Skew-quasi-cyclic codes over

 $M_l(F_q)[X, \theta]$

Li Xiuli¹ * Tan Mingming^{2†}

College of Information Science and Engineering, Ocean University of China, Qingdao 266000, China

School of Mathematics and Physics, Qingdao University of Science and Technology, Qingdao 266000, China

² School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371, Republic of Singapore

Abstract. Skew-quasi-cyclic codes over a finite field are viewed as skew-cyclic codes on a noncommutative ring of matrices over a finite field. This point of view gives a new construction of skew-quasi-cyclic codes. Let F_q be the Galois field with q elements and θ be an automorphism of F_q . We propose an approach to consider the relationship between left ideals in $M_l(F_q)[X,\theta]/\langle X^s-1\rangle$ and skew-quasi-cyclic codes of length sl and index l over F_q under θ which we denote by l_θ -SQC codes (or SQC codes for short when there is no ambiguity). We introduce the construction of SQC codes from the reversible divisors of X^s-1 in $M_l(F_q)[X,\theta]$. In addition, we give an algorithm to search for the generator polynomials of general SQC codes.

Keywords: Quasi-cyclic codes, Skew-quasi-cyclic codes, Skew polynomial ring

1 Introduction

Skew polynomial rings form an important family of noncommutative rings. Recently they have been applied to the construction of quasi-cyclic codes [10] and skew cyclic codes [4-6], where codes are defined as left ideals in the quotient rings of skew polynomial rings. The principal motivation

^{*}E-mail: lixiuli2007@aliyun.com. Research supported by reward fund for outstanding young and middle-aged scientists of Shandong(BS2011DX011) and Qingdao postdoctoral fund (861605040007).

 $^{^{\}dagger}E$ -mail:MMTAN1@e.ntu.edu.sg.

for studying codes in this setting is that polynomials in skew polynomial rings exhibit many factorizations and hence there are many more left ideals in the quotient rings of a skew polynomial ring than in the commutative case [2].

Skew-quasi-cyclic codes are defined as a common generalization of quasi-cyclic codes and skew-cyclic codes.

Definition 1 Let F_q be the Galois field with q elements, where $q=p^{mt}$ with p a prime. Let θ be an automorphism of F_q with $|\langle\theta\rangle|=m$. A subset C of F_q^n is called a skew-quasi-cyclic code of length n and index l under θ (denoted by a l_θ -SQC code, or a SQC code for short when there is no ambiguity) where n=sl if

- (1) C is a subspace of F_a^n ;
- (2) if $c = (c_{0,0}, \dots, c_{0,l-1}, c_{1,0}, \dots, c_{1,l-1}, \dots, c_{s-1,0}, \dots, c_{s-1,l-1})$ is a codeword of C, then $T_{\theta,l}(c) = (\theta(c_{s-1,0}), \dots, \theta(c_{s-1,l-1}), \theta(c_{0,0}), \dots, \theta(c_{0,l-1}), \dots, \theta(c_{s-2,0}), \dots, \theta(c_{s-2,l-1}))$ is also a codeword in C.

The map $T_{\theta,l}$ will be referred to as skew cyclic shift operator. Thus skew-quasi-cyclic codes are linear codes that are closed under skew cyclic shift. If θ is the identity map, then the SQC codes are just the standard QC codes defined over F_q . If l=1, then the SQC codes are just the skew-cyclic codes defined over F_q .

Abualrub et al. [1] have studied skew-quasi-cyclic codes over finite fields as a generalization of classical QC codes in the new setting of a skew polynomial rings. In [2], Bhaintwal has studied skew-quasi-cyclic codes over Galois rings.

In this paper we see skew-quasi-cyclic codes as block skew-cyclic codes. We investigate the relationship between reversible divisors of $X^s - 1$ in the skew matrix polynomial ring $M_l(F_q)[X, \theta]$ and SQC codes of length sl and index l over F_q . Then we consider the idea of constructing SQC codes from reversible divisors of $X^s - 1$.

The rest of the paper is organized as follows. Section II includes a description of the skew matrix polynomial ring $M_l(F_q)[X,\theta]$. In Section III, we consider the relationship between left ideals in $M_l(F_q)[X,\theta]/\langle X^s-1\rangle$ and SQC codes of length sl, index l over F_q . In Section IV, we introduce the construction of SQC codes from the reversible divisors of X^s-1 in $M_l(F_q)[X,\theta]$. In section V, we give an algorithm to search for the generator polynomials of general SQC codes.

2 Skew matrix polynomial ring $M_l(F_q)[X, \theta]$

Let F_q be the Galois field with q elements, where $q=p^r$ with p a prime and $r \in N$. Let θ be the Frobenius automorphism of F_q with $|\langle \theta \rangle| = m$. Let K be the subfield of F_q fixed under θ . Then $[F_q:K]=m$ and $K=F_{p^t}$ where r=tm. We have $\theta(a)=a^{p^t}$ for all $a \in F_q$.

Let $M_l(F_q)$ be the noncommutative ring of $l \times l$ matrices with elements in F_q . For $A = (a_{ij}) \in M_l(F_q)$, we define $\theta(A) = (\theta(a_{ij}))$. For any $A, B \in M_l(F_q)$, $\theta(AB) = \theta(A)\theta(B)$.

Remark 2.1 For a matrix $A = (a_{ij}) \in M_l(F_q)$, A is invertible if and only if $\theta(A)$ is invertible.

