ and $\frac{n+1}{2} - a \le b \le \frac{3n}{2} - a$. Since n > 4a + 1, we have $a - \frac{n+1}{2} \le \frac{n+1}{2} - a$ and $a + \frac{n+1}{2} \le \frac{3(n+1)}{2} - a$. Hence $\frac{n+1}{2} - a \le b \le \frac{n+1}{2} + a$ and $\frac{n-2(a+1)+1}{2} - a \le b - (a+1) \le \frac{n-2(a+1)+1}{2} + a$. Since $n-2(a+1) \ge 2a$, we have $a - \frac{n-2(a+1)+1}{2} \le \frac{n-2(a+1)+1}{2} - a$ and $a + \frac{n-2(a+1)}{2} \le \frac{3(n-2(a+1))}{2} - a$. Hence $a - \frac{n-2(a+1)+1}{2} \le b - (a+1) \le a + \frac{n-2(a+1)+1}{2}$ and $\frac{n-2(a+1)+1}{2} - a \le b - (a+1) \le \frac{3(n-2(a+1)+1)}{2} - a$. Since $b \ne 2a+1$, we have $0 < |b-(a+1)-a| \le \frac{n-2(a+1)+1}{2}$ and $\frac{n-2(a+1)}{2} \le b - (a+1) + a \le \frac{3(n-2(a+1))}{2}$. Thus the condition(2) and condition(3) are obtained.

Lemma 11 Let a, b, n satisfy the conditions of (a, b; n)-conjecture. If P_n is (a, b; n)-graceful with a > 0 and $n \le 4a$, then P_s is (a, t; s)-graceful with $4a + 1 < s \le 6a + 2$ and a, t, s satisfy the conditions of (a, t; s)-conjecture.

Proof Case (a) t = 2a + 1.

Since $4a+1 < s \le 6a+2$, it follows from Lemma 8 and the contents of subject that the labeling $g^{-1}(a, s-(a+t); s-t)$ exists. Let v_0, v_1, \dots, v_s be vertices of path P_s . Put the vertices labeling f as follows:

$$(a, s-a+1, a-1, s-a+2, \dots, s, 0) \land (q^{-1}(a, s-(a+t); s-t) \oplus (a+1)).$$

Hence $f(v_0) = a$, $f(v_s) = a + (a+1) = b$. Considering vertices labeling set A of P_s .

$$A = \{f(v_i) \mid i = 0, 1, \dots, 2a\} \cup \{f(v_i) \mid i = 2a + 1, 2a + 2, \dots, s\}$$

$$= \{f(v_i) \mid i = 0, 1, \dots, 2a\} \cup (\{g^{-1}(v_{i+2a+1}) \mid i = 0, 1, \dots, s - 2a - 1\} \oplus (a+1))$$

$$= \{0, 1, \dots, a\} \cup \{s - a + 1, s - a + 2, \dots, s\} \cup \{a + 1, a + 2, \dots, s - b + (a+1)\}$$

$$= \{0, 1, \dots, a\} \cup \{s-a+1, s-a+2, \dots, s\} \cup \{a+1, a+2, \dots, s-a\} = \{0, 1, \dots, s\}.$$

Because there are s+1 different elements in set A, which are the same as the vertices of P_s , we have the vertices labeling are different. We denote B as the set of edges labeling of P_s . Then

$$\begin{split} &B = \{f^*(v_{i-1}v_i) \mid i = 1, 2, \cdots, s\} \\ &= \{|f(v_{i-1}) - f(v_i)| \mid i = 1, 2, \cdots, 2a\} \cup \{|f(v_{2a}) - f(v_{2a+1})|\} \cup \{|f(v_{i-1}) - f(v_i)| \mid i = 2a + 2, 2a + 3, \cdots, s\} \\ &= \{s - 2a + 1, s - 2a + 2, \cdots, s\} \cup \{|0 - (s - (a+t) + (a+1))|\} \cup \{1, 2, \cdots, s - t\} \\ &= \{s - 2a + 1, s - 2a + 2, \cdots, s\} \cup \{s - 2a\} \cup \{1, 2, \cdots, s - 2a - 1\} \\ &= \{1, 2, \cdots, s\}. \end{split}$$

The number of the edges of P_s is the same as the number of elements in set B, thus f^* is a one to one mapping.

Case (b) $t \neq 2a + 1$.

