Limited packing vs tuple domination in graphs
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Abstract

In this paper we investigate the concepts of k-limited packing and
k-tuple domination in graphs and give several bounds on the size of
them. This bounds involve many well known parameters of graphs.
Also, we establish a connection between these concepts that implies
some new results in this area. Finally, we improve many bounds in
literatures.
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1 Introduction

Let G = (V, E) be a graph with vertex set V = V(G) of order n and edge
set £ = E(G). The minimum and maximum degrees of G are 6 = §(G) and
A = A(G), respectively. For a vertex v € V, N(v) is the open neighborhood
of v, which is the set of vertices adjacent to v and N[v] = N(v) U {v} is
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the closed neighborhood of v. A set S C V is a dominating set if each
vertex in V\S is adjacent to at least one vertex in S. The domination
number v(G) is the minimum cardinality of a dominating set. A subset
S C V is a 2-packing if for every pair of vertices u,v € S, d(u,v) > 2.
The 2-packing number p(G), is the maximum cardinality of a 2-packing in
G. In [2], Harary and Haynes introduced the concept of tuple domination.
A set D C V is a k-tuple dominating set for G if |[N[v] N D| > k for
all v € V(G). The k-tuple domination number, denoted yxi(G), is the
smallest number of vertices in a k-tuple dominating set. When k = 2, D
is called a double dominating set and the 2-tuple domination number is
called the double domination number and is denoted by dd(G). In fact
the authors showed that every graph G with § > k£ — 1 has a k-tuple
dominating set and hence a k-tuple domination number. Gallant et al. [1]
introduced the concept of limited packing in graphs. They exhibited some
real-world applications of it to network security, NIMBY, market saturation
and codes. In fact, a set of vertices B C V is called a k-limited packing
in G provided that for all v € V(G), we have |[N[v] N B] < k. The k-
limited packing number, denoted L(G), is the largest number of vertices
in a k-limited packing set. It is easy to see that L;(G) = p(G). In fact k-
limited packing is a generalization of 2-packing in a graph. In this paper we
obtain some new lower and upper bounds on these parameters in graphs,
that some of them improve some results in [1] and [2]. Also we give a
connection between these two concepts that leads to some new bounds on
them that they involve domination number, 2-packing number, k-limited
packing number, k-tuple domination number and some other parameters.
The reader can find comprehensive information about many domination
parameters until 1998 in [3].

2 Bounds on Li(G)

In (1], it has been proved the following theorem.

Theorem 1 [1] Let G be a connected graph of order n, and k be a positive
integer and § > k. Then Liy(G) < (gi7)n (hence, L(G) < | g&4n)).

We can improve this theorem as follows:

Theorem 2 Let G be a connected graph of order n, k be a positive integer
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and 6 2 k— 1. Then Li(G) £ [ﬁ—l-nj and the bound is sharp.

Proof. Let B be a maximum k-limited packing set in G. We count the
number |[B,V — B]|, of edges with endpoints in B and V' — B. Since B is a
k-limited packing set, the induced subgraph G[B] has maximum degree at
most k — 1. Therefore every vertex in B has at least § — k + 1 neighbors in
V — B. Hence (6 —k+1)|B| < |[B,V — B]}. On the other hand every vertex
in V — B has at most k neighbors in B. Hence |[B,V — B]| < k(n — |B|).
These two inequalities imply |B| < 3’—%. Now we show that the bound is
sharp. Consider the complete graph K, and let k < n. Then Li(K,) =

k=|%n] = |s£n). O

Theorem 3 Let G be a connected graph of order n, and k < A(G). Then
Li4+1(G) > Li(G) + 1. Moreover, Li(G) > p(G) + k — 1, and this bound is

sharp.

Proof. Let B be a maximum k-limited packing set in G. Then |N[v]JnB| <
k for all v € V(G). Obviously, Lx(G) < Li41(G). We claim that B # V.
If B=1V and u € V such that deg(u) = A, then A +1 = [N[u]| =
[N[un B} < k < A, a contradiction. Now let w € V — B. It is easy to
check that [N[v] N (BU {u}) < k+1 for all v € V(G). Therefore BU {u}
is a k + 1-limited packing set in G. Hence:

Lit1(G) 2 |BU{u}| = |B] + 1 = Li(G) + 1

Repeating these inequalities, we have Lx(G) > Ly_1(G) = ... 2 L1(G) +
k—1= p(G)+k—1. For sharpness we consider the graph K,,, when k < n.
Then, Li(K,)=k=1+k-1=p(Kn)+k-1. O

3 Bounds on yx,(G)

Harary and Haynes in [2] obtained the following theorem.

Theorem 4 [2] Let G be a graph of order n and with no isolated vertez.
Then dd(G) > 722 (hence, dd(G) > [2251), and this bound is sharp.
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Then they generalized it by the following theorem.

Theorem 5 [2] Let G be a graph of order n and §(G) > k — 1. Then
Txk(G) 2 225 ( hence, vxx(G) > [22:1), and this bound is sharp.

Now we are going to improve these results.

Theorem 6 Let G be a connected graph of order n and 6(G) > k—1. Then

Yxk(G) > [k—"*"""T‘i?'-'Ll)'l, and this bound is sharp, where ny_, s the

number of vertices with degree k — 1.

