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Abstract

A simple undirected graph is said to be semisymmetric if it is
regular and edge-transitive but not vertex-transitive. A semisym-
metric graph must be bipartite whose automorphism group has two
orbits of same size on the vertices. One of our long term goals is to
determine all the semisymmetric graphs of order 2p®, for any prime
p. All these graphs I' with the automorphism group Aut(I') are di-
vided into two subclasses: (I) Aut(I') acts unfaithfully on at least
one bipart; and (II) Aut(l') acts faithfully on both biparts. In [9],
[19] and [20], a complete classification was given for Subclass (I). In
this paper, a partial classification is given for Subclass (II), when
Aut(T") acts primitively on one bipart.
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1 Introduction

All graphs considered in this paper are finite, connected, simple and undi-
rected. For a graph I' = (V, E) with the vertex set V and edge set E, by
{u,v} we denote an edge of I', and by Aut(T) its full automorphism group.
A graph T is said to be regular if all the vertices have the same degree. Set
G = Aut(I'). The graph I is said to be vertex-transitive and edge-transitive
if G acts transitively on V' and E, respectively. If I" is bipartite with the
bipartition V = W U U, then we let G* be a subgroup of G preserving
both W and U. Since I is connected, we know that either |G : G*| =2 or
G = G*, depending on whether or not there exists an automorphism which
interchanges the two biparts. For A < G*, I is said to be A-semitransitive
if A acts transitively on both W and U, while an G*-semitransitive graph
is simply said to be semitransitive.
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A graph is said to be semisymmetric if it is regular and edge-transitive
but not vertex-transitive. It is easy to see that every semisymmetric graph
is a semitransitive bipartite graph with two biparts of equal size.

The first person who studied semisymmetric graphs was Folkman. In
1967 he constructed several infinite families of such graphs and proposed
eight open problems, see [11]. Afterwards, much work has been done on
semisymmetric graphs. In particular, by using group-theoretical meth-
ods, Iofinova and Ivanov [15] in 1985 classified cubic semisymmetric graphs
whose automorphism group acts primitively on both biparts. This was the
first classification theorem for such graphs. More recently, following some
deep results in group theory which depend on the classification of finite
simple groups and some methods from graph coverings, some new results
of semisymmetric graphs have appeared, see [6, 7, 10, 12, 16, 17, 18] and
S0 on.

In [11}, Folkman proved that there are no semisymmetric graphs of order
2p and 2p? where p is a prime. In (10}, Du and Xu classified semisymmetric
graphs of order 2pg for two distinct primes p and g. Therefore, a natural
question is to determine semisymmetric graphs of order 2p®, where p is a
prime. Since the smallest semisymmetric graphs have order 20 (see [11]),
we let p > 3. It was proved in [17] that the Gray graph of order 54 is the
only cubic semisymmetric graph of order 2p®. The classification of all the
semisymmetric graphs of order 2p2 is still one of the attractive and difficult
open problems. These graphs I" are naturally divided into two subclasses:

Subclass (I): Aut(T') acts unfaithfully on at least one bipart; -
Subclass (IT): Aut(T") acts faithfully on both biparts.

A complete classification for Subclass (I) has been given in [9], [19] and
[20]. In our further research, we shall concentrate on Subclass (II), which
can be divided into two cases:

Case (i): Aut(T') acts primitively on at least one bipart;
Case (ii): Aut(T') acts imprimitively on both biparts.

In this paper, we shall determine the graphs in Case (i). Remark that
Case (ii) will be the most difficult and complicated part. Before giving the
main theorem of this paper, we first define four graphs I

Definition 1.1 Define four bipartite graphs T with bipartition V = WUU,
where

W={(1'a]ak)lza.11kez3}v U={[xay,zl |x,y,2623},

and with the respective edge set:



(1) Graph I';(3):
E = {{(i,j,k),[:c,y,z]}|1:=j,y=k,z=0;
1’=k,y=i,2=1;z=i,y=j,2=2,
i$j1 k’ T,y z € Z3}’

(2) Graph T'3(6):
E = {(.5.k) [y} [z=j+my=kz=0;
r=k+my=iz=liz=i+my=j2=2,
meFi:i,j,k,m,y,z€Z3},