Since $4a+1 < s \le 6a+2$, it follows from Lemma 9, Lemma 10 and the contents of subject that the labeling g(a, t-(a+1); s-2(a+1)) exists. Let v_0, v_1, \dots, v_s be vertices of path P_s . Put the vertices labeling f as follows:

$$(a, s-a, a-1, s-a+1, \dots, 0, s) \land (g(a, t-(a+1); s-2(a+1)) \oplus (a+1))$$

Hence $f(v_0) = a$, $f(v_s) = t - (a+1) + (a+1) = t$. Considering vertices labeling set A of P_s .

$$A = \{f(v_i) \mid i = 0, 1, \dots, 2a + 1\} \cup \{f(v_i) \mid i = 2a + 2, 2a + 3, \dots, s\} \\ = \{0, 1, \dots, a\} \cup \{s - a, s - a + 1, \dots, s\} \cup \{0 + (a + 1), 1 + (a + 1), \dots, s - 2(a + 1) + (a + 1)\} \\ = \{0, 1, \dots, s\}$$

The number of the vertices of P_s is the same as the number of elements in set A, thus f is a one to one mapping from vertices onto the set of $\{0, 1, \dots, s\}$.

We denote B as the set of edges labeling of P_s . Then

$$\begin{split} B &= \{ f^*(v_{i-1}v_i) \mid i = 1, 2, \cdots, s \} \\ &= \{ |f(v_{i-1}) - f(v_i)| \mid i = 1, 2, \cdots, 2a+1 \} \cup \{ |f(v_{2a+1}) - f(v_{2a+2})| \} \cup \\ &\{ |f(v_{i-1}) - f(v_i)| \mid i = 2a+3, 2a+4, \cdots, s \} \\ &= \{ s - 2a, s - 2a+1, \cdots, s \} \cup \{ |s - (2a+1)| \} \cup \{ 1, 2, \cdots, s - 2(a+1) \} \\ &= \{ 1, 2, \cdots, s \} \end{split}$$

The number of the edges of P_s is the same as the number of elements in set B, thus f^* is a one to one mapping. We obtain f is an (a, t; s)-graceful labeling of P_s from case(a) and case(b).

Lemma 12 Let a,b,n be non-negative integers satisfying the conditions of (a,b;n)-conjecture and $3a+1 \le n \le 4a+1$. If $z \le 2a$, there exists a graceful labeling f(x,y,z) of P_z . If P_z satisfies the conditions of f(x,y,z)-conjecture, then there exists an (a,b;n)-graceful labeling g(a,b;n) of P_n

with $b \neq n - 2a$, $\frac{6a+3-n}{2} \leq b \leq \frac{3(n-2a)}{2}$.

Proof First, we will prove that n - (3a + 1), b - (a + 1) and n - (2a + 1) satisfy the conditions (2), (3) of (n - 3(a + 1), b - (a + 1); n - (2a + 1))-conjecture.

- (1) It is easy to prove that n (3a + 1) (b (a + 1)) = n 2a b has the same parity as $\frac{(n (2a+1))(n-2a)}{2}$.
- (2) we will prove that n (3a+1), b (a+1), n (2a+1) satisfy the conditions (2), (3) of (n (3a+1), b (a+1); n (2a+1))-conjecture.

When n is an even, as a, b, n satisfy the conditions of (a, b; n)-conjecture and $2a \le 3a+1 \le n$, we will obtain $\frac{n}{2}-a \le b \le \frac{n}{2}+a$ by Lemma 5. Since $3a+1 \le n \le 4a+1$, we know that $\frac{6a+3-n}{2} \ge \frac{n}{2}-a$ and $\frac{3(n-2a)}{2} \le \frac{n}{2}+a$. So $\frac{n}{2}-a \le b \le \frac{3(n-2a)}{2}$ and $\frac{6a+3-n}{2} \le b \le \frac{n}{2}+a$. Thus $|n-(3a+1)-(b-(a+1))| \le \frac{n-(2a+1)+1}{2}$ and $\frac{n-(2a+1)}{2} \le n-(3a+1)+b-(a+1) \le \frac{3(n-(2a+1))}{2}$. Since $b \ne n-2a$, we obtain that the condition (2) and condition (3) of (n-(3a+1),b-(a+1);n-(2a+1)) are true.

