Limited packing vs tuple domination in graphs

D.A. Mojdeh*, B. Samadi*, S.M. Hosseini Moghaddam*

*Department of Mathematics,

University of Mazandaran, Babolsar, Iran

† Department of Mathematics,

Arak University, Arak, Iran

‡Qom Azad University, Qom, Iran

Abstract

In this paper we investigate the concepts of k-limited packing and k-tuple domination in graphs and give several bounds on the size of them. This bounds involve many well known parameters of graphs. Also, we establish a connection between these concepts that implies some new results in this area. Finally, we improve many bounds in literatures.

Keywords: Double domination, k-limited packing, k-tuple domination **2000 AMS subject classification**: 05C69.

1 Introduction

Let G = (V, E) be a graph with vertex set V = V(G) of order n and edge set E = E(G). The minimum and maximum degrees of G are $\delta = \delta(G)$ and $\Delta = \Delta(G)$, respectively. For a vertex $v \in V$, N(v) is the open neighborhood of v, which is the set of vertices adjacent to v and $N[v] = N(v) \cup \{v\}$ is

^{*}Corresponding author, damojdeh@umz.ac.ir

[†]b_samadi61@yahoo.com

tsm.hosseini1980@yahoo.com

the closed neighborhood of v. A set $S \subseteq V$ is a dominating set if each vertex in $V \setminus S$ is adjacent to at least one vertex in S. The domination number $\gamma(G)$ is the minimum cardinality of a dominating set. A subset $S \subseteq V$ is a 2-packing if for every pair of vertices $u, v \in S$, d(u, v) > 2. The 2-packing number $\rho(G)$, is the maximum cardinality of a 2-packing in G. In [2], Harary and Haynes introduced the concept of tuple domination. A set $D \subseteq V$ is a k-tuple dominating set for G if $|N[v] \cap D| \geq k$ for all $v \in V(G)$. The k-tuple domination number, denoted $\gamma_{\times k}(G)$, is the smallest number of vertices in a k-tuple dominating set. When k=2, Dis called a double dominating set and the 2-tuple domination number is called the double domination number and is denoted by dd(G). In fact the authors showed that every graph G with $\delta \geq k-1$ has a k-tuple dominating set and hence a k-tuple domination number. Gallant et al. [1] introduced the concept of limited packing in graphs. They exhibited some real-world applications of it to network security, NIMBY, market saturation and codes. In fact, a set of vertices $B \subseteq V$ is called a k-limited packing in G provided that for all $v \in V(G)$, we have $|N[v] \cap B| \leq k$. The klimited packing number, denoted $L_k(G)$, is the largest number of vertices in a k-limited packing set. It is easy to see that $L_1(G) = \rho(G)$. In fact klimited packing is a generalization of 2-packing in a graph. In this paper we obtain some new lower and upper bounds on these parameters in graphs, that some of them improve some results in [1] and [2]. Also we give a connection between these two concepts that leads to some new bounds on them that they involve domination number, 2-packing number, k-limited packing number, k-tuple domination number and some other parameters. The reader can find comprehensive information about many domination parameters until 1998 in [3].

2 Bounds on $L_k(G)$

In [1], it has been proved the following theorem.

Theorem 1 [1] Let G be a connected graph of order n, and k be a positive integer and $\delta \geq k$. Then $L_k(G) \leq (\frac{k}{k+1})n$ (hence, $L_k(G) \leq \lfloor \frac{k}{k+1}n \rfloor$).

We can improve this theorem as follows:

Theorem 2 Let G be a connected graph of order n, k be a positive integer

and $\delta \geq k-1$. Then $L_k(G) \leq \lfloor \frac{k}{\delta+1}n \rfloor$ and the bound is sharp.

Proof. Let B be a maximum k-limited packing set in G. We count the number |[B,V-B]|, of edges with endpoints in B and V-B. Since B is a k-limited packing set, the induced subgraph G[B] has maximum degree at most k-1. Therefore every vertex in B has at least $\delta-k+1$ neighbors in V-B. Hence $(\delta-k+1)|B| \leq |[B,V-B]|$. On the other hand every vertex in V-B has at most k neighbors in B. Hence $|[B,V-B]| \leq k(n-|B|)$. These two inequalities imply $|B| \leq \frac{kn}{\delta+1}$. Now we show that the bound is sharp. Consider the complete graph K_n and let $k \leq n$. Then $L_k(K_n) = k = \lfloor \frac{k}{n}n \rfloor = \lfloor \frac{k}{\delta+1}n \rfloor$. \square

Theorem 3 Let G be a connected graph of order n, and $k \leq \Delta(G)$. Then $L_{k+1}(G) \geq L_k(G) + 1$. Moreover, $L_k(G) \geq \rho(G) + k - 1$, and this bound is sharp.