Proof. Let D be a minimum k-tuple dominating set in G. Every vertex in
V — D has at least k neighbors in D, hence all vertices with degree k — 1
belong to D. Let S = {v € V(G)|deg(v) = k — 1} and |S| = nk—;. Every
vertex in D has at least k — 1 neighbors in D, therefore every vertex in D
has at most A —k+1 neighbors in V' — D, exception vertices in S who have
no adjacent in V —D. Hence, |[D,V —D]| < (|D|-nk-1)(A—k+1). On the
other hand every vertex in V — D has at least k neighbors in D. Therefore,
k(n — |D|) < |[D,V — D]|. Together these two inequalities imply |D| >

ﬂi’%, Moreover, this bound is sharp. Indeed, yxx(Kkk-1) =
k(2k~ k k 1A=k
2k —1=[2(k = 1) + ghy] = [<E5HE) = [Ftmegaotrl)], o

Corollary 7 If G has no isolated vertices, then dd(G) > fz"—'%#], and

this bound is sharp, where | is the number of vertices of degree 1 of G.

Obviously, in general the lower bounds in Corollary 7 and Theorem 6 are
better than the analogous lower bound in Theorem 4 and Theorem 5, re-
spectively. Of course, they are the same when § > 2 and § > k, respectively.
In the process of proof of Theorem 6 we counted the vertices of degree k—1
belong to D and have no adjacent in V — D. Therefore, we have,

Proposition 8 Let G be a graph with § > k — 1. If vxx(G) # n, then
k+nr_1 € vxk(G), and this bound is sharp.

That improves the following theorem, when v, (G) # n.
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Theorem 9 [2] Let G be a graph with § > k — 1. Then, k < vxx(G) < n,
and these bounds are sharp.

Considering the graph K} x_1 we can check that the lower bound in Propo-
sition 8 is sharp. In [2] the authors obtained the following theorem.

Theorem 10 (2] If A(G) > k > 2, then vxx(G) 2 ¥(G) + k- 2.

We can show this result can be improved. In fact, we can omit the condition
A > k > 2 and will show that this lower bound is not sharp.

Theorem 11 Let G be a graph withk < A. Then yxx(G)+1 < Yx(k+1)(G)-
Moreover, if § > k—1, then v, (G) = v(G)+k~1, and this bound is sharp.

Proof. Let D be a minimum k + 1-tuple dominating set in G. Then
INwjND| = k+1, for all v € V(G). Let u € D. It is easy to see that
[N[v]n (D — {u})| > k, for all v € V(G). Therefore D — {u} is a k-tuple
dominating set in G. Hence, 7xx(G) < |D—{u}| =|D| -1 < vxx+1)(G) —
1. Repeating these inequalities, we have v,x(G) > Yxk-1)(G) = ... 2
¥x1(G)+k —1 = 4(G) + k — 1. For sharpness it is sufficient to consider the
graph K, when k < n. Then vxx(Kn) =k=1+k—-1=v(Kn)+k—-1.

a

4 Bound on Li(G) and 7vxx(G) by their rela-
tionships

In this section we establish a link between concepts of limited packing and
tuple domination. By this connection we will be able to obtain some new
sharp bounds. First, we need the following useful lemma.

Lemma 12 Let G be a graph. Then the following statements hold. (i) Let
8§ > k—1. If BCV is a k-limited packing set, then V —B is a § —k+1-tuple
dominating set in G.
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(i) Let § > k. If D C V is a k-tuple dominating set, then V — D is a
A — k + 1-limited packing set in G.

Proof. We only prove (i). Let B be a k-limited packing set in G. Every
vertex in B has at most k — 1 neighbors in B. Therefore it has at least
d —k+1 neighbors in V — B. On the other hand, every vertex in V — B has
at most k neighbors in B, hence it has at least § — k neighbors in V — B.
This imply that V — B is a § — k + 1-tuple dominating set in G. O

At this point we are able to obtain a sharp upper bound on Li(G) that
involves the domination number of G.

Theorem 13 Let G be a graph with§ > k. Then Lx(G) < n—+(G)—3d+k,
and this bound is sharp.

Proof. Let B be a maximum k-limited packing set. By Lemma 12, V — B
is a 6 — k+ 1-tuple dominating set in G. Therefore v (5-k+1)(G) < n—|B|.
Since § > §—k+1-1, Theorem 11 implies that, n—|B| > v(G)+é—k+1-1.
Hence |B| < n —4(G) — & + k. Applying the graph K,, whenn > k+1 we
have, Ly(Kp) =k=n—-1-(n—1)+k =n— vy(K,) — 6§ + k. Therefore
this bound is sharp. O

One can directly use tuple domination and limited packing number to ob-
tain upper and lower bounds on each other, respectively. In fact, the au-
thors in (1] showed that for a graph G, Li(G) < kv¥(G). But we can
generalize this result and show that tLx(G) < kvx:(G), for a graph with
6 >t —1. In fact, when ¢t = 1 we have the previous bound and when ¢ = k
we have Li(G) < yxk(G). Indeed, we have the following theorem.

Theorem 14 Let G be a graph and k,t be positive integers such that § >
t — 1. Then Li(G) < £v,.(G).

Proof. Let B be a maximum k-limited packing and D be a minimum ¢-
tuple dominating set in G. Let A be the set of ordered pairs {(b,d)} b €
B, d€ D and b € N[d]}. Since B is a k-limited packing, for every vertex
d € D, we have |N[d] N B| < k. Therefore |A| < k|D)|.

On the other hand, since D is a t-tuple dominating set, for every vertex
b € B, we have |[N[b) N D| > t. Therefore t|B| <| A|. These inequalities
imply that tLx(G) < kv (G). O
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Finally, we finish this section with a short discussion about regular graphs.

In [1] the authors obtained the following two propositions.

Proposition 15 [1] If G is an r-regular graph, and k < r — 1, then
Lr—k(G) + vx(k+1)(G) = n.

Proposition 16 [1] Let G be a cubic graph. Then, in < L3(G) < jn.

Putting » = 3 and k& =1 in Proposition 15, we have Ly(G) + vx2(G) = n.
Now Proposition 16 shows that:

Corollary 17 Let G be a cubic graph. Then in < dd(G) < 3n.
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