(3) Graph I'3(12a):
E = {{(i,j,k),[a:,y,z]}[:L'=j+m,y=k+s,z=0;
z=k+my=it+s,z=Liz=i+my=j+s82=2,
mysepgii’j’k)w’y)zez?o})

(4) Graph TI'3(12b):

E = {Gik) [z} |z=i+my=k2=0
r=jy=k+s,z2=0x=m+ky=14,2=1;
z=ky=s+i,z=Lz=i+my=j2=2
r=t,y=s+jz=2m,s€F3,i,jkx,y2€ Z3},

Remark 1.2 For the four graphs in Definition 1.1, one may get the fol-
lowing properties from Section 3:

(1) Graph I'3(3): Aut(T') = Z3 x (S422) and the valency is 3;
(2) Graph I'3(6): Aut(T') = Z§ x (A4Z2) and the valency is 6;

(3) Graphs I'3(12a) and ['3(12b): Aut(T') = Z3 x(S,2,) and the valency
is 12,

The main result of this paper is the following theorem, which will be
proved in Section 3.

Theorem 1.3 Let I be a semisymmetric graph of order 2p®, where p is
a prime. Suppose that the automorphism group Aut(l') acts faithfully
on both biparts and primitively on at least one bipart. Then p = 3 and
I 2 T'3(3),I'3(6),I's(12a) or I'3(12b) as defined in Definition 1.1. More-
over, for the above four graphs, Aut(G) acts primitively on one bipart and
imprimitively on other bipart. In particular, the graph I'3(3) is isomorphic
to the Gray graph.



2 Preliminaries

In this section, we introduce some notation and give some preliminary
results.

For group-theoretic concepts and notation, the reader is referred to
(1, 4, 14]. Moreover, for a permutation group G on €, a subset A C Q2
and a subgroup N < G preserving A, by Ga and G(a) we denote the
stabilizer of G relative to A setwise and pointwise, respectively, and by
Ap the set of N-orbits on A. For a prime p, by p' || n we mean that
p' | n but p**! { n. For a ring S, let §* be the multiplicative group of
all the units in S. For a group G and a subgroup H of G, by [G : H] we
denote the set of right cosets of H in G, where the action of G on [G : H]
is always assumed to be the right multiplication action. For any o in the
n-dimensional row vector space V =V (n,p) over GF(p), we denote by t,
the translation corresponding to « in the affine group AGL(n,p) and by
N the translation subgroup. Then AGL(n,p) & N x GL(n,p). We adopt
matrix notation for GL(n,p) and so we have g 'tag = (ta)? = tag, for
any to € N < AGL(n,p) and any g € GL(n,p). By ||a, b, ||, we denote a
diagonal matrix of order 3 with entries a, b, ¢ from top left to bottom right.

The following definition is basic for this paper.

Definition 2.1 Let G be a group, let L and R be subgroups of G and let
D be a union of double cosets of R and L in G, namely, D = |J; Rd;L.
Define a bipartite graph X = B(G, L, R; D) with bipartition V(X) = [G :
L)U[G : R) and edge set E(X) = {(Lg, Rdg) | g € G,d € D}. This graph
is called the bi-coset graph of G with respect to L, R and D.

The following three propositions give some properties for bi-coset graphs.

Proposition 2.2 [10] The graph X = B(G, L, R; D) is a well-defined bi-
partite graph. Under the right multiplication action of G on V(X), the
graph X is G-semitransitive. The kernel of the action of G on V(X) is
Coreg(L) N Corec(R), the intersection of the cores of the subgroups L and
R in G. Furthermore, we have

(i) X is G-edge-transitive if and only if D = RdL for some d € G;

(ii) the degree of any vertex in {G : L] (resp. (G : R]) is equal to the
number of right cosets of R (resp. L) in D (resp. D7), so X is
regular if and only if |L| = |R|;

(ili) X is connected if and only if G is generated by elements of D~ D;

(iv) X = B(G, L%, R? D') where D' = |J, R® (b-d;a)L®, for any a,b €
G;



(v) X = B(G, L?,R%; D°) where o is an isomorphism from G to G (it
does not appear in [10] but it is easy to prove.)

Proposition 2.3 [10] Suppose Y is a G-semitransitive graph with bipar-
tition V(Y) = U(Y) UW(Y). Takeu € U(Y) and w € W(Y). Set
D = {g e G| w € Yi(u)}. Then D is a union of double cosets of
Gy and G, in G, and Y = B(G, Gy, Gu; D).

