Paired domination number of generalized Petersen graphs P(n, 2)

Wensheng Lia, Huaming Xingb, Zhongsheng Huanga

^aDept. of Math. & Info. Sci., Langfang Teachers University, Langfang, 065000, China ^aCollege of Science, Tianjin University of Science & Technology, Tianjin, 300222, China

Abstract

Let G=(V,E) be a simple graph. A paired-dominating set of a graph G is a dominating set whose induced subgraph contains a perfect matching. The paired domination number of a graph G, denoted by $\gamma_p(G)$, is the minimum cardinality of a paired-dominating set in G. In this paper, we study the paired domination number of generalized Petersen graphs P(n,2) and prove that for any integer $n \geq 6$, $\gamma_p(P(n,2)) = 2(\lfloor \frac{n}{3} \rfloor + n \pmod{3})$.

Keywords: generalized Petersen graph, paired domination set, paired

domination number

2010 MSC: 05C22, 05C69

1. Introduction

Throughout this paper all graphs are finite and simple. Readers are suggested to refer to [1] for graph theoretical terminologies not specified here.

Let G=(V,E) be a graph with vertex set V and edge set E. For a vertex $v\in V$, the open neighborhood of v,N(v), is the set of all vertices adjacent to v in G and the closed neighborhood $N[v]=N(v)\cup\{v\}$. The degree of a vertex $v\in V$ is d(v)=|N(v)|. The distance d(x,y) between two vertices x and y in G is the length of the shortest path from x to y. If $S\subseteq V$, then $\langle S\rangle$ is the subgraph induced by S and $N[S]=\bigcup_{v\in S}N[v]$. For $S_1,S_2\subseteq V$, the distance from $\langle S_1\rangle$ to $\langle S_2\rangle$ in G is $d(\langle S_1\rangle,\langle S_2\rangle)=min\{d(x,y)|x\in S_1,y\in S_2\}$. S is a dominating set of G in G is a dominating set of G and for each $v\in V$, $N(v)\cap S\neq\emptyset$, then G is a total dominating set of G. The total domination number, $\gamma_t(G)$, is the minimum cardinality of the total dominating sets of G. If S is a dominating set of G and $\langle S\rangle$ contains a perfect matching,

Email:wsli@live.cn

then S is a paired dominating set of G. A paired dominating set of G is also a total dominating set of G. The paired domination number of G, denoted by $\gamma_p(G)$, is the minimum cardinality of paired dominating sets of G. The concept of paired domination number is given by Haynes and Slater[6] and there have been many results concerning the paired domination number of graphs, see, for example [3, 7, 9].

The generalized Petersen graph P(n,k) is the graph with vertex set $V=U\cup W$, where $U=\{u_0,u_1,u_2,...,u_{n-1}\}$ and $W=\{w_0,w_1,w_2,...,w_{n-1}\}$, and edge set $E=\{w_iw_{i+k},u_iu_{i+1},w_iu_i|0\leq i\leq n-1,\text{ subscripts modulo }n\}$. We call the vertices in U as vertices in the inner circle and the vertices in W as the vertices in the outer circle. The generalized Petersen graphs are widely studied by researchers[4, 10, 5, 8]. In this paper, we study the paired domination number of P(n,2) and prove that for any integer $n\geq 6$, $\gamma_p(P(n,2))=2\left(\left\lfloor\frac{n}{3}\right\rfloor+n(\text{mod}3)\right)$.

2. Paired domination number of generalized Petersen graphs P(n,2)

Lemma 1. ([6]) For any connected graph G with order $n(n \geq 2)$, $\gamma_p(G) \geq \gamma_t(G)$.

Lemma 2. ([2]) For any generalized Petersen graphs $P(n,2)(n \ge 6)$, $\gamma_t(P(n,2)) = 2\lceil \frac{n}{3} \rceil$.