Proof. Let B be a maximum k-limited packing set in G. Then $|N[v] \cap B| \le k$ for all $v \in V(G)$. Obviously, $L_k(G) \le L_{k+1}(G)$. We claim that $B \ne V$. If B = V and $u \in V$ such that $deg(u) = \Delta$, then $\Delta + 1 = |N[u]| = |N[u] \cap B| \le k \le \Delta$, a contradiction. Now let $u \in V - B$. It is easy to check that $|N[v] \cap (B \cup \{u\}) \le k + 1$ for all $v \in V(G)$. Therefore $B \cup \{u\}$ is a k+1-limited packing set in G. Hence:

$$L_{k+1}(G) \ge |B \cup \{u\}| = |B| + 1 = L_k(G) + 1$$

Repeating these inequalities, we have $L_k(G) \ge L_{k-1}(G) \ge ... \ge L_1(G) + k-1 = \rho(G) + k-1$. For sharpness we consider the graph K_n , when $k \le n$. Then, $L_k(K_n) = k = 1 + k - 1 = \rho(K_n) + k - 1$. \square

3 Bounds on $\gamma_{\times k}(G)$

Harary and Haynes in [2] obtained the following theorem.

Theorem 4 [2] Let G be a graph of order n and with no isolated vertex. Then $dd(G) \ge \frac{2n}{\Delta+1}$ (hence, $dd(G) \ge \lceil \frac{2n}{\Delta+1} \rceil$), and this bound is sharp.

Then they generalized it by the following theorem.

Theorem 5 [2] Let G be a graph of order n and $\delta(G) \geq k-1$. Then $\gamma_{\times k}(G) \geq \frac{kn}{\Delta+1}$ (hence, $\gamma_{\times k}(G) \geq \lceil \frac{kn}{\Delta+1} \rceil$), and this bound is sharp.

Now we are going to improve these results.

Theorem 6 Let G be a connected graph of order n and $\delta(G) \geq k-1$. Then $\gamma_{\times k}(G) \geq \lceil \frac{kn+n_{k-1}(\Delta-k+1)}{\Delta+1} \rceil$, and this bound is sharp, where n_{k-1} is the number of vertices with degree k-1.

Proof. Let D be a minimum k-tuple dominating set in G. Every vertex in V-D has at least k neighbors in D, hence all vertices with degree k-1 belong to D. Let $S=\{v\in V(G)|deg(v)=k-1\}$ and $|S|=n_{k-1}$. Every vertex in D has at least k-1 neighbors in D, therefore every vertex in D has at most $\Delta-k+1$ neighbors in V-D, exception vertices in S who have no adjacent in V-D. Hence, $|[D,V-D]|\leq (|D|-n_{k-1})(\Delta-k+1)$. On the other hand every vertex in V-D has at least k neighbors in D. Therefore, $k(n-|D|)\leq |[D,V-D]|$. Together these two inequalities imply $|D|\geq \frac{kn+n_{k-1}(\Delta-k+1)}{\Delta+1}$. Moreover, this bound is sharp. Indeed, $\gamma_{\times k}(K_{k,k-1})=2k-1=\lceil 2(k-1)+\frac{2}{k+1}\rceil = \lceil \frac{k(2k-1)+k}{k+1}\rceil = \lceil \frac{kn+n_{k-1}(\Delta-k+1)}{\Delta+1}\rceil$. \square

Corollary 7 If G has no isolated vertices, then $dd(G) \ge \lceil \frac{2n+l(\Delta-1)}{\Delta+1} \rceil$, and this bound is sharp, where l is the number of vertices of degree 1 of G.

Obviously, in general the lower bounds in Corollary 7 and Theorem 6 are better than the analogous lower bound in Theorem 4 and Theorem 5, respectively. Of course, they are the same when $\delta \geq 2$ and $\delta \geq k$, respectively. In the process of proof of Theorem 6 we counted the vertices of degree k-1 belong to D and have no adjacent in V-D. Therefore, we have,

Proposition 8 Let G be a graph with $\delta \geq k-1$. If $\gamma_{\times k}(G) \neq n$, then $k+n_{k-1} \leq \gamma_{\times k}(G)$, and this bound is sharp.

That improves the following theorem, when $\gamma_{\times k}(G) \neq n$.

Theorem 9 [2] Let G be a graph with $\delta \geq k-1$. Then, $k \leq \gamma_{\times k}(G) \leq n$, and these bounds are sharp.

Considering the graph $K_{k,k-1}$ we can check that the lower bound in Proposition 8 is sharp. In [2] the authors obtained the following theorem.

Theorem 10 [2] If $\Delta(G) \geq k \geq 2$, then $\gamma_{\times k}(G) \geq \gamma(G) + k - 2$.

We can show this result can be improved. In fact, we can omit the condition $\Delta \geq k \geq 2$ and will show that this lower bound is not sharp.

Theorem 11 Let G be a graph with $k \leq \Delta$. Then $\gamma_{\times k}(G) + 1 \leq \gamma_{\times (k+1)}(G)$. Moreover, if $\delta \geq k-1$, then $\gamma_{\times k}(G) \geq \gamma(G) + k-1$, and this bound is sharp.

