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Abstract. Skew-quasi-cyclic codes over a finite field are viewed as skew-
cyclic codes on a noncommutative ring of matrices over a finite field. This
point of view gives a new construction of skew-quasi-cyclic codes. Let Fy
be the Galois field with g elements and 6 be an automorphism of F;. We
propose an approach to consider the relationship between left ideals in
M(Fy)[X,6]/(X* — 1) and skew-quasi-cyclic codes of length si and index [
over F; under 8 which we denote by l5-SQC codes (or SQC codes for short
when there is no ambiguity). We introduce the construction of SQC codes
from the reversible divisors of X°® —1 in M;(F,)[X, 6]. In addition, we give
an algorithm to search for the generator polynomials of general SQC codes.
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1 Introduction

Skew polynomial rings form an important family of noncommutative
rings. Recently they have been applied to the construction of quasi-cyclic
codes [10] and skew cyclic codes [4-6], where codes are defined as left ideals
in the quotient rings of skew polynomial rings. The principal motivation
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for studying codes in this setting is that polynomials in skew polynomial
rings exhibit many factorizations and hence there are many more left ideals
in the quotient rings of a skew polynomial ring than in the commutative
case [2].

Skew-quasi-cyclic codes are defined as a common generalization of quasi-
cyclic codes and skew-cyclic codes.

Definition 1 Let Fy, be the Galois field with q elements, where ¢ = p™
with p a prime. Let 0 be an automorphism of Fy with |(8)| = m. A subset
C of F} is called a skew-quasi-cyclic code of length n and index | under
0 (denoted by a lg-SQC code, or a SQC code for short when there is no
ambiguity) where n = sl if

(1) C is a subspace of F;

(2) "'f c = (Co’o, tyC0l-1,C1,0," "3 CLl—-1y"""3C3—-1,00" " " 1Cs—1,l—l) is a
codeword of C, then Tp1(c) = (6(cs—1,0), " ,9(cs=1.1-1),8(co,0),**,8(co,i-1),
-++,68(cs—2,0),-** ,H(Ccs—2,4-1)) 18 also a codeword in C.

The map Ty, will be referred to as skew cyclic shift operator. Thus
skew-quasi-cyclic codes are linear codes that are closed under skew cyclic
shift. If 6 is the identity map, then the SQC codes are just the standard QC
codes defined over F,. If [ = 1, then the SQC codes are just the skew-cyclic
codes defined over Fj,.

Abualrub et al. [1] have studied skew-quasi-cyclic codes over finite
fields as a generalization of classical QC codes in the new setting of a skew
polynomial rings. In [2], Bhaintwal has studied skew-quasi-cyclic codes
over Galois rings.

In this paper we see skew-quasi-cyclic codes as block skew-cyclic codes.
We investigate the relationship between reversible divisors of X* —1 in the
skew matrix polynomial ring M;(Fy)[X, 6] and SQC codes of length s! and
index [ over Fy;. Then we consider the idea of constructing SQC codes from
reversible divisors of X* — 1.

The rest of the paper is organized as follows. Section II includes a
description of the skew matrix polynomial ring M;(F,)[X, 8]. In Section III,
we consider the relationship between left ideals in M;(Fy)[X,0)/(X® — 1)
and SQC codes of length sl, index ! over F,. In Section IV, we introduce
the construction of SQC codes from the reversible divisors of X°* — 1 in
M(F3)[X, ). In section V, we give an algorithm to search for the generator
polynomials of general SQC codes.
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2 Skew matrix polynomial ring M,(F;)[X, 6]

Let F, be the Galois field with ¢ elements, where ¢ = p™ with p a prime
and » € N. Let @ be the Frobenius automorphism of F;, with |(8)| = m.
Let K be the subfield of Fy fixed under 8. Then [F; : K] =m and K = F}

where r = tm. We have 6(a) = a® for alla € F,.

Let M;(F;,) be the noncommutative ring of / x [ matrices with elements
in F,. For A = (ai;) € Mi(Fy), we define 8(A) = (8(ai;)). For any
A, B € M(Fy), 6(AB) = 6(A)4(B) .