When n is an odd, as a, b, n satisfy the conditions of (a, b; n)-conjecture and $2a \leq 3a+1 \leq n$, we will get $\frac{n+1}{2}-a \leq b \leq \frac{n+1}{2}+a$ by Lemma 5. Since $3a+1 \leq n \leq 4a+1$, we have $\frac{6a+3-n}{2} \geq \frac{n+1}{2}-a$ and $\frac{3(n-2a)}{2} \leq \frac{n+1}{2}+a$, so $\frac{n+1}{2}-a \leq b \leq \frac{3(n-2a)}{2}$ and $\frac{6a+3-n}{2} \leq b \leq \frac{n+1}{2}+a$. Thus $|n-(3a+1)-(b-(a+1))| \leq \frac{n-(2a+1)+1}{2}$ and $\frac{n-(2a+1)}{2} \leq n-(3a+1)+b-(a+1) \leq \frac{3(n-(2a+1))}{2}$. Since $b \neq n-2a$, we know that the conditions (2),(3) of (n-(3a+1),b-(a+1);n-(2a+1))-conjecture are true. Since $3a+1 \leq n \leq 4a+1$, we know that $n-(3a+1) \leq a,n-(2a+1) \leq 2a$. Because there exists the (n-(3a+1),b-(a+1);n-(2a+1))-graceful labeling f(n-(3a+1),b-(a+1),n-(2a+1)) of $P_{n-(2a+1)}$, we have the (a,b;n)-graceful labeling g(a,b,n) of P_n : $g(a,b,n)=(a,n-a+1,a-1,n-a+2,\cdots,n-1,1,n,0) \land (f(n-(3a+1),b-(a+1),n-(2a+1)) \oplus (a+1))$. It's easy to prove that g(a,b,n) is an (a,b;n)-graceful labeling of P_n . \square

Corollary 13 Let a be odd with $a \ge 1$ and $z \le 2a$. If P_z satisfies the conditions (x, y; z)-conjecture and graceful labeling is f(x, y, z), then a, t, 4a + 1 satisfy the conditions of (a, t; 4a + 1)-conjecture and P_{4n+1} is (a, t; 4a + 1)-graceful.

Proof According to Lemma 6, $t \in \{a+1, a+2, \cdots, 3a+1\}$, we get $\frac{6a+3-(4a+1)}{2} \le t \le \frac{3(4a+1-2a)}{2}$. As $n=4a+1\equiv 1 \pmod{4a}$, we have t is an even from Lemma 1. So $t \ne n-2a$, otherwise, contradicting to n-2a=2a+1 is an odd. According to Lemma 12, there exists an (a,t;4a+1)-graceful labeling g(a,t,4a+1) of P_{4n+1} .

According to Lemma 7, Lemma 11, Lemma 12, and Corollary 13, we will obtain Theorem 1.

§3 The (a, b; n)-gracefulness of P_n

In this section, we will discuss (a, b; n)-gracefulness of P_n in the case of a is 1, 2, 3, 4, 5 and 6.

Lemma 14 If a, b, n satisfy the conditions of (a, b; n)-conjecture, then n-a, n-b, n satisfy the conditions of (n-a, n-b; n)-conjecture.

Proof Since n-a-(n-b) has the same parity as b-a, |n-a-(n-b)| = |b-a| and $b \neq a$, it is easy to get that n-a, n-b, n satisfy the condition (1) and (2) of (n-a, n-b; n)-conjecture.

It remains to prove condition (3). Since $\frac{n}{2} \le a + b \le \frac{3n}{2}$, we have $2n - \frac{n}{2} \le 2n - (a + b) \le 2n - \frac{3n}{2}$, so $\frac{n}{2} \le n - a + n - b \le \frac{3n}{2}$. The conclusion is obtained.

Lemma 15 If x, y, m satisfy the conditions of (x, y; m)-conjecture and the labeling of path P_m is g(x, y; m) for x < a, then (1) The labeling of P_n is g(a, b; n) for b < a or n - b < a; (2) the labeling of P_n is g(a, b; n) for n < 2a.

Proof (1) If b < a, we have $g(a, b; n) = n - g(b, a; n) = n - g^{-1}(a, b; n)$. If n - b < a, we have $g(a, b; n) = n - g^{-1}(n - b, n - a; n)$.

(2) If n < 2a, we have b < a or $a < b \le n \le 2a$. If $a < b \le n \le 2a$, then $n-b < n-a \le 2a-a = a$. In view of (1), the conclusion is obtained.