Proposition 2.4 [10] Let X = B(G, L, R; D). If there exists an involutory
automorphism o of G such that LY = R and D° = D!, then X is vertez-
transitive. In particular,

(1) If G is abelian and acts regularly on both parts of X, then X is vertez-
transitive. In other words, bi-Cayley graphs of abelian groups are
vertez-transitive.

(2) If there exists an involutory automorphism o of G such that L° = R,
and the lengths of the orbits of L on (G : R] (or of the orbit of R on
[G : L)) are all distinct, then X is vertex-transitive.

(3) If the representations of G on the two parts of X are equivalent and all
suborbits of G relative to L are self-paired, then X is vertez-transitive.

Finally, we give some group theoretical results.

Proposition 2.5 [13] Let T be a nonabelian simple group with a subgroup
H < T satisfying |T : H| = p*, for p a prime. Then one of the following
holds:

(i) T = A, and H = A,_ with n = p%;

(ii) T = PSL(n,q) and H is the stabilizer of a projective point or a hy-
perplane in PG(n —1,q), and |T: H| = (¢" - 1)/(¢g - 1) = p%

(iif) T = PSL(2,11) and H = As, where T has two subgroups isomorphic
to As, which are not conjugate in T;

(iV) T= Mu and H = MIO;
(V) T= M23 and H = Mzg;
(vi) T =PSU(4,2) and H is a subgroup of indez 27.

Proposition 2.6 L2/ For an odd prime p, let G = PSL(3,p) and H a
proper subgroup of G. Then one of the following holds:

(1) If H has no nontrivial normal elementary abelian subgroup, then H
is conjugate in GL(3,p)/Z(SL(3,p)) to one of the following groups:



(i) PSL(2,7), with p* = 1(mod 7);
(ii) As, with p=1,19(mod 30);
(iii) PSL(2,5), with p = +1(mod 10);
(iv) PSL(2,p) or PGL(2,p) forp > 5.

(I1) If H has a nontrivial normal elementary abelian subgroup, then H is
conjugate to a subgroup of one of the following subgroups:

(1) Zp2+p+1)/(3,0-1) X Z3;

(i) the subgroup F' of all matrices with only one nonzero entry in
each row end column, and F' contains the subgroup D of all
diagonal matrices as a normal subgroup such that F /D = Ss;

(iii) the point- or line-stabilizer of a given point ((1,0,0)7) or the
line (0, o, 8)T | @, B € Fp);

(iv) the group M such that M conteins a normal subgroup N = Z3
and M /N is isomorphic to SL(2,3) if p= 1(mod 9) or to Qs if
p = 4,7(mod 9).

Proposition 2.7 [19] For an odd prime p, let G be a primitive group on
Q, where |Q| = p®. Suppose that G has a faithful transitive representation
of degree p®. Then G is isomorphic to one of the following groups:

1) PTL(2,8), for p = 3;

2) Z2 x H, where H = SL(2,3) or GL(2,3), for p = 3;
3) ZZ » H, where H = SL(2,5) or GL(2,5), forp =5;
4) Z2 x SL(2,7), forp=1;

(5) Z3 = SL(2,11), for p = 11.

(
(
(
(

All these representations are imprimitive.

3 Proof of Theorem 1.3

To show Theorem 1.3, let I' be a semisymmetric graph of order 2p3 with
the bipartition V = W U U, where p is an odd prime and set G = Aut(T).
Suppose that G acts faithfully on both biparts and G acts primitively on
one bipart, say U. Then the proof of Theorem 1.3 consists of the following
two lemmas.

Lemma 3.1 Under the above hypothesis, G is an affine group.



Proof Suppose that G = Aut(I') acts primitively on U. Then G has a
faithful primitive representation of degree p®. Checking the well-known
O’Nan-Scott Theorem [4], G is of almost simple type, product type or
affine group type. In what follows, we shall show that the first two cases
cannot occur, via showing that the graph is vertex-transitive.

(1) G is of almost simple type.

Set T = soc(G), a nonabelian simple group. Then by checking Proposi-
tion 2.5, we get that soc(G) is Aps, PSL(n,q) or PSU(4,2), where i’q—_-"l—l =
p®. We divide the proof into the following three cases.

Case 1. T = Apa.