Remark 2.1 For a matriz A = (a;;) € Mi(F,), A is invertible if and
only if 8(A) is invertible.

Proof. Since |6(A)| = 6'(JA|), the result follows from the fact that 6
is an automorphism of F,. O

Definition 2.2 The skew matriz polynomial ring M;(Fg)(X, 0] is the set
of polynomials over Mi(Fy) where addition of the polynomials is defined in
the usual way while multiplication is defined using the distributive law and

the rule (AX)  (BX7) = AG*(B)X*+i.

Example 2.3 Consider the finite field Fy = {0, 1,w,w?} where w?+w+1 =
0. Define the Frobenius automorphism 6 : Fy — Fy by 6(z) = 22.

Let
10 2 w w? 1 w?
fX) = 01)XJr 1w X+(1 1)’

g(X)=(é ?)X2+(“12 :ﬁ)X*(i ‘i’)

We have

f(X)*g(X)=((1) ?)X‘+(é })X“+<g ;)Xﬁ
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1 w? w? o1
(1) xe (1),
Remark 2.4 (1) The commutative law does not hold in M;(Fy)[X,6].
(2) The associative law holds in M;(F,)[X, 6).
(3) deg(f(X) + g(X)) < max{deg(f(X)), deg(g(X))}.

(4) deg(f(X) * g(X)) < deg(f(X)) + deg(g(X)), the equation holds if
the leading coefficient of f(X) or g(X) is invertible in M;(F,).

Definition 2.5 We call a polynomial f(X) € M(F,)[X, 6] reversible if its
leading and constant coefficients are invertible matrices.

Now we give the following result. The proof is similar to the divi-
sion process for polynomials in polynomial ring F)[X]. So we omit it.

Lemma 2.6 Let g(X) be a polynomial in Mi(F,)[X, 6] whose leading co-
efficient is invertible. For any polynomial f(X) € Mi(F,)[X, 6], there exist
unigue polynomials ¢(X) end r(X) in My(F,)[X, 6] such that

F(X) = ¢(X) % g(X) + (X)),
where (X)) = 0 or deg(r(X)) < deg(g9(X)).

The above result is called division on the right by g(X). When r(X) =
0, we call g(X) divides f(X) on the right side, or g(X) is a right divisor
of f(X). A similar result can be proved regarding division on the left by
g(X). If g(X) is both a left and right divisor of f(X), we call it a two sided
divisor (or divisor) of f(X).

The following theorem generalize the result of Cao and Gao [8] which
deals with M;(F;)[X]. The proof is similar to that in [8]. So we omit it.

Lemma 2.7 Let f(X) € M(F,)[X,0] be reversible. Then there exists
a positive integer e such that f(X) is a right divisor of X¢ — 1.

Definition 2.8 For any ring R, define the center of R to be the set
Z(R)={ala-b=b-a for all b R}.

Definition 2.9 Let f(X) and g(X) be reversible polynomials. A monic
polynomial d(X) is called the greatest common right divisor of f(X) and
9(X) (gerd(f,9)) if

(1) d(X) 4s a right divisor of f(X) and g(X);

(2) if h(X) is another right divisor of f(X) and g(X), then d(X) =
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k(X) * h(X) for some polynomial k(X).

The greatest common left divisor of f(X) and g(X) (gcld(f,g)) is a
monic polynomial defined in a similar way. As in (7], we may have the

following results.
Lemma 2.10 X° -1 € Z(M(F,)[X,6}) for m | s, where m = |(6)|.

Lemma 2.11 Let f(X) and g(X) be reversible polynomials in M, (Fy)[X, 6].
If f(X) * 9(X) € Z(M,(FQ)[X, 6]), then f(X) x g(X) = g(X) * f(X).

Corollary 2.12 Let f(X) be a reversible polynomial in Mi(Fg)[X,6]. If
f(X) is o right divisor of X° — 1 with m | s where m = |(8)|, then f(X) is
a two sided divisor of X* — 1.

From now on, we regard the divisors of X* — 1 without specifying left
or right while m | s.

Lemma 2.13 Let f(X) be a divisor of X°* — 1 in M(Fg)[X, 6] with
8} =m and m | s.