Lemma 16 Let a,b,n satisfy the conditions of (a,b;n)-conjecture. If P_z satisfy (x,y;z)-conjecture for $z \leq 2a$ and graceful labeling of P_z is f(x,y,z), then there exists the (a,b;n)-graceful labeling g(a,b,n) of P_n for $a \geq 3, 3a+1+\frac{a}{3} \leq n \leq 4a, b=n-2a$.

Proof It's easy to prove that a, n-(3a+1), n-2(a+1) satisfy the conditions of (a, n-(3a+1); n-2(a+1))-graceful conjecture. As $3a+1 \le n \le 4a+1$, we have $n-2(a+1) \le 2a$. Since there exists the (a, n-(3a+1); n-2(a+1))-graceful labeling f(a, n-(3a+1), n-2(a+1)) of $P_{n-2(a+1)}$, we will obtain the (a, b; n)-graceful labeling g(a, b, n) of P_n : $g(a, b, n) = (a, n-a, a-1, n-a+1, \cdots, 1, n-1, 0, n), \land (f(a, n-(3a+1), n-2(a+1)) \oplus (a+1))$. It's easy to prove that g(a, b, n) is the graceful labeling of P_n .

Next the conjectures will be obtained when a=0,1,2,3,4,5,6 by recursion, b which can be transformed into a known number via Lemma 12 is marked by [b], via Lemma 15 is marked by (b) and via Lemma 16 is marked by $\{b\}$. For fixed $a \neq 0$, from Lemma 15 and Theorem 1, if a is an even, the case $2a+1 \leq n \leq 4a+1$ can only be discussed; if a is an odd, the case $2a+1 \leq n \leq 4a$ can only be discussed.

Theorem 2 ([4]) P_n satisfying the conditions of (a, b; n)-conjecture is g(a, b; n)-graceful for a = 0.

Proof We have 4a + 1 = 1 and 6a + 2 = 2 for a = 0. According to lemma 7, we can only consider the cases when n = 1 and n = 2. If n = 1, then b = 1 and g(0, 1; 1) = (0, 1). If n = 2, then b = 1 and g(0, 1; 2) = (0, 2, 1).

Theorem 3 ([5]) P_n satisfying the conditions of (a, b; n)-conjecture is g(a, b, n)-graceful for a = 1.

Proof Since
$$a = 1$$
, we have $2a + 1 = 3$, $4a = 4$, $n = 3$, $b = (3)$; $n = 4$, $b = [3]$, $g(1,3,4) = (1,4,0) \land (g(1,1) \oplus 2)$.

Theorem 4([5]) P_n satisfying the conditions of (a, b; n)-conjecture is g(a, b; n)-graceful for a = 2.

Proof We have 2a + 1 = 5, 4a + 1 = 9 for a = 2. According to Lemma 12, Lemma 14, Lemma 15 and Theorem 1, we have

$$n = 5, b = (1), 3, (5), g(2, 3, 5) = (2, 1, 4, 0, 5, 3).$$

$$n = 6, b = (1), 3, (5), g(2, 3, 6) = (2, 6, 0, 5, 4, 1, 3).$$

$$n = 7, b = [4], (6).$$

$$n = 8, b = \{4\}, [6].$$

$$n = 9, b = (1), [3], 5, [7], g(2,5,9) = (2,4,7,3,9,0,8,1,6,5).$$

Theorem 5 P_n satisfying conditions of (a, b; n)-conjecture is g(a, b; n)-graceful for a = 3.

Proof If a = 3, then 2a + 1 = 7 and 4a = 12, so we have n = 7, b = (1), (5), (7). n = 8, b = (1), 5, (7), g(3, 5, 8) = (3, 8, 0, 7, 1, 4, 2, 6, 5). n = 9, b = (2), 4, 6, (8), g(3, 4, 9) = (3, 5, 2, 6, 7, 1, 8, 0, 9, 4), g(3, 6, 9) = (3, 7, 1, 8, 0, 9, 4, 2, 5, 6). n = 10, b = (2), 4, [6], (8), g(3, 4, 10) = (3, 5, 10, 0, 9, 1, 8, 2, 6, 7, 4). $n = 11, b = \{5\}, [7], (9)$.

```
n = 12, b = [5], [7], [9].
```