Proof. Since $|\theta(A)| = \theta^l(|A|)$, the result follows from the fact that θ is an automorphism of F_q .

Definition 2.2 The skew matrix polynomial ring $M_l(F_q)[X, \theta]$ is the set of polynomials over $M_l(F_q)$ where addition of the polynomials is defined in the usual way while multiplication is defined using the distributive law and the rule $(AX^i) * (BX^j) = A\theta^i(B)X^{i+j}$.

Example 2.3 Consider the finite field $F_4 = \{0, 1, \omega, \omega^2\}$ where $\omega^2 + \omega + 1 = 0$. Define the Frobenius automorphism $\theta : F_4 \to F_4$ by $\theta(z) = z^2$. Let

$$f(X) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} X^2 + \begin{pmatrix} \omega & \omega^2 \\ 1 & \omega \end{pmatrix} X + \begin{pmatrix} 1 & \omega^2 \\ 1 & 1 \end{pmatrix},$$

$$g(X) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} X^2 + \begin{pmatrix} \omega^2 & \omega \\ 1 & \omega^2 \end{pmatrix} X + \begin{pmatrix} 1 & \omega \\ 1 & 1 \end{pmatrix}.$$

We have

$$f(X) * g(X) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} X^4 + \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} X^3 + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} X^2$$
$$+ \begin{pmatrix} 1 & \omega \\ 1 & 0 \end{pmatrix} X + \begin{pmatrix} \omega & 1 \\ 0 & \omega^2 \end{pmatrix},$$
$$g(X) * f(X) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} X^4 + \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} X^3 + \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix} X^2$$

$$+ \left(\begin{array}{cc} 1 & \omega^2 \\ 1 & 0 \end{array}\right) X + \left(\begin{array}{cc} \omega^2 & 1 \\ 0 & \omega \end{array}\right).$$

Remark 2.4 (1) The commutative law does not hold in $M_l(F_q)[X, \theta]$.

- (2) The associative law holds in $M_l(F_q)[X, \theta]$.
- $(3) \deg(f(X) + g(X)) \le \max\{\deg(f(X)), \deg(g(X))\}.$
- (4) $deg(f(X) * g(X)) \le deg(f(X)) + deg(g(X))$, the equation holds if the leading coefficient of f(X) or g(X) is invertible in $M_l(F_q)$.

Definition 2.5 We call a polynomial $f(X) \in M_l(F_q)[X, \theta]$ reversible if its leading and constant coefficients are invertible matrices.

Now we give the following result. The proof is similar to the division process for polynomials in polynomial ring F_q)[X]. So we omit it.

Lemma 2.6 Let g(X) be a polynomial in $M_l(F_q)[X, \theta]$ whose leading coefficient is invertible. For any polynomial $f(X) \in M_l(F_q)[X, \theta]$, there exist unique polynomials q(X) and r(X) in $M_l(F_q)[X, \theta]$ such that

$$f(X) = q(X) * g(X) + r(X),$$

where r(X) = 0 or deg(r(X)) < deg(g(X)).

The above result is called division on the right by g(X). When r(X) = 0, we call g(X) divides f(X) on the right side, or g(X) is a right divisor of f(X). A similar result can be proved regarding division on the left by g(X). If g(X) is both a left and right divisor of f(X), we call it a two sided divisor (or divisor) of f(X).

The following theorem generalize the result of Cao and Gao [8] which deals with $M_l(F_q)[X]$. The proof is similar to that in [8]. So we omit it.

Lemma 2.7 Let $f(X) \in M_l(F_q)[X, \theta]$ be reversible. Then there exists a positive integer e such that f(X) is a right divisor of $X^e - 1$.

Definition 2.8 For any ring R, define the center of R to be the set

$$Z(R) = \{a|a \cdot b = b \cdot a \text{ for all } b \in R\}.$$

Definition 2.9 Let f(X) and g(X) be reversible polynomials. A monic polynomial d(X) is called the greatest common right divisor of f(X) and g(X) (gcrd(f,g)) if

- (1) d(X) is a right divisor of f(X) and g(X);
- (2) if h(X) is another right divisor of f(X) and g(X), then d(X) =

k(X) * h(X) for some polynomial k(X).

The greatest common left divisor of f(X) and g(X) (gcld(f,g)) is a monic polynomial defined in a similar way. As in [7], we may have the following results.

Lemma 2.10 $X^s - 1 \in Z(M_l(F_q)[X, \theta])$ for $m \mid s$, where $m = |\langle \theta \rangle|$.

Lemma 2.11 Let f(X) and g(X) be reversible polynomials in $M_l(F_q)[X, \theta]$. If $f(X) * g(X) \in Z(M_l(F_q)[X, \theta])$, then f(X) * g(X) = g(X) * f(X).

Corollary 2.12 Let f(X) be a reversible polynomial in $M_l(F_q)[X, \theta]$. If f(X) is a right divisor of $X^s - 1$ with $m \mid s$ where $m = |\langle \theta \rangle|$, then f(X) is a two sided divisor of $X^s - 1$.

From now on, we regard the divisors of $X^s - 1$ without specifying left or right while $m \mid s$.

Lemma 2.13 Let f(X) be a divisor of $X^s - 1$ in $M_l(F_q)[X, \theta]$ with $|\langle \theta \rangle| = m$ and $m \mid s$.