(1) If f(X) is reversible, then there exists a unique reversible polynomial
9(X) such that f(X)*g(X)=g(X)* f(X)=X°*-1.

(2) If the leading coefficient of f(X) is invertible, then f(X) is re-
versible.

Proof. (1) The result follows from Lemma 2.10 and 2.11.

(2) X* —1=g(X)* f(X) implies —I; = g(0) f(0) where f(0) and g(0)
are constant coefficients of f(X) and g(X) respectively. Therefore, f(0) is
an invertible matrix. a

Definition 2.14 The period of a reversible polynomial f(X) in Mi(Fy)(X, 6]
is the smallest positive integer e such that f(X) divides X® —1 on the right
side. We denote e by per(f).

Theorem 2.15 Let f(X) be a reversible polynomial in M;(Fy)|X,0]. For
any positive integer d, f(X) is a right divisor of X¢ — 1 if and only if
per(f) | d.

Proof. Let e = per(f). Suppose that e | d. Let t be a positive in-
teger such that d = et. There exists g(X) € M;(F,)[X,0] such that
Xe—1=g(X)x* f(X). We have

X1 = X —1=((X)P 1+ (X) 24+ X+ 1) % (X 1)
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= (X)X 72+ + X+ 1)+ (9(X) * £(X)
(X (XY 2+ + XE 4+ 1) % g(X)) * f(X).
Conversely, suppose that f(X) is a right divisor of X¢ — 1. There
exist g(X) and h(X) in M;(F,)[X, 6] such that X¢ —1 = g(X) * f(X) and
X4~ 1=h(X)* f(X).
Let g and r be integers such that d =ge +r, 0 < r < e. Then
RMX)*f(X) = X¢-1=X""_1=(X®)9%xX" -1
(X)*xfFX)+1)T*x X" -1

(1+Z( ) w0+ f(X))’) -1

Thus

o

)(Q(X) f(X)))

i=1

¢
(1) o)

%

1l

M-

X -1 = h(X)*f(X)~(
= h(X)*f(X)—(

q

= WX)xf(X)=)_

3)(xa_1)i—l*(xe_l)*xr
= hX)»F(X)=)

=1

T -y T X (X0 —1)

N

.

= h(X)xf(X)=)_

= h(X)* f(X)- ( : ) (Xe -1 e X *g(X)) * £(X)
1

=

N TN N

i ) (X* =177 % X" x (9(X) * £(X))

1

9

[h(x) - Z ( 3 ) (X =1)"1x X" x g(X)J * f(X).

i=1

So f(X) is a right divisor of X — 1. By the smallest property of per(f)
we have r = 0. Thus per(f) | d. O

Let s be a multiple of m where m = [(#)|. We have X*—1 € Z(M;(F;){X,0])
and hence (X°® — 1) C M(F)[X,6] is a two sided ideal. In the non-
commutative ring M;(F){X, 6] we identify the image of f(X) under the
canonical homorphism ¥: M(Fg)[X, 0] - M;(Fg)[X,6)/(X® — 1) with the
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remainder 7(X) of f(X) by the division with X* — 1.

Theorem 2.16 Let D be a left ideal of Mi(F,)[X, 0]/ (X* —1). If there
ezists a polynomial with invertible leading coefficient g(X) which_has min-
imum degree in D. Then D is a principal left ideal generated by g(X g(X), and
9(X) is a divisor of X* — 1 in M(F,)[X,6).

Proof. If D =0, then D = {0).

Suppose that D # 0, firstly we first prove that the leading matrices of
all the polynomials with minimal degree in D are all invertible.

Let g(X g(X) € D be a polynomial with minimum degree and write g(X g(X) =
By X* 4 ... 4 B1X + By, 0 < k < s, By, is invertible in M;(Fy).

By the above notation we identify the element @e D with itself
in My(F,)[X,6]. That is ¥(g(X)) = g(X) with deg(g(X)) < s. For any
F(X) € D, there exists f(X) € Mi(Fg)[X,0] such that y(f(X)) = f(X).
Performing a right division of f(X) by g(X) in M;(F,)[X, 6] we get

F(X) = a(X) * g(X) +r(X),

where r(X) = 0 or deg(r(X)) < dqﬂgj_X)) < s. Thus we have f(X) —
g(X) * g(X) = r(X) = ¢(r(X)) = f(X) — ¥(a(X))  g(X) € D. By the
minimum_property of the degree of g(X) we have r(X) = ¥(r(X)) = 0.
Then f(z) = ¥(q(X)) * 9(X). Thus D = (g(X)).