Lemma 3. If $n = 3k(k \ge 2)$, then $\gamma_p(P(n, 2)) = 2k$.

proof. Let $T=\{w_i,u_i|i=3t,0\leq t\leq k-1\}$, then T is a paired dominating set of P(n,2) and |T|=2k. Thus $\gamma_p(P(n,2))\leq 2k$. On the other hand, by Lemma 1 and $2,\gamma_p(P(n,2))\geq 2k$. Therefore, $\gamma_p(P(n,2))=2k$. \square

Lemma 4. If $n = 3k + 1(k \ge 2)$, then $\gamma_p(P(n, 2)) = 2k + 2$.

proof. Let $T=\{w_i,u_i|i=3t,0\leq t\leq k-1\}\cup\{w_{3k-2},u_{3k-2}\}$, then T is a paired dominating set of P(n,2) and |T|=2k+2. Thus $\gamma_p(P(n,2))\leq 2k+2$. On the other hand, by Lemma 1 and $2,\gamma_p(P(n,2))\geq 2k+2$. Therefore, $\gamma_p(P(n,2))=2k+2$. \square

Lemma 5. If $n = 3k + 2(k \ge 2)$, then $\gamma_p(P(n, 2)) = 2k + 4$.

proof. The order of P(n,2) is 2n=6k+4. By Lemma 1 and 2, $\gamma_p(P(n,2)) \ge 2k+2$. Let $T=\{w_i,u_i|i=3t,0\le t\le k-1\}\cup\{w_{3k-2},u_{3k-2},w_{3k+1},u_{3k+1}\}$, then T is a paired dominating set of P(n,2) and |T|=2k+4. Thus $\gamma_p(P(n,2))\le k+3$.

2k+4. Therefore, $2k+2 \le \gamma_p(P(n,2)) \le 2k+4$. In the following, we will prove that $\gamma_p(P(n,2)) \ne 2k+2$.

We assume that $\gamma_p(P(n,2))=2k+2$. Let S be a paired dominating set of P(n,2) and |S|=2k+2.

Claim 1. The components of $\langle S \rangle$ are P_2 or P_4 , and there is at most one component that is P_4 .

proof. We assume that there is a component of $\langle S \rangle$, H, with $|V(H)| \geq 5$. Since P(n,2) is a 3-regular graph, there are at most 3|V(H)|-3 vertices of P(n,2) dominated by V(H). S is also a total dominating set of P(n,2), so S-V(H) dominates at most 3|S-V(H)| vertices of P(n,2). Thus S dominates at most 3|S|-3=6k+3<6k+4 vertices of P(n,2), which contradicts the fact that S is a dominating set of P(n,2). Therefore, the order of each component of $\langle S \rangle$ is less than five. Since, the minimum circle in P(n,2) is 5-circle, $\langle S \rangle$ doesn't contain circle. Further, $\langle S \rangle$ has perfect matching, thus $\langle S \rangle$ doesn't contain $K_{1,3}$, P_3 or K_1 . Therefore, the components of $\langle S \rangle$ are P_2 or P_4 . We assume that the number of P_4 in $\langle S \rangle$ is $t(t \geq 2)$. Since $V(P_4)$ dominates at most 10 vertices of P(n,2) and $V(P_2)$ dominates at most 6 vertices of P(n,2), S dominates at most P(n,2) and P(n,2) dominates at most P(n,2) dominates at most P(n,2), a contradiction. Therefore P(n,2), a contains at most one P(n,2).

Claim 2. If $\langle S \rangle$ contains a P_4 , then the distance of each two components of $\langle S \rangle$ in P(n,2) is at least three.

proof. We assume that there are two components, H_1 and H_2 , of $\langle S \rangle$ with $d(H_1,H_2) \leq 2$. Then, $|N(H_1) \cap N(H_2)| \geq 1$. Thus S dominates at most 10+6(|S|-4)/2-1=6k+3<6k+4 vertices of P(n,2), a contradiction to the assumption that S is a dominating set of P(n,2). \diamondsuit

Claim 3. $\langle S \rangle$ contains only P_2 as its components.

proof. We assume that $\langle S \rangle$ contains a P_4 as its component. By Claim 1, $\langle S \rangle$ contains only one P_4 and other components are all P_2 . According to the symmetry of P(n,2), the cases of P_4 in P(n,2) are illustrated in Fig. 1.

For cases (b),(d) and (g) in Fig.1, $V(P_4)$ dominates nine vertices of P(n,2), then S dominates at most 9+6(|S|-4)/2=6k+3<6k+4 vertices of P(n,2), a contradiction.

According to the symmetry of P(n, 2), let the subscript of the left vertex of P_4 in Fig.1 to be 0.

For case (a) as illustrated in Fig.2, since S dominates w_4 , by Claim 2, $w_6 \in S$. In the same way, S dominates u_5 , thus $u_6 \in S$. By Claim 1, $\{\{w_6, u_6\}\}$ is a

Fig.1: the cases of P_4 in P(n, 2)

component of $\langle S \rangle$. By Claim 2, $w_3, w_5, w_7, u_5 \notin S$, which contradicts to the fact that S dominates w_5 .