- (1) If f(X) is reversible, then there exists a unique reversible polynomial g(X) such that $f(X) * g(X) = g(X) * f(X) = X^s 1$.
- (2) If the leading coefficient of f(X) is invertible, then f(X) is reversible.

Proof. (1) The result follows from Lemma 2.10 and 2.11.

- (2) $X^{s} 1 = g(X) * f(X)$ implies $-I_{l} = g(0)f(0)$ where f(0) and g(0) are constant coefficients of f(X) and g(X) respectively. Therefore, f(0) is an invertible matrix.
- **Definition 2.14** The period of a reversible polynomial f(X) in $M_l(F_q)[X, \theta]$ is the smallest positive integer e such that f(X) divides $X^e 1$ on the right side. We denote e by per(f).

Theorem 2.15 Let f(X) be a reversible polynomial in $M_l(F_q)[X,\theta]$. For any positive integer d, f(X) is a right divisor of $X^d - 1$ if and only if $per(f) \mid d$.

Proof. Let e = per(f). Suppose that $e \mid d$. Let t be a positive integer such that d = et. There exists $g(X) \in M_l(F_q)[X, \theta]$ such that $X^e - 1 = g(X) * f(X)$. We have

$$X^{d}-1 = X^{et}-1 = ((X^{e})^{t-1}+(X^{e})^{t-2}+\cdots+X^{e}+1)*(X^{e}-1)$$

$$= ((X^e)^{t-1} + (X^e)^{t-2} + \dots + X^e + 1) * (g(X) * f(X))$$

= $(((X^e)^{t-1} + (X^e)^{t-2} + \dots + X^e + 1) * g(X)) * f(X).$

Conversely, suppose that f(X) is a right divisor of $X^d - 1$. There exist g(X) and h(X) in $M_l(F_q)[X, \theta]$ such that $X^e - 1 = g(X) * f(X)$ and $X^d - 1 = h(X) * f(X)$.

Let q and r be integers such that d = qe + r, $0 \le r < e$. Then

$$h(X) * f(X) = X^{d} - 1 = X^{qe+r} - 1 = (X^{e})^{q} * X^{r} - 1$$

$$= (g(X) * f(X) + 1)^{q} * X^{r} - 1$$

$$= \left(1 + \sum_{i=1}^{q} {q \choose i} (g(X) * f(X))^{i} \right) * X^{r} - 1.$$

Thus

$$X^{r} - 1 = h(X) * f(X) - \left(\sum_{i=1}^{q} {q \choose i} (g(X) * f(X))^{i}\right) * X^{r}$$

$$= h(X) * f(X) - \left(\sum_{i=1}^{q} {q \choose i} (X^{e} - 1)^{i}\right) * X^{r}$$

$$= h(X) * f(X) - \sum_{i=1}^{q} {q \choose i} (X^{e} - 1)^{i-1} * (X^{e} - 1) * X^{r}$$

$$= h(X) * f(X) - \sum_{i=1}^{q} {q \choose i} (X^{e} - 1)^{i-1} * X^{r} * (X^{e} - 1)$$

$$= h(X) * f(X) - \sum_{i=1}^{q} {q \choose i} (X^{e} - 1)^{i-1} * X^{r} * (g(X) * f(X))$$

$$= h(X) * f(X) - \left(\sum_{i=1}^{q} {q \choose i} (X^{e} - 1)^{i-1} * X^{r} * g(X)\right) * f(X)$$

$$= \left[h(X) - \sum_{i=1}^{q} {q \choose i} (X^{e} - 1)^{i-1} * X^{r} * g(X)\right] * f(X).$$

So f(X) is a right divisor of $X^r - 1$. By the smallest property of per(f) we have r = 0. Thus $per(f) \mid d$.

Let s be a multiple of m where $m=|\langle\theta\rangle|$. We have $X^s-1\in Z(M_l(F_q)[X,\theta])$ and hence $\langle X^s-1\rangle\subset M_l(F_q)[X,\theta]$ is a two sided ideal. In the non-commutative ring $M_l(F_q)[X,\theta]$ we identify the image of f(X) under the canonical homorphism $\psi\colon M_l(F_q)[X,\theta]\to M_l(F_q)[X,\theta]/\langle X^s-1\rangle$ with the

remainder r(X) of f(X) by the division with $X^s - 1$.

Theorem 2.16 Let D be a left ideal of $M_l(F_q)[X, \theta]/\langle X^s - 1 \rangle$. If there exists a polynomial with invertible leading coefficient $\overline{g(X)}$ which has minimum degree in D. Then D is a principal left ideal generated by $\overline{g(X)}$, and $\overline{g(X)}$ is a divisor of $X^s - 1$ in $M_l(F_q)[X, \theta]$.

Proof. If D = 0, then $D = \langle 0 \rangle$.

Suppose that $D \neq 0$, firstly we first prove that the leading matrices of all the polynomials with minimal degree in D are all invertible.

Let $\overline{g(X)} \in D$ be a polynomial with minimum degree and write $\overline{g(X)} = B_k X^k + \cdots + B_1 X + B_0$, 0 < k < s, B_k is invertible in $M_l(F_q)$.