Similarly as above we have X° —1 = h(X) * 9(X), where h(X) €
My(Fp)[X,6), ie. g(X) is a divisor of X* — 1. a

In the next section we will prove that any left ideal of M;(Fg)(X, 6]/{(X*—
1) is a principal left ideal. But it is not easy to find the generating element
in general situations.

3 Skew-quasi-cyclic codes over M;(F,)[X, 6]

In this section, we will build the corresponding relationship between left
ideals of M;(Fg)[X,0])/(X?*—1) and SQC codes and prove that M;(Fg)[X, 6]
/(X?® —1) is a principal left ideal ring. We always assume that m | s.

Following M. Barbier et al. [3] we may build a one-to-one correspon-
dence between SQC codes and left ideals of M;(F;)[X,8]/(X*® —1) through
left submodules of (F,[X,6]/{X* —1))!. Note that F,[X,d] is a skew poly-
nomial ring over F,. For more details about F,[X, 6] see [4-6]

Lemma 3.1 Let ! be a positive integer and R be a principal left ideal
ring. Then there is a one-to-one correspondence between the left submod-
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ules of R' and the left ideals of Mi(R).

Proof. Given a left submodule N C R, we can build a left ideal of M;(R)
whose elements have rows in N. Conversely, given a left ideal D C M(R)
we associate the left submodule of R' generated by all the rows of all the
elements of D. It is easy to check that these maps are inverse to each
other. O

Theorem 3.2 There is a one-to-one correspondence between SQC codes
over Fy of length n = sl and left ideals of Mi(Fy)[X,0]/(X* —1).

Proof. Let ¢ = (0,05 **,€0,1=1,€1,0***1€1,1=1,"**1Cs=1,0,* * * 1 Ca—1,1—1) DE
an element in F?'. Define a map

¢: Fg = (FX,6)/(X* - 1))

by
é(c) = (co(X),e1(X), -+, a-1(X)),

where ¢;(X) = Y523 ci; X' € Fy[X,0)/(X® - 1) for j =0,1,---,1 - 1.

The map ¢ gives a one-to-one correspondence between SQC codes over
F, of length n and left submodules of (Fy[X, 6]/(X*® — 1))'.

Let the ring R, = Fy[X,6]/(X* ~1). Then R, is a principal left ideal
ring (4-5]. Note that M;(Fg)(X,6]/(X*® —1) and My(Fy[X,8])/(X* —1)) are
isomorphic. The assertion now follows from Lemma 3.1. a

R! is a free module with rank /. Any left submodule of R can be gen-
erated by at most ! elements. Then we obtain the following result.

Theorem 3.3 Any left ideal D of Mi(Fy)[X,0]/{X® —1) is a left principal
ideal.

Thus we may denote a SQC code C by (g(X)) which is a left prin-
cipal ideal of M;(Fy)[X,6]/(X® —1). We call such g(X) the generator
polynomial of C.

Theorem 3.4 Let C = (g(X))1 C Mi(Fy)|X,0]/{(X* —1) be a SQC code
over Mi(Fq)[X,0). If the leading coefficient of g(X) is invertible, then g(X)
is a reversible divisor of X* —1 .

Proof. Firstly we see g(X) as a polynomial in M;(Fg)[X,6]. By Lem-
ma 2.6, there exist f(X),r(X) € Mi(Fg)[X,0] such that X* —1 = f(X) *
9(X) + r(X) and r(X) = 0 or deg(r(X)) < deg(g(X)).

Since —r(X) = f(X) * g(X) mod (X, — 1), we have r(X) € (g(X)).
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We declare that 7(X) = 0. Otherwise, it follows from the fact that the
leading coefficient of g(X) is invertible that deg(r(X)) > deg(g(X)), 2
contradiction. So r(X) = 0 and g(X) is a divisor of X* — 1.