Theorem 6 P_n satisfying the conditions of (a, b; n)-conjecture is g(a, b; n)-graceful for a = 4.

```
Proof If a=4, then 2a+1=9 and 4a+1=17, so we have
n = 9, b = (1), (3), 5, (7), (9), g(4, 5, 9) = (5, 9, 0, 8, 1, 7, 2, 3, 6, 4).
n = 10, b = (1), (3), 5, (7), (9), g(4, 5, 10) = (4, 10, 0, 9, 1, 8, 7, 2, 6, 3, 5).
n = 11, b = (2), 6, (8), (10), g(4, 6, 11) = (4, 3, 7, 5, 8, 2, 9, 1, 10, 0, 11, 6).
n = 12, b = (2), 6, 8, (10), g(4, 6, 12) = (4, 5, 8, 3, 7, 9, 2, 10, 1, 11, 0, 12, 6),
g(4,8,12) = (4,12,0,11,1,10,3,9,5,2,7,6,8).
n = 13, b = (3), 5, [7], 9, (11),
g(4,5,13) = (4,13,0,12,1,11,3,10,6,9,8,2,7,5),
g(4, 9, 13) = (4, 13, 0, 12, 1, 11, 3, 10, 5, 7, 8, 2, 6, 9).
n = 14, b = (3), 5, [7], [9], (11),
g(4,5,14) = (4,7,11,6,8,9,3,10,2,12,1,13,0,14,5).
n = 15, b = [6], [8], [10], (12).
n = 16, b = [6], \{8\}, [10], [12].
n = 17, b = [5], [7], 9, [11], [13],
                                                                                g(4,9,17) = (4,12,3,14,2,15,1,16,0,17,7,13,6,8,11,10,5,9).
```

Theorem 7 P_n satisfying the conditions of (a, b; n)-conjecture is g(a, b; n)-graceful for a = 5.

```
Proof If a = 5, then 2a + 1 = 11 and 4a = 20, so we have
n = 11, b = (1), (3), (7), (9), (11).
n = 12, b = (1), (3), 7, (9), (11),
g(5,7,12) = (5,3,6,12,0,11,1,10,2,9,4,8,7).
n = 13, b = (2), (4), 6, 8, (10), (12),
g(5,6,13) = (5,4,8,3,10,2,11,1,12,0,13,7,9,6),
g(5, 8, 13) = (5, 7, 3, 10, 4, 12, 0, 13, 2, 11, 1, 6, 9, 8).
n = 14, b = (2), (4), 6, 8, (10), (12),
g(5,6,14) = (5,9,14,0,13,1,12,2,11,3,10,4,7,8,6),
g(5, 8, 14) = (5, 9, 4, 6, 7, 10, 3, 11, 2, 12, 1, 13, 0, 14, 8).
n = 15, b = (3), 7, 9, (11), (13),
g(5,7,15) = (5,10,6,8,9,15,0,14,1,13,2,12,3,11,4,7),
q(5, 9, 15) = (5, 10, 6, 8, 7, 4, 11, 3, 12, 2, 13, 1, 14, 0, 15, 9).
n = 16, b = (3), 7, [9], 11, (13),
g(5,7,16) = (5,9,8,6,11,4,12,3,13,2,14,1,15,0,16,10,7),
g(5, 11, 16) = (5, 12, 4, 13, 2, 14, 1, 15, 0, 16, 6, 8, 3, 9, 10, 7, 11).
n = 17, b = (4), 6, [8], [10], 12, (14),
g(5,6,17) = (5,10,9,13,7,14,4,16,0,17,2,15,1,12,3,11,8,6),
g(5, 12, 17) = (5, 13, 4, 14, 2, 15, 1, 16, 0, 17, 6, 11, 7, 8, 10, 3, 9, 12).
```

```
n = 18, b = (4), 6, \{8\}, [10], [12], (14),

g(5, 6, 18) = (5, 11, 10, 7, 9, 18, 0, 17, 1, 16, 2, 15, 3, 14, 4, 12, 8, 13, 6).

n = 19, b = [7], \{9\}, [11], [13], (15).

n = 20, b = [7], [9], [11], [13], [15].
```