By the above notation we identify the element $\overline{g(X)} \in D$ with itself in $M_l(F_q)[X,\theta]$. That is $\psi(\overline{g(X)}) = \overline{g(X)}$ with $deg(\overline{g(X)}) < s$. For any $\overline{f(X)} \in D$, there exists $f(X) \in M_l(F_q)[X,\theta]$ such that $\psi(f(X)) = \overline{f(X)}$. Performing a right division of f(X) by $\overline{g(X)}$ in $M_l(F_q)[X,\theta]$ we get

$$f(X) = q(X) * \overline{g(X)} + r(X),$$

where $\underline{r(X)} = 0$ or $deg(r(X)) < deg(\overline{g(X)}) < s$. Thus we have $f(X) - q(X) * \overline{g(X)} = r(X) = \psi(r(X)) = \overline{f(X)} - \psi(q(X)) * \overline{g(X)} \in D$. By the minimum property of the degree of $\underline{g(X)}$ we have $\underline{r(X)} = \psi(r(X)) = 0$. Then $\overline{f(x)} = \psi(q(X)) * \overline{g(X)}$. Thus $D = \langle \overline{g(X)} \rangle$.

Similarly as above we have $X^s - 1 = h(X) * \overline{g(X)}$, where $h(X) \in M_l(F_q)[X, \theta]$, i.e. $\overline{g(X)}$ is a divisor of $X^s - 1$.

In the next section we will prove that any left ideal of $M_l(F_q)[X,\theta]/\langle X^s-1\rangle$ is a principal left ideal. But it is not easy to find the generating element in general situations.

3 Skew-quasi-cyclic codes over $M_l(F_q)[X, \theta]$

In this section, we will build the corresponding relationship between left ideals of $M_l(F_q)[X,\theta]/\langle X^s-1\rangle$ and SQC codes and prove that $M_l(F_q)[X,\theta]/\langle X^s-1\rangle$ is a principal left ideal ring. We always assume that $m\mid s$.

Following M. Barbier et al. [3] we may build a one-to-one correspondence between SQC codes and left ideals of $M_l(F_q)[X,\theta]/\langle X^s-1\rangle$ through left submodules of $(F_q[X,\theta]/\langle X^s-1\rangle)^l$. Note that $F_q[X,\theta]$ is a skew polynomial ring over F_q . For more details about $F_q[X,\theta]$ see [4-6]

Lemma 3.1 Let l be a positive integer and R be a principal left ideal ring. Then there is a one-to-one correspondence between the left submod-

ules of R^l and the left ideals of $M_l(R)$.

Proof. Given a left submodule $N \subseteq R^l$, we can build a left ideal of $M_l(R)$ whose elements have rows in N. Conversely, given a left ideal $D \subseteq M_l(R)$ we associate the left submodule of R^l generated by all the rows of all the elements of D. It is easy to check that these maps are inverse to each other.

Theorem 3.2 There is a one-to-one correspondence between SQC codes over F_a of length n = sl and left ideals of $M_l(F_a)[X, \theta]/\langle X^s - 1 \rangle$.

Proof. Let $c = (c_{0,0}, \dots, c_{0,l-1}, c_{1,0}, \dots, c_{1,l-1}, \dots, c_{s-1,0}, \dots, c_{s-1,l-1})$ be an element in F_a^n . Define a map

$$\phi: F_q^n \to (F_q[X,\theta]/\langle X^s-1\rangle)^l$$

by

$$\phi(c) = (c_0(X), c_1(X), \cdots, c_{l-1}(X)),$$

where $c_j(X) = \sum_{i=0}^{s-1} c_{ij} X^i \in F_q[X, \theta] / (X^s - 1)$ for $j = 0, 1, \dots, l-1$.

The map ϕ gives a one-to-one correspondence between SQC codes over F_q of length n and left submodules of $(F_q[X,\theta]/\langle X^s-1\rangle)^l$.

Let the ring $R_s = F_q[X,\theta]/\langle X^s - 1 \rangle$. Then R_s is a principal left ideal ring [4-5]. Note that $M_l(F_q[X,\theta]/\langle X^s - 1 \rangle)$ and $M_l(F_q[X,\theta]/\langle X^s - 1 \rangle)$ are isomorphic. The assertion now follows from Lemma 3.1.

 R_s^l is a free module with rank l. Any left submodule of R_s^l can be generated by at most l elements. Then we obtain the following result.

Theorem 3.3 Any left ideal D of $M_l(F_q)[X,\theta]/\langle X^s-1\rangle$ is a left principal ideal.

Thus we may denote a SQC code C by $\langle g(X) \rangle$ which is a left principal ideal of $M_l(F_q)[X,\theta]/\langle X^s-1 \rangle$. We call such g(X) the generator polynomial of C.

Theorem 3.4 Let $C = \langle g(X) \rangle_l \subseteq M_l(F_q)[X, \theta]/\langle X^s - 1 \rangle$ be a SQC code over $M_l(F_q)[X, \theta]$. If the leading coefficient of g(X) is invertible, then g(X) is a reversible divisor of $X^s - 1$.

Proof. Firstly we see g(X) as a polynomial in $M_l(F_q)[X, \theta]$. By Lemma 2.6, there exist $f(X), r(X) \in M_l(F_q)[X, \theta]$ such that $X^s - 1 = f(X) * g(X) + r(X)$ and r(X) = 0 or deg(r(X)) < deg(g(X)).

Since $-r(X) \equiv f(X) * g(X) \mod (X_s - 1)$, we have $r(X) \in \langle g(X) \rangle$.