By Lemma 14, g(X) is a reversible polynomial. O

4 SQC codes determined by divisors of X°* —1

In this section we will introduce the construction of SQC codes from
divisors of X° —1 in M;(Fg)[X, 6]. The generator matrices and parity check
matrices of the codes are proposed as well.

Construction Let g(X) be a divisor of X* — 1 in M;(Fg)(X, 6] with
[(8)] = m, m | s. Suppose that g(X) is a reversible polynomial.

Let g(X) = Z;;o A;X? (1 <k < s—1), where Ag and A are invertible
matrices. Let

o

Aj = : : :
Cz(i)l,o e cl(i)l,l—l

Suppose that X® — 1 = g(X) * h(X)(= h(X) * g(X)) and A(X) =
E;;g B;XJ. By and B,_y are clearly also invertible matrices. As in section
II, we identify the image of f(X) € M;(F,)[X,0) under the canonical ho-
morphism ¥: M;(Fg)[X, 0] = M(Fg)[X,8]/(X*—1) with the remainder of
F(X) by the division with X*—1. From Lemma 2.6 it follows that there ex-
ist unique polynomials g(X) and r(X) such that f(X) = ¢(X)*h{X)+r(X)
where 7(X) = 0 or deg(r(X)) < deg(h(X)). Then

P(F(X) * 9(X)) = P((g(X) * h(X) + (X)) * g(X)) = r(X) * g(X).

Thus we know that any element of the left ideal (g(X)) in Mi{F;)[X, 0]
/{X* —1) can be denoted by

) j=071)"':k~

7(X) * g(X) = Rog(X) + Ri(X * (X)) + - -- + Re_k—1(X*7*"1 % g(X)),
where R; are matrices in M;(Fg),i=0,1,---,s -k —1.
Let

0 0 1 1 k k
Ci = (cg,o)""’c;("l)_pc;g,czu"'ycg'l)_ly'”rcg(,o)a"’705,[)_1’0""10)’

i=0,1,-.-,1 — 1, where the number of zero is n — (k + 1)l = (s — k — 1)L.
Then €Oyt Cl=1, To,l(CO), e sTﬂ,l(cl—l)a te 7Tgs,7k_1(00)1 et 1T;,l_k—l(cl—l)
span a SQC code. Denote the SQC code by C.
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Since Ap is an invertible matrix in M;(F,),

—k-— —k-1
Co,° )cl—laTe,l(cO)s v |T0,I(Cl—l)a cee 1T;,I k 1(ch)s tee ’T;'[ (cl—l)

are independent. Thus they form a basis of C and dim(C) = (s — k)l
=n—kl.
The generator matrix of C is

Ao Ay 0 0
0 O(AO) G(Ak) 0
0 0 gs—k—l(AO) gs—k—l(Ak)

The parity check matrix of C is

B;—k 0(3;7k_1) v 9"""(36) 0 Lo 0
0 6(B,_,) 6%(B,_._;) pr-k+1(Bl) ... 0
0 0 gk—l(B”_k) 9k(B;—k-1) 9,_1(3:))

Example 4.1 Let F; = {0,1,w,w +1} where w? +w+1 = 0. Let & be the
automorphism of Fy with 8(c) = a? for & € Fy. Then [(6)| = 2. We have

SR E EHET I ER M)
w® w w w 1 w
2 2 2
3 w* 1 2 we 0 w W
(e (D) (D) (5 5))

Thus we obtain two 24-SQC codes with length 12 whose generator ma-
trices are

11 11 w 1 1 0 0 000
1 w2 ww w? w 0 1 0 000
c.-|9 90 111 1« 1 1000
1710 0 1 w w? 2 w w2 0 1 00
0 0 00 1 1 1 1 w110
0 0 0 0 1 w w w w? w 01
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and

w w? w2 0 w? 1 1 0 0 0 00
w? w? w 0 w w? 0 1 0 0 00O
Go— 0 0 w? w w 0 w 1 1 0 00
2= 0 0 w w w?® 0 w2 w 0 1 00
0 0 0 0 w w? w2 0 w? 1 10
0 0 0 0 w? w2 w 0 w w?2 01
respectively.