Theorem 8 P_n satisfying the conditions of (a, b; n)-conjecture is q(a, b; n)-graceful for a = 6.

```
Proof If a = 6, then 2a + 1 = 113 and 4a + 1 = 25, so we have
n = 13, b = (1), (3), (5), 7, (9), (11), (13),
g(6,7,13) = (6,10,8,5,4,9,3,11,2,12,1,13,0,7).
n = 14, b = (1), (3), (5), 7, (9), (11), (13),
q(6,7,14) = (6,10,8,5,4,9,3,11,2,12,1,13,0,14,7).
n = 15, b = (2), (4), 8, (10), (12), (14),
g(6,8,15) = (6,4,9,10,7,11,5,12,3,13,2,14,1,15,0,8).
n = 16, b = (2), (4), 8, 10, (12), (14),
g(6,8,16) = (6,7,9,5,11,4,12,2,16,0,15,3,14,1,10,13,8),
g(6, 10, 16) = (6, 16, 0, 15, 1, 14, 2, 13, 4, 12, 5, 11, 9, 8, 3, 7, 10).
n = 17, b = (3), (5), 7, 9, 11, (13), (15),
g(6,7,17) = (6,11,17,0,16,1,15,2,14,3,13,4,12,5,9,8,10,7),
g(6,9,17) = (6,10,7,8,13,11,5,12,4,14,3,15,2,16,1,17,0,9),
g(6,11,17) = (6,17,0,16,1,15,2,14,4,13,5,12,8,3,9,7,10,11).
n = 18, b = (3), (5), 7, 9, 11, (13), (15),
g(6,7,18) = (6,10,8,9,14,11,5,12,4,13,3,15,2,16,1,17,0,18,7),
g(6,9,18) = (6,10,7,8,13,11,5,12,4,14,3,15,2,16,1,17,0,18,9),
g(6,11,18) = (6,18,0,17,1,16,2,15,4,14,5,13,9,3,10,12,7,8,11).
n = 19, b = (4), 8, [10], 12, (14), (16),
g(6,8,19) = (6,11,10,12,9,13,7,14,5,15,4,16,3,17,2,18,1,19,0,8),
g(6,12,19) = (6,19,0,18,1,17,2,16,4,15,5,14,11,3,10,9,7,13,8,12).
n = 20, b = (4), 8, [10], [12], 14, (16),
g(6,8,20) = (6,11,9,10,14,7,13,4,12,15,5,16,3,17,2,18,1,19,0,20,8),
g(6, 14, 20) = (6, 20, 0, 19, 1, 18, 2, 17, 4, 16, 5, 15, 11, 3, 12, 9, 10, 8, 13, 7, 14).
n = 21, b = (5), 7, \{9\}, [11], [13], 15, (17),
g(6,7,21) = (6,11,9,17,10,13,12,8,14,5,15,4,16,3,18,2,19,
1, 20, 0, 21, 7),
7, 15).
n = 22, b = (5), 7, [9], [11], [13], [15], (17),
g(6,7,22) = (6,22,0,21,1,20,2,19,4,18,5,17,12,10,11,14,3,13,9,15,8,
16, 7).
n = 23, b = [8], [10], [12], [14], [16], (18).
n = 24, b = [8], [10], 12, [14], [16], [18].
n = 25, b = [7], [9], [11], 13, [15], [17], [19],
```

g(6, 13, 25) = (6, 25, 0, 24, 1, 23, 2, 22, 4, 21, 5, 20, 12, 7, 19, 8, 18, 9, 15, 16, 3, 17, 10, 14, 11, 13).

Acknowledgment

This work is supported by NSFC (No. 61172094). The authors would like to thank the referees for their illuminating comments which greatly improve the presentation of the paper.

References

- [1] GOLOMB S W. How to Number a Graph, in Graph Theory and Computing. New York: Acadmic Press, 1972:23-37.
- [2] GALLIAN J.A. A Dynamic Survey of Graph Labeling. Electronic Journal of Combinatorics [EJ],(DS6),2009:1-219. http://www.combinatorics.org [3] GVOZDJAK P. On the Oberwolfach Problem for Cycles with Multiple Lengths, Ph.D.thesis, Burnaby: Simon Fraser University, 2004.
- [4] LEE S.M., LAI K Y, WANG Y S, etc. On the Graceful Permutation Graphs Conjecture, Congressus Numerantium, 103(1994):193-201.
- [5] FAN Lixia, LIANG Zhihe, On the (a,b;n)-graceful Conjecture of the Path of Length n, J. Hebei Normal University (Natural Science Edition) 34(20 10):5-9.