We declare that r(X) = 0. Otherwise, it follows from the fact that the leading coefficient of g(X) is invertible that $deg(r(X)) \ge deg(g(X))$, a contradiction. So r(X) = 0 and g(X) is a divisor of $X^s - 1$.

By Lemma 14, g(X) is a reversible polynomial.

4 SQC codes determined by divisors of $X^s - 1$

In this section we will introduce the construction of SQC codes from divisors of X^s-1 in $M_l(F_q)[X,\theta]$. The generator matrices and parity check matrices of the codes are proposed as well.

Construction Let g(X) be a divisor of $X^s - 1$ in $M_l(F_q)[X, \theta]$ with $|\langle \theta \rangle| = m$, $m \mid s$. Suppose that g(X) is a reversible polynomial.

Let $g(X) = \sum_{j=0}^{k} A_j X^j$ $(1 \le k \le s-1)$, where A_0 and A_k are invertible matrices. Let

$$A_{j} = \begin{pmatrix} c_{0,0}^{(j)} & \cdots & c_{0,l-1}^{(j)} \\ \vdots & \vdots & \vdots \\ c_{l-1,0}^{(j)} & \cdots & c_{l-1,l-1}^{(j)} \end{pmatrix}, \ j = 0, 1, \cdots, k.$$

Suppose that $X^s-1=g(X)*h(X)(=h(X)*g(X))$ and $h(X)=\sum_{j=0}^{s-k}B_jX^j$. B_0 and B_{s-k} are clearly also invertible matrices. As in section II, we identify the image of $f(X)\in M_l(F_q)[X,\theta]$ under the canonical homorphism $\psi\colon M_l(F_q)[X,\theta]\to M_l(F_q)[X,\theta]/\langle X^s-1\rangle$ with the remainder of f(X) by the division with X^s-1 . From Lemma 2.6 it follows that there exist unique polynomials q(X) and r(X) such that f(X)=q(X)*h(X)+r(X) where r(X)=0 or deg(r(X))< deg(h(X)). Then

$$\psi(f(X) * g(X)) = \psi((g(X) * h(X) + r(X)) * g(X)) = r(X) * g(X).$$

Thus we know that any element of the left ideal $\langle g(X) \rangle$ in $M_l(F_q)[X, \theta]$ $/\langle X^s - 1 \rangle$ can be denoted by

$$r(X) * g(X) = R_0 g(X) + R_1 (X * g(X)) + \cdots + R_{s-k-1} (X^{s-k-1} * g(X)),$$

where R_i are matrices in $M_l(F_q)$, $i = 0, 1, \dots, s - k - 1$. Let

$$c_i = (c_{i,0}^{(0)}, \cdots, c_{i,l-1}^{(0)}, c_{i,0}^{(1)}, \cdots, c_{i,l-1}^{(1)}, \cdots, c_{i,0}^{(k)}, \cdots, c_{i,l-1}^{(k)}, 0, \cdots, 0),$$

 $i=0,1,\cdots,l-1$, where the number of zero is n-(k+1)l=(s-k-1)l. Then $c_0,\cdots,c_{l-1},T_{\theta,l}(c_0),\cdots,T_{\theta,l}(c_{l-1}),\cdots,T_{\theta,l}^{s-k-1}(c_0),\cdots,T_{\theta,l}^{s-k-1}(c_{l-1})$ span a SQC code. Denote the SQC code by C.

Since A_0 is an invertible matrix in $M_l(F_q)$,

$$c_0, \dots, c_{l-1}, T_{\theta,l}(c_0), \dots, T_{\theta,l}(c_{l-1}), \dots, T_{\theta,l}^{s-k-1}(c_0), \dots, T_{\theta,l}^{s-k-1}(c_{l-1})$$

are independent. Thus they form a basis of C and dim(C) = (s - k)l = n - kl.

The generator matrix of C is

$$\begin{pmatrix} A_0 & \cdots & A_k & 0 & \cdots & 0 \\ 0 & \theta(A_0) & \cdots & \theta(A_k) & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \cdots & 0 & \theta^{s-k-1}(A_0) & \cdots & \theta^{s-k-1}(A_k) \end{pmatrix}.$$

The parity check matrix of C is

Example 4.1 Let $F_4 = \{0, 1, \omega, \omega + 1\}$ where $\omega^2 + \omega + 1 = 0$. Let θ be the automorphism of F_4 with $\theta(\alpha) = \alpha^2$ for $\alpha \in F_4$. Then $|\langle \theta \rangle| = 2$. We have

$$X^{6}-1=\left(\begin{array}{cc}X^{3}+\left(\begin{array}{cc}\omega&1\\\omega^{2}&\omega\end{array}\right)X^{2}+\left(\begin{array}{cc}1&1\\\omega&\omega\end{array}\right)X+\left(\begin{array}{cc}1&1\\1&\omega^{2}\end{array}\right)\right)$$

$$* \left(\begin{array}{cc} X^3 + \left(\begin{array}{cc} \omega^2 & 1 \\ \omega & \omega^2 \end{array} \right) X^2 + \left(\begin{array}{cc} \omega^2 & 0 \\ \omega & 0 \end{array} \right) X + \left(\begin{array}{cc} \omega & \omega^2 \\ \omega^2 & \omega^2 \end{array} \right) \end{array} \right).$$

Thus we obtain two 2_{θ} -SQC codes with length 12 whose generator matrices are

and

respectively.