In the calculation we obtain more than 30 pairs of monic polynomials
f(X) and g(z) with X® — 1 = f(X) * g(X). We may construct quite a lot
SQC codes by such a decomposition method.

The above construction begins with a divisor of X* — 1 to get a SQC
code. A variation of the construction can be done by first selecting a
reversible polynomial f(X) in Mi(g)(X,6]. Then, by Lemma 2.7 we know
that there exits a positive integer e such that f(X) is a right divisor of
X¢ — 1. We denote the smallest positive integer e by per(f). Let s =
lem(per(f), m) where 8 = |()|. It follows from Theorem 2.15 that f(X) is
a divisor of X* — 1 and this give us a SQC code of length n = sl.

9 The generator polynomials of general SQC codes

In this section we demonstrate a way to search for the generator poly-
nomials of general SQC codes. The main idea comes from M. Barbier et
al. [3].

Lemma 5.1 Let C be a SQC code over Fy of dimension k and length
n = sl. Then there exists an integer v such that 1 < r < k and for any
generator matriz G of C and 0 < i < s — 1, the rank of the matriz formed
by columns il + 1,il +2,--. (i + 1)l of G isT.

Proof. Let G, = (Ao, A1, --,As-1) and G = (Bo,B]_,"',Bs_l) be
two generator matrices of C, where A; and B; are k x | matrices for
i =0,1,---,5s — 1. Then G3 = (6(As-1),0(A0), -,0(As—2)) is also a
generator matrix of C. Thus there exist invertible matrices P and @
such that G2 = PGl = P(Ao,Al,-",As_l) = (PAo,PAl,---,PAs_l)
and Gz = QG1 = Q(Ao, A1, +,As—1) = (QA0,QA:1,---,QAs—1). So
B; = PA; and (A;-;) = QA; for i = 0,1,---,5s — 1. Hence we have
rank(B;) = rank(A;) = rank(8(Ai-1)) = rank(A;_) fori =0,1,-.-,s—1.

It is clear that » <. a

Definition 5.2 Following the notation in Lemma 5.1 we call the inte-
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ger v the block rank of C. Note that r depends only on C and not on any
particular generator matriz of C.

Let C be a SQC code over M;(Fy)(X,6]. If I = 1, then C is a skew
cyclic code of length n with generator matrix

g(X)
X *g(X)

Xn—deg(g(X)) * g(X)

where g(X) € F,[X, ] is the generator polynomial of C over F,. The block
rank of C is 1 and we can write a generator matrix of C with only one
vector and its skew shifts.

The following algorithm attributes to M. Barbier et al. (3], the im-
provement that we make is the step 14. For the algorithm, the proof is
omitted as it is similar with the proof in [3]. However, the complexity and
computation cost of our algorithm is higher.

Let » be the block rank of C, the following algorithm computes a basis
of C from r vectors of C and their skew shifts. Given a nonzero vector
z = (21, --,Zs1), let i be the smallest integer such that 0 < i < s —1
and (Zii41,°*+, ZT(+1y) # 0. Such integer 4 is called the first index and is
denoted by F(z) = F(z,,---,z4). Let

(:Fq" —)F;,

T = (21, Zat) P (Titg1, 1 T4 1)),
where i = F(z,,---,z4) if z # 0 and {(0) =

Algorithm Basis computation with the block rank
Input: A generator matriz G of C.
Output: A generator matriz formed by r rows from G and some of their
skew shifts.
1: G’ + a row echelon form of G
2: Denote by g1, -+, gk the rows of G
3 M maxF(g,-),z’ €1,2,---,k
4: B, « 0
5: GM+1 «0
6: forj =M to 0 do
7: Bj «gi,i€l,- -,k and F(g;) =3
8: for each element = of B; do
9: if ((B;) U((z) are mdependent then
10: B} « Bj U {z}
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11: end if

12: end for

13: Gj — G_‘i+l UB;

14: Bj_, « Tg74(Bj) = (Ton)~(B3)
15: end for

16: return Gy

This algorithm works correctly as expected and returns a generator ma-
trix G of C made of r linearly independent vectors of C and some of their
skew shifts.