For case (c) as illustrated in Fig.3, since S dominates u_3 , by Claim 2, $u_4 \in S$. By Claim 1 and Claim 2, $u_5 \in S$. Further, since S dominates w_6 and u_7 , by Claim 2, w_8 , $u_8 \in S$. By Claim 2, w_5 , w_7 , u_7 , $w_9 \notin S$, which contradicts to the fact that S dominates w_7 .

Fig.3: The case (c) in Fig.1

For case (e) as illustrated in Fig.4, since S dominates w_2 , by Claim 1 and Claim 2, w_4 , $w_6 \in S$. By Claim 2, u_4 , u_5 , u_6 , $w_5 \notin S$, which contradicts to the fact that S dominates u_5 .

Fig.4: The case (e) in Fig.1

For case (f) as illustrated in Fig.5, by Claim 2, $w_1, u_2, u_3, u_4 \notin S$. Since S dominates u_3 , by Claim 1, $w_3, w_5 \in S$. By Claim 2, $w_6, u_5, u_6, u_7 \notin S$, which contradicts to the fact that S dominates u_6 .

For case (h) as illustrated in Fig.6, since S dominates u_1 and u_3 , by Claim 2, $w_1, w_3 \in S$. Thus $w_5, u_4, u_5, u_6 \notin S$, which contradicts to the fact that S dominates u_5 .

From above, $\langle S \rangle$ contains only P_2 as its components. \diamondsuit

Claim 4. Let
$$F = \{v | v \in V - S \text{ and } |N(v) \cap S| \ge 2\}$$
, then $|F| \le 2$.

proof. We assume that $|F| \ge 3$, i.e. there are at least three vertices of V - S respectively dominated by two different vertices of S. Since S is also a total dominating set of P(n,2), S dominates at most 3|S| - 3 = 6k + 3 < 6k + 4 vertices of P(n,2), a contradiction. \diamondsuit

Claim 5. If $\langle \{x,y\} \rangle$ is a component of $\langle S \rangle$, then there is at most one vertex of x and y belonging to inner circle U.

proof. We assume that both x and y belongs to inner circle U and $\{x,y\} = \{u_0, u_1\}$ without loss of generality. By Claim 3, $w_0, w_1, u_2 \notin S$. Since S is a total dominating set of P(n,2) and S dominates w_2 , we have $w_4 \in S$. By Claim 3, $w_2, w_4 \in S$, $w_4, u_4 \in S$ or $w_4, w_6 \in S$.

If $w_2, w_4 \in S$ as illustrated in Fig. 7, by Claim 3, we have $u_4 \notin S$. Since S is a total dominating set of P(n,2) and S dominates u_3 , thus $w_3 \in S$. Therefore w_0, w_1 and u_2 are respectively dominated by two different vertices of S, a contradiction to Claim 4.

If $w_4, u_4 \in S$ as illustrated in Fig.8, by Claim 3, we have $u_3, u_5 \notin S$. Since S is a total dominating set of P(n, 2) and S dominates w_3 , thus $w_5 \in S$. By Claim 3, we have $w_3, w_5 \in S$ or $w_5, w_7 \in S$. If $w_3, w_5 \in S$, then w_1, u_3, u_5 are

respectively dominated by two different vertices of S, a contradiction to Claim 4. If $w_5, w_7 \in S$, then $u_5, w_6, u_7 \notin S$, which contradicts to the fact that S total dominates u_6 .

If $w_4, w_6 \in S$ as illustrated in Fig. 9, by Claim 3, we have $u_4, u_6, w_8 \notin S$. Since S is a total dominating set of P(n,2) and S dominates u_3 , we have $w_3 \in S$. By Claim 3, $w_3, u_3 \in S$ or $w_3, w_5 \in S$. If $w_3, u_3 \in S$, then w_1, u_2, u_4 are respectively dominated by two different vertices of S, a contradiction to Claim 4. If $w_3, w_5 \in S$, then $w_7 \notin S$. Since S is a total dominating set of P(n,2) and S dominates u_7 , we have $u_8 \in S$. Thus w_1 and w_8 are respectively dominated by two different vertices of S. According to the symmetry, w_0 , the symmetric point of w_1 about $\langle \{u_0, u_1\} \rangle$, is also dominated by two different vertices of S, a contradiction to Claim 4.