In the calculation we obtain more than 30 pairs of monic polynomials f(X) and g(x) with $X^6 - 1 = f(X) * g(X)$. We may construct quite a lot SQC codes by such a decomposition method.

The above construction begins with a divisor of X^s-1 to get a SQC code. A variation of the construction can be done by first selecting a reversible polynomial f(X) in $M_l(q)[X,\theta]$. Then, by Lemma 2.7 we know that there exits a positive integer e such that f(X) is a right divisor of X^e-1 . We denote the smallest positive integer e by per(f). Let s=lcm(per(f),m) where $\theta=|\langle\theta\rangle|$. It follows from Theorem 2.15 that f(X) is a divisor of X^s-1 and this give us a SQC code of length n=sl.

5 The generator polynomials of general SQC codes

In this section we demonstrate a way to search for the generator polynomials of general SQC codes. The main idea comes from M. Barbier et al. [3].

Lemma 5.1 Let C be a SQC code over F_q of dimension k and length n = sl. Then there exists an integer r such that $1 \le r \le k$ and for any generator matrix G of C and $0 \le i \le s - 1$, the rank of the matrix formed by columns $il + 1, il + 2, \dots, (i + 1)l$ of G is r.

Proof. Let $G_1=(A_0,A_1,\cdots,A_{s-1})$ and $G_2=(B_0,B_1,\cdots,B_{s-1})$ be two generator matrices of C, where A_i and B_i are $k\times l$ matrices for $i=0,1,\cdots,s-1$. Then $G_3=(\theta(A_{s-1}),\theta(A_0),\cdots,\theta(A_{s-2}))$ is also a generator matrix of C. Thus there exist invertible matrices P and Q such that $G_2=PG_1=P(A_0,A_1,\cdots,A_{s-1})=(PA_0,PA_1,\cdots,PA_{s-1})$ and $G_3=QG_1=Q(A_0,A_1,\cdots,A_{s-1})=(QA_0,QA_1,\cdots,QA_{s-1})$. So $B_i=PA_i$ and $\theta(A_{i-1})=QA_i$ for $i=0,1,\cdots,s-1$. Hence we have $rank(B_i)=rank(A_i)=rank(\theta(A_{i-1}))=rank(A_{i-1})$ for $i=0,1,\cdots,s-1$. It is clear that $r\leq l$.

Definition 5.2 Following the notation in Lemma 5.1 we call the inte-

ger r the block rank of C. Note that r depends only on C and not on any particular generator matrix of C.

Let C be a SQC code over $M_l(F_q)[X, \theta]$. If l = 1, then C is a skew cyclic code of length n with generator matrix

$$\begin{pmatrix} g(X) & & & & & \\ & X * g(X) & & & & \\ & & \cdots & & & \\ & & & X^{n-\deg(g(X))} * g(X) \end{pmatrix},$$

where $g(X) \in F_q[X, \theta]$ is the generator polynomial of C over F_q . The block rank of C is 1 and we can write a generator matrix of C with only one vector and its skew shifts.

The following algorithm attributes to M. Barbier et al. [3], the improvement that we make is the step 14. For the algorithm, the proof is omitted as it is similar with the proof in [3]. However, the complexity and computation cost of our algorithm is higher.

Let r be the block rank of C, the following algorithm computes a basis of C from r vectors of C and their skew shifts. Given a nonzero vector $x = (x_1, \dots, x_{sl})$, let i be the smallest integer such that $0 \le i \le s-1$ and $(x_{il+1}, \dots, x_{(i+1)l}) \ne 0$. Such integer i is called the first index and is denoted by $F(x) = F(x_1, \dots, x_{sl})$. Let

$$\zeta: F_q^{sl} o F_q^l,$$

$$x = (x_1, \cdots, x_{sl}) \mapsto (x_{il+1}, \cdots, x_{(i+1)l}),$$

where $i = F(x_1, \dots, x_{sl})$ if $x \neq 0$ and $\zeta(0) = 0$.

Algorithm Basis computation with the block rank

Input: A generator matrix G of C.

Output: A generator matrix formed by r rows from G and some of their skew shifts.

- 1: $G' \leftarrow a \ row \ echelon \ form \ of \ G$
- 2: Denote by g_1, \dots, g_k the rows of G'
- 3: $M \leftarrow \max F(g_i), i \in 1, 2, \dots, k$
- 4: $B_M' \leftarrow \emptyset$
- 5: $G_{M+1} \leftarrow \emptyset$
- 6: for j = M to 0 do
- 7: $B_j \leftarrow g_i, i \in 1, \dots, k \text{ and } F(g_i) = j$
- 8: for each element x of B_i do
- 9: if $\zeta(B_i) \cup \zeta(x)$ are independent then
- 10: $B_i' \leftarrow B_i' \cup \{x\}$

11: end if

12: end for

13: $G_j \leftarrow G_{j+1} \cup B'_j$ 14: $B'_{j-1} \leftarrow T^{s-1}_{\theta,l}(B'_j) = (T_{\theta,l})^{-1}(B'_j)$ 15: end for

16: return Go

This algorithm works correctly as expected and returns a generator matrix G of C made of r linearly independent vectors of C and some of their skew shifts.