Proof. Let D be a minimum k+1-tuple dominating set in G. Then $|N[v]\cap D|\geq k+1$, for all $v\in V(G)$. Let $u\in D$. It is easy to see that $|N[v]\cap (D-\{u\})|\geq k$, for all $v\in V(G)$. Therefore $D-\{u\}$ is a k-tuple dominating set in G. Hence, $\gamma_{\times k}(G)\leq |D-\{u\}|=|D|-1\leq \gamma_{\times (k+1)}(G)-1$. Repeating these inequalities, we have $\gamma_{\times k}(G)\geq \gamma_{\times (k-1)}(G)\geq \ldots \geq \gamma_{\times 1}(G)+k-1=\gamma(G)+k-1$. For sharpness it is sufficient to consider the graph K_n when $k\leq n$. Then $\gamma_{\times k}(K_n)=k=1+k-1=\gamma(K_n)+k-1$.

4 Bound on $L_k(G)$ and $\gamma_{\times k}(G)$ by their relationships

In this section we establish a link between concepts of limited packing and tuple domination. By this connection we will be able to obtain some new sharp bounds. First, we need the following useful lemma.

Lemma 12 Let G be a graph. Then the following statements hold. (i) Let $\delta \geq k-1$. If $B \subseteq V$ is a k-limited packing set, then V-B is a $\delta - k+1$ -tuple dominating set in G.

(ii) Let $\delta \geq k$. If $D \subseteq V$ is a k-tuple dominating set, then V - D is a $\Delta - k + 1$ -limited packing set in G.

Proof. We only prove (i). Let B be a k-limited packing set in G. Every vertex in B has at most k-1 neighbors in B. Therefore it has at least $\delta - k + 1$ neighbors in V - B. On the other hand, every vertex in V - B has at most k neighbors in B, hence it has at least $\delta - k$ neighbors in V - B. This imply that V - B is a $\delta - k + 1$ -tuple dominating set in G. \square

At this point we are able to obtain a sharp upper bound on $L_k(G)$ that involves the domination number of G.

Theorem 13 Let G be a graph with $\delta \geq k$. Then $L_k(G) \leq n - \gamma(G) - \delta + k$, and this bound is sharp.

Proof. Let B be a maximum k-limited packing set. By Lemma 12, V-B is a $\delta-k+1$ -tuple dominating set in G. Therefore $\gamma_{\times(\delta-k+1)}(G) \leq n-|B|$. Since $\delta \geq \delta-k+1-1$, Theorem 11 implies that, $n-|B| \geq \gamma(G)+\delta-k+1-1$. Hence $|B| \leq n-\gamma(G)-\delta+k$. Applying the graph K_n when $n \geq k+1$ we have, $L_k(K_n)=k=n-1-(n-1)+k=n-\gamma(K_n)-\delta+k$. Therefore this bound is sharp. \square

One can directly use tuple domination and limited packing number to obtain upper and lower bounds on each other, respectively. In fact, the authors in [1] showed that for a graph G, $L_k(G) \leq k\gamma(G)$. But we can generalize this result and show that $tL_k(G) \leq k\gamma_{\times t}(G)$, for a graph with $\delta \geq t-1$. In fact, when t=1 we have the previous bound and when t=k we have $L_k(G) \leq \gamma_{\times k}(G)$. Indeed, we have the following theorem.

Theorem 14 Let G be a graph and k, t be positive integers such that $\delta \geq t-1$. Then $L_k(G) \leq \frac{k}{t} \gamma_{\times t}(G)$.

Proof. Let B be a maximum k-limited packing and D be a minimum t-tuple dominating set in G. Let A be the set of ordered pairs $\{(b,d)|\ b\in B,\ d\in D\ and\ b\in N[d]\}$. Since B is a k-limited packing, for every vertex $d\in D$, we have $|N[d]\cap B|\leq k$. Therefore $|A|\leq k|D|$.

On the other hand, since D is a t-tuple dominating set, for every vertex $b \in B$, we have $|N[b] \cap D| \ge t$. Therefore $t|B| \le |A|$. These inequalities imply that $tL_k(G) \le k\gamma_{\times t}(G)$. \square

Finally, we finish this section with a short discussion about regular graphs.

In [1] the authors obtained the following two propositions.

Proposition 15 [1] If G is an r-regular graph, and $k \leq r-1$, then $L_{r-k}(G) + \gamma_{\times (k+1)}(G) = n$.

Proposition 16 [1] Let G be a cubic graph. Then, $\frac{1}{4}n \leq L_2(G) \leq \frac{1}{2}n$.

Putting r=3 and k=1 in Proposition 15, we have $L_2(G)+\gamma_{\times 2}(G)=n$. Now Proposition 16 shows that:

Corollary 17 Let G be a cubic graph. Then $\frac{1}{2}n \leq dd(G) \leq \frac{3}{4}n$.

References

- [1] R. Gallant, G. Gunther, B. Hartnell, D. F. Rall, Limited packing in graphs, Discrete Applied mathematics 158(2010), 1357-1364.
- [2] F. Harrary, T. W. Haynes, Double domination in graphs, Ars combin 55(2000), 201-213.
- [3] T.W. Haynes, S.T. Hedetniemi, P.J. Slater, Fundamentals of Domination in Graphs, New york, Marcel Dekker, 1998.