Proposition 5.3 There ezist g1,92, -, 9r linear independent vectors
in C such that g1, ’gT:Te,l(gl)t ot ,TB,l(gr)’ Y T[;Il(gl), e )Tes:[—l(gr)
span C. Forr <, we denote by g; ; the j — th coordinate of g;. Let

it4+1 0 Q,(i4+1)
G; = 9r,3+1 gr,(6+1)1 c M,(Fq)
0 0

and
s—1

o) = 35 Y GiX* € M(F,)[X, 6],

=0
where v is the least integer such that G; # 0, then C corresponds to the left
ideal (g(X)).

The polynomial g(X) € M;(Fy)[X,0)] obtained above is the generator
polynomial of C.

Example 5.4 Let F; = {0,1,w,w + 1} where w? + w+1 = 0. Let 8
be the automorphism of F; with 6(c) = o2 for a € Fy. Then |(8)| = 2. Let
C be a 35-SQC code from (p(X),q(X)) in M(Fy)[X,6]/(X® — 1) where

2

w? w w? 1 1 0
pX)=X%+{ w 0 o |X*'+| 1 0 w | X?
w? w ow w 1 1
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One generator matrix of C is

— IS
co~0033%3303~001
o =00 =M oYye ~o Y
~oc =0 3% 33V~ 3=
2w2w w2u2u 02u10011!2u10
30330~0~3333%30~
BINY 3~ 3 ano0e
© 3100~ mm3m3Y 303~
lol2w2u2w2w wn‘wooulllu
- - u2u11 w11011002w1
el T T A T W
~

33 300N ~~~0MoY 30
Y emommoco3OomO =Y~
1y 3030m0~300~001
©3~==0 30 uzuo...oo...zu
11002w0101u10010w
01012w001002w2u uzwzuo
o%j oM 3o~00~30313013

omo =N moomo™ 1Y 33

The above algorithm gives a generator polynomial of C which is

(== )
o~ O

- O o

The authors wish to express sincere thanks to the anonymous referees
who gave helpful comments and suggestions to improve the presentation of

the paper.

N

3© 3
(==l

«N

w
= w
0
6 Acknowledgments

9(X)

176



References

[1) Taher Abualrub, Ali Ghrayeb, Nuh Aydin and Irfan Siap, On the
Construction of Skew-quasi-cyclic Codes, IEEE Transactions On
Information Theory, 2010, 56(5):2081-2090.

[2] Maheshanand Bhaintwal, Skew-quasi-cyclic codes over Galois rings,
Design Codes Cryptogr., 2012, 62(1):85-101.

[3] M. Barbier, C. Chabot and G. Quintin, On quasi-cyclic codes as a
generalization of cyclic codes, Finite Fields and Their Applications,
2011, 18(96):904-919.

[4] D. Boucher, W. Geiselmann and F. Ulmer, Skew-cyclic codes,
Applicable Algebra In Engineering Communication And Computing,
2007, 18(4):379-389.

(5] Delphine Boucher and Felix Ulmer, Coding with skew polynomial rings,
Journal of Symbolic Computation, 2009, 44(12):1644-1656.

[6] Delphine Boucher, Patrick Sole and Felix Ulmer, Skew consta-
cyclic codes over Galois rings , Advances In Mathematics Of
Commaunications, 2008, 2(3):273-292.

(7] Pierre-Louis Cayrel, Christophe Chabot and Abdelkader Necer, Quasi-
cyclic codes as codes over rings of maitrices, Finite Fields and Their
Applications, 2010, 16(2):100-115.

[8] Yonglin Cao and Jian Gao,Constructing quasi-cyclic codes from linear
algebra theory, Design Codes Cryptogr., 2013, 67(1):59-75.

[9] Sunghyu Han, Jon-Lark Kim, Heisook Lee and Yoonjin Lee, Con-
struction of quasi-cyclic self-dual codes, Finite Fields and Their
Applications, 2012, 18(3):613-633.

[10] Patrick Sole and Olfa Yemen, Binary quasi-cyclic codes of index 2 and
skew polynomial rings, Finite Fields and Their Applications, 2012,
18(4):685-699.

177