Proposition 5.3 There exist g_1, g_2, \dots, g_r linear independent vectors in C such that $g_1, \dots, g_r, T_{\theta,l}(g_1), \dots, T_{\theta,l}(g_r), \dots, T_{\theta,l}^{s-1}(g_1), \dots, T_{\theta,l}^{s-1}(g_r)$ span C. For $r \leq l$, we denote by $g_{i,j}$ the j-th coordinate of g_i . Let

$$G_{i} = \begin{pmatrix} g_{1,il+1} & \cdots & g_{1,(i+1)l} \\ \vdots & & \vdots \\ g_{r,il+1} & \cdots & g_{r,(i+1)l} \\ 0 & \cdots & 0 \\ \vdots & & \vdots \\ 0 & \cdots & 0 \end{pmatrix} \in M_{l}(F_{q})$$

and

$$g(X) = \frac{1}{X^v} \sum_{i=0}^{s-1} G_i X^i \in M_l(F_q)[X, \theta],$$

where v is the least integer such that $G_i \neq 0$, then C corresponds to the left ideal $\langle q(X) \rangle$.

The polynomial $g(X) \in M_l(F_q)[X, \theta]$ obtained above is the generator polynomial of C.

Example 5.4 Let $F_4 = \{0, 1, \omega, \omega + 1\}$ where $\omega^2 + \omega + 1 = 0$. Let θ be the automorphism of F_4 with $\theta(\alpha) = \alpha^2$ for $\alpha \in F_4$. Then $|\langle \theta \rangle| = 2$. Let C be a 3_{θ} -SQC code from $\langle p(X), q(X) \rangle$ in $M_l(F_{\theta})[X, \theta]/\langle X^6 - 1 \rangle$ where

$$p(X) = X^5 + \left(\begin{array}{ccc} \omega^2 & \omega & \omega^2 \\ \omega & 0 & \omega^2 \\ \omega^2 & \omega & \omega \end{array}\right) X^4 + \left(\begin{array}{ccc} 1 & 1 & 0 \\ 1 & 0 & \omega \\ \omega & 1 & 1 \end{array}\right) X^3$$

$$+ \left(\begin{array}{ccc} 1 & \omega & 1 \\ \omega^2 & \omega & 1 \\ 1 & \omega^2 & 1 \end{array} \right) X^2 + \left(\begin{array}{ccc} 1 & 0 & \omega \\ 1 & \omega & \omega^2 \\ 0 & 1 & \omega \end{array} \right) X + \left(\begin{array}{ccc} 0 & 0 & 0 \\ 1 & \omega^2 & 1 \\ 0 & 0 & 0 \end{array} \right),$$

$$q(X) = X^5 + \left(\begin{array}{ccc} \omega^2 & \omega & \omega^2 \\ \omega & 0 & \omega^2 \\ \omega^2 & \omega & \omega \end{array} \right) X^4 + \left(\begin{array}{ccc} \omega^2 & \omega^2 & 0 \\ 1 & \omega^2 & 0 \\ 1 & \omega^2 & \omega \end{array} \right) X^3$$

$$+ \left(\begin{array}{ccc} 1 & \omega & \omega^2 \\ 0 & 0 & 1 \\ 0 & 0 & \omega \end{array} \right) X^2 + \left(\begin{array}{ccc} 0 & 1 & 0 \\ \omega^2 & 1 & \omega \\ 1 & \omega & \omega^2 \end{array} \right) X + \left(\begin{array}{ccc} 1 & \omega^2 & 1 \\ \omega^2 & \omega & \omega^2 \\ 1 & \omega^2 & 1 \end{array} \right).$$