Suppose that T is primitive on W. Then two representations T" on U
and W are equivalent. In other words, T, and T, are conjugate in T for
some w € W and v € U. Consider the action of Ty, on [T : T,). Then
there are two orbits with different lengths 1 and p® — 1, respectively. By
Proposition 2.4(3), the graph T' is vertex-transitive.

Suppose that T is imprimitive on W, with a block system, say By,
where |Bw/| = p or p?. Since T is a simple group, T acts faithfully on By .
The first case [Bw| = p is clearly impossible. Suppose that |Bw| = p?.
By Proposition 2.7, T is imprimitive on Bw, with a block system, say By,
where [Bw/| = p. This case is impossible too.

Case 2. T = PSL(n,g), where £ = p°.

Suppose that T is primitive on W. In this case, T has two equivalent
representations on U and W. Consider the action of Ty, on [T : T]. Then
there are two orbits with different lengths ¢"~1/q — 1 and ¢", respectively.
By Proposition 2.4(3), the graph T' is vertex-transitive.

Suppose that T is imprimitive on W, with a block system, say Bw.
Since T is a simple group, T acts faithfully on By . By the same argument
as the above case, it is impossible.

Case 3. T = PSU(4, 2).

Suppose that T is primitive on W, note that in this case, p = 3. Then
two representations T on U and W are equivalent. In other words, T}, and
T, are conjugate in T for some w € W and u € U. Consider the action of
T, on [T : T,). Since |T,,| = 24| 45|, we get 13} |T,,|. Hence, there are three
suborbits of T, acting on [T : T, ], with length, say 1,r, and s, respectively,
where 7,5 # 1. Since 13 { |T,| and r + s = 26, we know r # s. Thus the
three orbits have the distinct length. By Proposition 2.4(3), the graph I' is
vertex-transitive.



For the case when T is imprimitive on W, by using the same arguments
as in Case 1, we know that this case cannot occur.

(2) G is of product type.

In this case, G = (M x M x M)xZ3 or (M x M x M)xS3, where M is a
nonabelian simple group of S, and p > 5. Let P be the Sylow p—subgroup
of G. Then P = Zg. Since G is transitive on both U and W, we get p* || |G|
and thus P is transitive on both U and W. From Proposition 2.4, the graph
is vertex-transitive. ]

Lemma 3.2 T = T'3(3), I's(6), I's(12a) or ['3(12b), as defined in Defini-
tion 1.1, and moreover, for these four graphs, G acts primitively on one
bipart and imprimtively on other bipart.

Proof By Lemma 3.1, G is an affine group on U. Set G =T x H, where
T = Z3 is the socle of G and H is a subgroup of GL(3, p).

Suppose that G acts primitively on both U and W. Then T acts transi-
tively and then regularly on both biparts. From Proposition 2.4, the graph
I is vertex transitive, a contradiction.

From now on, suppose that G acts primitively on U and imprimitively
on W, that is, H is an irreducible subgroup of GL(3,p). Let V be the
3-dimensional row vector space over GF(p) and set

v = (1,0,0), Uy = (0,1,0), vy = (0,0,1) eV.

We shall identify T with the translation subgroup of AGL(3,p), where by
t, we denote the translation corresponding to v € V, so that

T= (tvl) X (tvz) X (tva)'

By the above argument, T' is isomorphic to one of bi-coset graphs X =
B(G,Gy,Gy; D) for some w € W and v € U. The proof is divided into
the following three steps:

Step (1): Determination of groups G,G,, and G,,.

Recall that T acts regularly on U and intransitively on W. Let By :=
{Bili € Zps;m} be a complete m—block system induced by T', where m = p
or p?. Let K be the kernel of the action of G on Bw .

Let H, = HNSL(3,p) and H; = H,;Z(SL(3,p))/Z(SL(3,p)) < PSL(3, p).
If m = p, then |Bw| = p?. Since H is transitive on By, it follows that
p? | |H|. Checking Proposition 2.6, we get that either H = GL(3,p) or
H = SL(3,p). However, it is easy to know that GL(3,p) and SL(3, p) have
no permutation representation of degree p2. Then m = p? and |Bw/| = p.
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It follows that H has a permutation representation of degree p. By Propo-
sitions 2.5 and 2.6, H, is either the case (iv) of (I) where p = 5,7,11 or
the case (i2) of (II) where p = 3, in Proposition 2.6.