In conclusion, Claim 5 is proved.♦

Claim 6. If $\langle \{x,y\} \rangle$ is a component of $\langle S \rangle$, then there is at most one vertex of x and y belonging to the outer circle W.

proof. We assume that both x and y belongs to outer circle W and $\{x,y\} = \{w_0, w_2\}$. By Claim 3, $u_0, u_2, w_4 \notin S$. Since S is a total dominating set of P(n,2) and S dominates u_1 , we have $w_1 \in S$. By Claim 3, $w_1, u_1 \in S, w_1, w_3 \in S$ or $w_1, w_{n-1} \in S$.

If $w_1, u_1 \in S$ as illustrated in Fig.10, by Claim 3, we have $w_3 \notin S$. Since S is a total dominating set of P(n, 2) and S dominates u_3 , we have $u_4 \in S$.

Therefore, u_0, u_2 and w_4 are respectively dominated by two different vertices of S, a contradiction to Claim 4.

If $w_1, w_3 \in S$ as illustrated in Fig.11, by Claim 3, $u_1, u_3, w_5 \notin S$. Since S is a total dominating set of P(n, 2) and S dominates u_4 , we have $u_5 \in S$. By Claim $3, u_4, u_5 \in S$ or $u_5, u_6 \in S$, a contradiction to Claim 5.

Since w_{n-1} is symmetric to w_3 about w_1 and $\langle \{w_0, w_2\} \rangle, w_1, w_{n-1} \in S$ also conflict in the same way to the case $w_1, w_3 \in S$ as illustrated in Fig. 11.

In conclusion, Claim 6 is obtained.

By Claim 3, Claim 5 and Claim 6, we assume $\langle \{w_i,u_i\} \rangle$ and $\langle \{w_j,u_j\} \rangle$ are two components of $\langle S \rangle$, then $min\{(i-j)(\bmod n),(j-i)(\bmod n)\} \geq 3$. Therefore, the number of P_2 in $\langle S \rangle$ is at most $\frac{n}{3} = k + \frac{2}{3}$. On the other hand, since $\gamma_p(P(n,2)) = 2k + 2$, by Claim 3, there are k + 1 P_2 in $\langle S \rangle$, a contradiction.

From above, $\gamma_p(P(n,2)) = 2k + 4.\square$

By Lemma 3, Lemma 4 and Lemma 5, we obtain the following theorem.

Theorem 6. For any integer $n \ge 6$, $\gamma_p(P(n,2)) = 2(\lfloor \frac{n}{3} \rfloor + n \pmod{3})$.

Acknowledgment

This work is supported by Science and Technology Department of Hebei (15210911), Education Committee of Hebei Province(QN2014052, Z2014010) and Foundation of Langfang Teachers University (LSLQ201411, LSZZ201201).

References

- [1] J.A. Bondy, V.S.R. Murty. Graph theory with application. Amsterdam: Elsevier, 1976.
- [2] J.X. Cao, W.G. Lin, M.Y. Shi. Total domination number of generalized Petersen graphs. Intelligent Information Management, 2009, 1(1): 15–18.

- [3] X.G. Chen, L Sun, H.M. Xing. Paired-domination number in cubic graphs. Acta Mathematica Scientia: A, 2007, 27(1): 166–170.
- [4] X. Fu, Y. Yang, B. Jiang. On the domination number of generalized Petersen graphs P(n, 3). Ars Combinatoria, 2007, 84: 373–383.
- [5] X. Fu, Y. Yang, B. Jiang. On the domination number of generalized Petersen graphs P(n, 2). Discrete Mathematics, 2009, 309: 2445–2451.
- [6] T.W. Haynes, P.J. Slater. Paired-domination in graphs. Networks, 1998, 32(3): 199-207.
- [7] S.W. Huang, L.Y. Kang, E.F. Shan. Paired-domination in claw-free graphs. Graphs and Combinatorics, 2007, 84: 373–383.
- [8] W.S. Li, H.M. Xing, M.Y. Sohn. On the signed total domination number of generalized Petersen graphs P(n,2) [J]. Bulletin of the Korean Mathematical Society, 2013, 50(6): 2021–2026.
- [9] D. Paul, G. Sylvain. Paired-domination in subdivided star-free graphs. Graphs and Combinatorics, 2010, 26(1): 43–49.
- [10] C. Tong, X. Lin, Y. Yang, M. Luo. 2-rainbow domination of generalized Petersen graphs P(n, 2). Discrete Applied Mathematics, 2009, 157: 1932–1937.