One generator matrix of C is

$$\begin{pmatrix} 0 & 0 & 0 & 1 & 0 & \omega & 1 & \omega & 1 & 1 & 1 & 0 & \omega^2 & \omega & \omega^2 & 1 & 0 & 0 \\ 1 & \omega^2 & 1 & 1 & \omega & \omega^2 & \omega^2 & \omega & 1 & 1 & 0 & \omega & \omega & 0 & \omega^2 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & \omega & 1 & \omega^2 & 1 & \omega & 1 & 1 & 1 & \omega^2 & \omega & \omega & 0 & 0 & 1 \\ 1 & \omega^2 & 1 & 0 & 1 & 0 & 1 & \omega & \omega^2 & \omega^2 & \omega^2 & \omega^2 & \omega^2 & \omega & \omega^2 & \omega & \omega^2 & 1 & 0 & 0 \\ \omega^2 & \omega & \omega^2 & \omega^2 & 1 & \omega & 0 & 0 & 1 & 1 & \omega^2 & 0 & \omega & 0 & \omega^2 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \omega^2 & 1 & \omega^2 & 0 & \omega & 0 & \omega^2 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \omega^2 & 1 & \omega^2 & 1 & 1 & 1 & 1 & 0 & \omega & \omega^2 & \omega \\ 0 & 1 & 0 & 1 & \omega & 1 & 1 & 1 & \omega^2 & \omega & \omega & \omega^2 & 1 & 1 & 1 & 0 & \omega^2 & \omega^2 & 0 & \omega \\ 0 & 0 & 1 & 0 & 1 & \omega & 1 & 1 & 1 & \omega^2 & \omega & \omega & \omega^2 & 1 & 1 & 1 & \omega & \omega^2 & \omega^2 \\ 1 & 0 & 0 & 1 & \omega & 1 & 0 & 1 & \omega^2 & 1 & \omega & 1 & \omega^2 & 1 & 1 & \omega & \omega^2 & \omega^2 \\ 1 & 0 & 0 & 1 & \omega & 1 & 0 & 1 & \omega^2 & 1 & \omega & \omega & \omega & 0 & \omega & \omega^2 & \omega \\ 0 & 1 & 0 & \omega & \omega^2 & \omega & \omega & 1 & 0 & 1 & \omega^2 & \omega & \omega & 0 & \omega^2 & 0 & \omega \\ \omega^2 & \omega & \omega^2 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & \omega & 1 & \omega & 1 & 1 & 1 & 0 \\ \omega & 0 & \omega^2 & 0 & 1 & 0 & 1 & \omega^2 & 1 & 1 & \omega & \omega^2 & \omega^2 & \omega & \omega \\ \omega^2 & \omega & \omega^2 & 1 & 0 & 0 & 0 & 1 & 0 & 1 & \omega & 1 & \omega^2 & \omega^2 & \omega & \omega \\ \omega & \omega & \omega^2 & 0 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & \omega & 1 & \omega^2 & \omega^2 & \omega^2 \\ \omega & \omega & \omega^2 & 1 & 0 & 0 & 1 & \omega^2 & 1 & 0 & 1 & \omega & 1 & \omega^2 & \omega^2 & \omega^2 & 0 \\ \omega & \omega & \omega^2 & 0 & 1 & 0 & \omega^2 & \omega & \omega^2 & \omega^2 & 1 & \omega & 0 & 0 & 1 & 1 & \omega^2 & \omega^2 & \omega^2 \\ \omega & \omega & \omega^2 & 0 & 1 & 0 & \omega^2 & \omega & \omega^2 & \omega^2 & 1 & 0 & 0 & 0 & 1 & 1 & \omega^2 & \omega^2 & \omega^2 & 0 \\ \omega & \omega & \omega^2 & 0 & 1 & 0 & \omega^2 & \omega & \omega^2 & \omega^2 & 1 & 0 & 0 & 0 & 1 & 1 & \omega^2 & \omega^2 & \omega^2 & 0 \\ \omega & \omega & 0 & \omega^2 & 0 & 1 & 0 & 0 & 0 & 1 & \omega & 1 & 0 & 1 & \omega^2 & \omega^2 & \omega^2 & 0 \\ \omega & \omega & 0 & \omega^2 & \omega & 1 & 0 & 0 & 0 & 1 & \omega & 1 & 0 & 1 & \omega^2 & \omega^2 & \omega^2 \\ \omega & \omega & 0 & \omega^2 & \omega & 1 & 0 & 0 & 1 & 1 & \omega & 1 & 0 & 1 & \omega^2 & \omega^2 \\ \omega & \omega & 0 & \omega^2 & \omega & 1 & 0 & 0 & 1 & 1 & \omega & 1 & 0 & 1 & \omega^2 & \omega^2 \\ \omega & \omega & 0 & \omega^2 & \omega & 1 & 0 & 0 & 1 & 1 & 1 & 1 & 0 & 1 & \omega^2 & \omega^2 \\ \omega & \omega & 0 & \omega^2 & \omega & 1 & 0 & 0 & 1 & 1 & 0 & 1 & 0 & 1$$

The above algorithm gives a generator polynomial of C which is

$$g(X) = \left(\begin{array}{ccc} \omega^2 & 0 & \omega^2 \\ \omega & 0 & 0 \\ 0 & 1 & \omega \end{array}\right) X + \left(\begin{array}{ccc} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

6 Acknowledgments

The authors wish to express sincere thanks to the anonymous referees who gave helpful comments and suggestions to improve the presentation of the paper.

References

- [1] Taher Abualrub, Ali Ghrayeb, Nuh Aydin and Irfan Siap, On the Construction of Skew-quasi-cyclic Codes, *IEEE Transactions On Information Theory*, 2010, 56(5):2081-2090.
- [2] Maheshanand Bhaintwal, Skew-quasi-cyclic codes over Galois rings, Design Codes Cryptogr., 2012, 62(1):85-101.
- [3] M. Barbier, C. Chabot and G. Quintin, On quasi-cyclic codes as a generalization of cyclic codes, *Finite Fields and Their Applications*, 2011, 18(96):904-919.
- [4] D. Boucher, W. Geiselmann and F. Ulmer, Skew-cyclic codes, Applicable Algebra In Engineering Communication And Computing, 2007, 18(4):379-389.
- [5] Delphine Boucher and Felix Ulmer, Coding with skew polynomial rings, Journal of Symbolic Computation, 2009, 44(12):1644-1656.
- [6] Delphine Boucher, Patrick Sole and Felix Ulmer, Skew constacyclic codes over Galois rings, Advances In Mathematics Of Communications, 2008, 2(3):273-292.
- [7] Pierre-Louis Cayrel, Christophe Chabot and Abdelkader Necer, Quasicyclic codes as codes over rings of matrices, *Finite Fields and Their Applications*, 2010, 16(2):100-115.
- [8] Yonglin Cao and Jian Gao, Constructing quasi-cyclic codes from linear algebra theory, *Design Codes Cryptogr.*, 2013, 67(1):59-75.
- [9] Sunghyu Han, Jon-Lark Kim, Heisook Lee and Yoonjin Lee, Construction of quasi-cyclic self-dual codes, Finite Fields and Their Applications, 2012, 18(3):613-633.
- [10] Patrick Sole and Olfa Yemen, Binary quasi-cyclic codes of index 2 and skew polynomial rings, Finite Fields and Their Applications, 2012, 18(4):685-699.