Suppose that H; is case (iv) of (I) for p =5,7,11 and p || |H|. Consider
the action of T = Z3 on B. Recalling that [Bw| = p and |B| = p?, where
B € By contains w = vy = (1,0,0).It is easy to get that for any w € B,
Tw & Z, and T, < Gy, Since (|Twl, |Gw/Tw|) = 1, there exists a normal
p-complement subgroup M of T, in G,,. Observe that G,, = T\, x M. Let
M, = (M n SL(3,p))Z(SL(3,p))/Z(SL(3,p)). Note that for three cases,
that is, p = 5,7,11, M, contains subgroup of isomorphic to A4. Consider
the action of H on By . Then Hg < Gg. Since T < Gg, TN Hg =1 and
IT||HB| = |GB, it follows that Gg =T x Hg. Since M < Gy, < Gp and
|M| = |Hg|, it follows that M and Hp are conjugated in Gp. Without
loss of any generality, we may assume M = Hg. Then M < H. Since M

normalizes T,,, we get
[AI-T 0 0
vl a
Ml S A )
b

where a,b € GF(p), A € GL(2,p). Since p { |M|, it follows M < GL(2,p).

But GL(2, p) cannot contain a subgroup Ag, see (8], a contradiction.
Suppose that H; is case (it) of (II) for p = 3 in Proposition 2.6. By

the same argument as the above case, we have M = Hg = H, and M

normalizes T,,. Then
a 0 0
8
" s( \ )
¥

where a, 8,7 € GF(3),A € GL(2,3). Since 3 { |M|, it follows that M <
GL(2,3) x Z,. Since HNSL(3,3) < F, where F/D = S3, and H is an
irreducible subgroup of GL(3,p), we can get H NSL(3,3) = A4 or S,.
Then H is isomorphic to one of the following groups : A, S4, (A4,d) and

(S4,d), where
1 0 O
d= 01 0 .
0 0 2

a = t(1,0,0)» & = £(0,1,00» ¢ =t(0,0,1)
0 0 2 0 O 0 1 0
2 0 ), = 01 0 |J],p=| 001 |,u=
0 2 0 0 2 1 0 0
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More clearly, these elements have the following relations:
a” =a,b” =b,¢" =c%a" =a%b" =b,c" = c?,

a® =b b =c,c® =a,a =a? b* =% c* = b

Step (2): Determination of the possible bi-coset graphs X.

From the last step, there are four cases for group H, that is A4, Sy, (A4, d)
and (S4,d). We discuss them separately.

Case 1: H= A,

No loss of any generarlity, let

1 00 2 00 010
H=((0 2 o),(o 1 0))x((0 0 1))=(r,w)x(p)aD4xZ;;,
0 0 2 0 0 2 1 00
Then
G=TxH = ((a) x (b) x () x ({r,7) » (p)),
Gy = H = (1,m) x (p), Gy = (a) x {1, 7).

Then Suppose that our graph I' is isomorphic to a bi-coset graph X =
B(G; Gy, Gy, D), where D = G,91G,, for some g; € G. Set

U(X)
W(X)

(G : Gu] = {Guaibic® | i,j,k € Z3},
[G: Gy] = {Gub®c¥p? | z,y,2z € Z3}.

In the following, we shall determine the possible double cosets. Since H
is transitive on By, there exist edges leading © = G, to every block in
W. Every points in [G : G,] has the form Gb"c¥p* for z,y,z € Z3 and
every block has the form {G,b%c¥p* | z,y € Z3} for z € Z3. Then we just
need to consider the orbit of G, on [G : G,] containing G,b*c?, which
corresponds to a double coset D(z,y) := G,b*c¥G,,, where z,y € Z3.

Assume z,y # 0. Under the conjugacy action, 7,u and 7 fixes G,
and G,. Moreover, 7 maps D(1,0) to D(2,0); D(0,1) to D(0,2); D(1,1)
to D(2,2); D(1,2) to D(2,1), respectively. By the same argument, 1 maps
D(1,0) to D(0,1) and 7 maps D(1,1) to D(1,2). Therefore, (7,u,7) in-
duces an isomorphism between those corresponding bi-coset graphs. By
Proposition 2.2, we just need to consider three cases D(0,0), D(1,0) and
D(1,1), separately.

By computing, we get that

D(0,0) = GG, = {Gup'|l € Z3}, where | D(0,0)|/|Gw| = 3;
D(1,0) = GubG,, = {Gub™p'|im € F},l € Z3},
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where |D(0,0)|/|Gw] = 6;
D(1,1) = GubcGy = {Gub™c*pl|m, s € F3,l € Z3},

where | D(0,0)|/|Gu]| = 12.
Correspondingly, for any i, 5,k € Z3, the neighborhood of G,aibc* in

the bi-coset graph is
{Gubick, Gybkctp, Gybicd p?}, so the valency is 3;
Gubitmek, G b5+t metp, G bt ™ p?|m € F3}, so the valency is 6;
3
(Gubitmckts G bktmeitsp G bt ™I+ p2|m,s € F3}, so the va-
lency is 12.

Now, relabel the vertex G a'bic* € U and G,b*c¥p* € W by (4,5, k)
and [z,y, 2], respectively. Then the above three graphs are precisely the
graphs I'3(3), I's(6) and I'3(12a), that is

(1) Graph I'3(3):
E = {{(i’j:k))[l‘ay,z]} l$=j,y=k,z =0;x=k,y=i,z=1;
r=1y=72=217j k,x,y,z € ZS}'
(2) Graph I's(6):

E = {{(i’jsk),[x,y,zl}|$=j+m,y=k,z=0;
z=k+my=iz=lLiz=i+my=j2=2
i’j’klxayqze Z3,m€F;}.

(3) Graph I'3(12a):
E = {{(i,j,k),[x,y,z]} | z=j+my=k+s2=0;

s=k+my=i+s,z=Liz=i+my=j+s2=2;
i,5,k,xz,y,2 € Z3,m,s € F3}.
Case 2. H=S,.
In this case,
Gu = (1,m) % ((p) ¥ (1)), Gw = (a) » ({7, ) x (u}),

Similarly, we just need to consider two cases D(0,0), D(1,0) and D(1,1).
By computing, the neighborhood of G,a'b’c* in the bi-coset graph is

{Gu¥ck, G bkcip, Gybic? p?}, so the valency is 3;

{Gw()j+"fc’°, Gubick*s, G b*t™cip, G,bkc’tip, G bit ™l p2,
Guwbic**ip?|m € F3}, so the valency is 12;
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{Gubitmckts G bE+tmcitep G bt eIt plm,s € F3}, so the va-
lency is 12.

Relabel the vertex Guabick € U and G,b*c¥p* € W by (i, 5, k) and

[z,y, ), respectively. Then from the first and third cases again, we get the

graphs as same as ['3(3) and I'3(6), respectively. Therefore, the second case
gives us a new graph, that is I'3(12b) as defined in Defnition 1.1, that is

(4) Graph I's(12b):

E = {{Gihik)(z,0.2} |z=i+my=kz=0
z=jy=k+s,2=0z=m+ky=iz=1
z=ky=s+i,z=lLz=i+m,y=j2=2
r=1i,y=s+j2=245kzy z2€Z3,ms € F5}.

Case 3: H = (A4, d).
In this case,
Gu = H = ({r,m) % (p)) % (d), G = ((a)  (r,)) x (d),
and we can get the same graphs as in the case H = A,.
Case 4: H = (S,,d).
In this case,

Gu = H = ({r,m) x ({p) % (1)) » (d), G = ({@&) x ({7, 7) % (1))} % {d},
and we can get the same graphs as in the case H = Sj.

Step (8): Determination of the automorphism groups, isomorphism
classes and semisymmetry for the four graphs

we already know that for the graphs I'3(3),'3(12a) and I'3(12b), their
automorphism groups contains a subgroup isomorphic to Z3 x (S422), and
for the graph I'3(6), its automorphism group contains a subgroup Z3 x
(As4Z2). We can get that |I'3(3)] = [I'3(12a)] = |[['3(12b)] = 1296 and
|T3(6)] = 648 by Magma [3]. Therefore, Aut(I's(3)), Aut(['3(12a)) and
Aut(T'3(12b)) are isomorphic to Z3 x (S422), and Aut(T'3(6)) is isomorphic
to Z3 x (A4Z;). Consequently, all of them are semisymmetric. Moreover,
by Magma again, we know I'3(12a) % I'3(12b). O
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